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1 Introduction

The failure rate function h is important in reliability and biometry.

Estimates of h using weighting functions or "kernels" are quite common in the

literature (see Singpurwalla and Wong (1982b)). The kernels that have been

considered so far are nonntgatlvQ, and abλoZjULtoZy AJitfLQhabld Zn (-
00
,
00
). (Kernels

satisfying this latter condition are known as L kernels.) Singpurwalla and

Wong (1982a) — abbreviated as SW (1982a) — have shown that the mean square

error (MSE) of a kernel estimator of h using a compact L kernel restricted to

-4/5

be nonregative has an optimal rate of convergence of at most 0(n ), regard-

less of the smoothness of h; n is the sample size. If the nonnegativity condi-

tion of the compact L kernel is relaxed, and if h is (m + 1) times continuously

differentiable, then (for m > 2), the rate of convergence of the MSE (can be

improved and) is at most 0(n"
 m

 ). A method for producing kernel esti-

mators having the above property is the generalized jackknife of Gray and

Schucany (1972). Specifically, if we use the generalized jackknife on two

kernel estimators of h, with each estimator being based upon a nonnegative com-
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pact L kernel, then this is equivalent to directly producing a kernel estimator

of h using a compact L kernel which takes both positive and negative values.

If we continue to apply the generalized jackknife method, then the rate of con-

vergence of the MSE of the resulting estimator can be brought as close to n as

is desired. This, plus the alternating behavior of the resulting kernel, has

prompted us to conjecture that a repeated jackknifing of estimators based on

compact L kernels is equivalent to obtaining a kernel estimator using an alter-

nating (wave-like) non L kernel.

Motivated by the above considerations, our goal in this paper is to obtain

an estimator of h whose MSE converges to 0 faster than 0(n ) for any

finite m > 0 , and preferably is closer to the ideal n . We achieve this goal

by considering a kernel estimator of h based on the "sine" kernel. In Section 3

we show that the sine kernel, which is not an L kernel and may not be a limit-

ing case of jackknifing an L kernel either, arises naturally when we estimate

h via an estimate of the Fourier transform of h. The sine kernel estimator of

h is also referred to as the "Fourier integral estimate".

In Section 4 we show that the sine kernel estimators of h are asymptotically

unbiased and consistent. In Section 5, we discuss the rates of convergence of

the bias and the MSE of these estimators. We show that for certain classes of

failure rate functions, the sine kernel estimators have a faster rate of con-

vergence of the MSE than the corresponding L kernel estimators. These rates

are of the order (log n/n) or (n
 P

~ '' ), depending upon whether the

Fourier transform of h decreases "exponentially" or "algebraically with degree

p" (see Definitions 5.1 and 5.2). Clearly, when ρ > m + l, both the above rates

- , -2m/(2m+l)
are faster than n

Sine kernels have been considered before in the literature, first by

Konakov (1972), and more recently by Davis (1975) on density estimation. Thus,

the results of our paper complement those of Konakov and Davis.
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2. Preliminaries: 'Kernel_JEs_timat:jBS

Suppose that the time to failure of a device is a nonnegative random

variable X, with an absolutely continuous distribution function F and a pro-

bability density function f. The {aXJUϋiQ. Katd at x , h(x ), for F(x ) + 1, is

defined as

,, ,_
 f (

V .

note that h(x) ̂ 0 , for all x^O.

Given an ordered sample of n lifetimes from F, say X,-*,...,X. ., a

of h(x
Q
), h(n,x ), is defined as

(1) h(n,x
o
)=] - ^ ^ .ίlω-0-

where the kernel K is a bounded, symmetric function of integral one; the scale

parameter b(n) is a nonnegative decreasing function of n such that

(2) (i) lim b(n) = 0, and n + °° , (ii) limnb(n)=°° n + «> ,

A motivation for considering the kernel estimates of the failure rate are

given in Watson and Leadbetter (1964a).

Watson and Leadbetter (1964b) have shown that for a certain class of distri-

bution functions, estimates based on L kernels are asymptotically unbiased and

consistent, at every point x at which h is continuous and F(x) < 1. The optimal

rates of convergence of the bias and the MSE of h(n,x_) have been discussed by

SW (1982b).
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3
 Kernel Estimates Based on the Fourier Integral

We shall confine our attention to the class of failure rate functions h for

which the Fourier transform Φ, exists; that is

Φ
h
(x) = i e

1 X U
 h(u)du

Let x be a point of continuity of h(x), and assuming that Φ ^
ε
 L (i.e.,

]φ (x)|dx<°°, the following inversion formula gives us the basis for consider-

ing the Fourier integral estimate of the failure rate:

(3) h(x
0
) = -ί J e

 i x
0

U
 Φ

h
(u)du .

Let F be the moώi^dd AampZo, dAJ>&vLbuutiovi function; that i s , the usual

sample distribution function multiplied by n/(n+l). An estimate of h(x) at

. ) , h n ( x ) , i s

h (x) =
f (x)

n
dF (x)

n_
1-F (x) 1-F (x) n-j+1

n n

Let Φ be the Fourier transform of h that is

n ixX
 f
..

(4) φ ^ (x) - I e-
u
 h

n
(u)du = ̂ - ^ e ™

To obtain from (3) an estimate of h(x
Λ
), we replace Φ, by Φ, , and to
U n n

n

assure finiteness of the integral, we take it between the finite limits

~̂ ~bTn) * bTn)^'
 w h e r e t h e b

(
n
) satisfy (2), we obtain the TovΛλVi A

of h(x
Q
), h(n,x

Q
), where
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(5) h(n,x
n
) =

b(n)

, -IX U
2π"

1

Φ, (u)du
h

b(n)

A simple computation shows that

(6)

where S(x) = (sin x)/iτx is the "sine" function.

Thus we see that the Fourier integral estimate of the failure rate is indeed

a kernel estimate, with the sine function S as the kernel.

Note that the kernel S is not an L kernel, but that it is symmetric,

{ S
2
(x)bounded, and of integral one; also S (x)dx = l/π.

4. Asymptotic Unbiasedness and Consistency

Since S is not an L kernel, the asymptotic unbiasedness and consistency

of h(n,x-.) has to be established first. Once this is done, we will be able to

discuss the rates of convergence of the bias and the MSE.

THEOREM 1: Let X . . 5 X
m
 < ••• < X

(
 . bean ordered sample of lifetimes

from an absolutely continuous distribution function F. Suppose

that:

(i) the failure rate function h is absolutely integrable;

(ii) h satisfies Dirichlet's conditions in any finite interval;

that is, h has at most a finite number of finite discon-

tinuities, and no infinite discontinuities in any finite

interval, and, furthermore, h has only a finite number of
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maxima and minima in any finite interval;

~;(iii) h(x) is continuous at

(iv) F(x
Q
) < 1; and

(v) F is such that for any fixed x
1
, and every fixed

λ>0 , there exists a G
Λ
 >0, such that

ττ(l-F(x)T
((x-x

τ
)/b(n))

x - x
f

for all sufficiently large n and for all

x - x
f
 :> λ ,

then h(n,x
n
) defined by (6) is an asymptotically unbiased and consistent esti-

mator of h(x ) .

Furthermore, an asymptotic expression for the expected value of h(n,x ) is*

(7) E[h(n,x
Q
)] .-

sin((u-x

h(u)du ,

and the variance Var[h(n,x )] converges to zero at the rate l/nb(n).

PROOF: E[h(n,x
Q
)]

(8)

sin((u-x
Q
)/b(n))

ττ(u-x
0
)

(u)du

1 f sin((u-x
n
)/b(n)) _,, . i f sin((u-x )/b(n))

=
 ~ I 0 h(u)du - - I — h(u) F (u)du

u -x0

The notation "a ~ b " denotes the fact that the ratio of a to b has limit
n n n n

one.
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Consider the limit of the first term on the right-hand side of (8):

(9) lim i sin((u-x
o
)/b(n))

 h ( u ) d u = l i m
 I sin((u-x

o
)/b(n))π

 J " J "b ( n ) »O " J
 u

~
x
o

h(x
Q
)

The last equality follows by the Fourier integral formula (see Titchmarsh (1962,

PP. 3,25)).

Next we show that the second term on the right-hand side of (8) tends to

zero, as n -* °°. Since F(x ) < 1, we can choose a λ > 0 so that F(x +λ)<l, and

such that h(u) is bounded in | u-x | ;£ λ. We split the interval of integration

(-00,00) into two parts, | u-x | <̂  λ and | u-x | > λ, and note that

u
"

x
o

h ( u ) F ( u ) d u £ ( c o n s t ) F
( x

TT U — X^ — U

u)du 1 (const) F n (x n + λ) •+ 0 ,

|u-x
Q
| <λ

sin / "
 X
0

as n •> 0°, and

(11) j i - ^ Γ ^ h(u) Fn(u)du < G? I F"dF - ^- - 0 ,

-xj >λ °

as n -> °°.

From (8) through (11), we conclude that

sin
u " x o

0 &J-L1\ I

E[h(n,xn)] ~ i V b ( n ) / h ( u ) d u -> h(x ) as n -> 00 .
U I if U ~^τ\
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To prove consistency of h(n,x
0
), we follow the detailed steps given in

Watson and Leadbetter (1964b). From equation (4) of Watson and Leadbetter, we

write

Var[h(n,
X()
)]

1
 ς

2

h(u) I
n
(F(u)) dF(u)

(12) + 2 ίί
0<u<v

b(n) "V b(n)/ b(n)

1 - F(v)

dF(u) dF(v)

where I (F)
- F

If we multiply both sides of (12) by n/α , where

n

S -r>—r- du

b
2
(n) \

b ( n )
/
 π b ( n )

and take the limit as n -> °°, we note that the first term on the right-hand side

of (12) equals h(x
Q
)/(l-F(x )) whereas the second term is 0. Thus

n -
 h ( x

n
)

11. — V.r[h(n.x
0
)]- ^ - ^

or that

Var[h(n,
X()
)]

h(x
0
)

n 1 - F(x
Q
)
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Since α /n = (1/π) (l/nb(n)) -> 0 by (2), it follows that Var[h(n,x )] •* 0. Thus,

h(n,x_) is a consistent estimator of h(x^), and the variance of h(n,x
n
) goes

to zero at the rate l/nb(n).

4.1 An Alternate Expression for the Bias

We shall find it useful to express the asymptotic bias of h(n,x
n
) in

terms of the Fourier transform Φ, of h. We first note that if w(t) is the

n

indicator of the interval [-1,1], then

(13) S(x) = ~~ 1 e
 i x u

 w(u)du .

In view of the above, the Fourier transform of S(x) is w(x), |x| Φ 1. Recall,

from (7), that

E[h(n,
X()
)] ~ ~ ^ y ί h(u) S((

X()
-u)/b(n))du

= -—- j e
 xx
0

t
 w(b(n)t) Φ

h
(t)dt .

The asymptotic bias of h(n,x
n
) is therefore given by

Bias[h(n,
X()
)] ~ -̂ - J e ^ V w(tb(n)) φ

h
(t) dt-h(x

Q
)

(14)
 . i V f

 e
"
iv {w(tb(n))

 -
i }

φ
h

( t ) dt

φ
h

( t ) d t

b(n)
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5. Rates of Convergence of the Bias and the MSE

We are able to investigate and optimize the rates of convergence of the

bias and the MSE of h(n,x ) when the Fourier transform of the failure rate de-

creases exponentially or algebraically.

DEFINITION 1: (Parzen (1962)): A function g(x) is said to dzcAZCU>H QX-

with degree 0 < r ̂  2, and coefficient p > 0, if

(15) |g(x)| 1 Ae
 P
'

X
I for some constant A > 0 ,

and

Γ
1
 r ? "

1

(16) lim [l + exp(2pχ
r
) |g(xu)|

Z
] du = 0

χ->oo JQχ->oo

We shall first need to prove the following lemmas. The first is a simple

application of L'Hopital's rule.

LEMMA 1:

b
r
(n) r

(17) lim b(n) e e dt = 0, (r>0).
n ->- oo J —

b(n)

LEMMA 2: If the Fourier transform of h, φ , decreases exponentially with

degree r and coefficient p, then, for sufficiently large n,

(18) |Bias[h(n,x
o
)]| < ~γ f Ae

 p t
 dt .

" b~(n)



PROOF: From (14), we note that for n large
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Bias£h(n,x
0
)] ~

2π~

sfey

- p | t | r

b(n)

Ae" P t dt;

the statement of the lemma now follows.

LEMMA 3: Suppose that the Fourier transform φ of h decreases exponentially

with degree r and coefficient p. Then

(19) lim b(n) |Bias[h(n,
X()
)]| = 0

PROOF: The result follows if we make a change of variable u = pt , and use

Lemmas 1 and 2.

The following theorem establishes the choice of b(n) which enables us to

obtain the optimal rate of convergence of the mean square error of h(n,x
n
),

when φ decreases exponentially. It follows from Lemma 3, Theorem 1, and Davis

(1975).

Suppose that the Fourier transform φ of the unknown failure rateTHEOREM 2:

h exists and decreases exponentially with degree 0 < r <̂  2 and coefficient p > 0.

Then, if b(n) in the Fourier integral estimator of h, h(n,x ), given by (6), is

chosen such that b(n) = 0(log n/2p)
 r

 , the optimal rate of convergence of

the MSE of h(n,x ) is of the order log n/n.
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We shall now consider the class of failure rate functions h whose Fourier

transforms φ, decrease albegraically.

DEFINITION 2: (Parzen (1962)): A function g(x) is said to cίecΛe&άe

with degree p > 0, if

(20) lim |x|
P
 |g(x)| = α^ > 0, for some α > 0

LEMMA 4: Suppose that the Fourier transform φ of h decreases algebraically

with degree p > 1. Then

(21) lim b
1 p
(n) . |φ, (t)|dt = 2o^(p-l)

 λ
 .

i|t| >
 ι h

PROOF: From (20), we note that for ε > o, there exists an M > 0 such that for

|t| > M

|t|
 p
(α^-ε) < |φ,(t)| < |t|

 p
 (of* + ε) .

The proof is completed by integrating both sides of the above for |t| > l/b(n),

and noting that when n is sufficiently large, l/b(n) > M, and |t| > l/b(n)

implies that |t| > M .

LEMMA 5 : Suppose that the Fourier transform φ of h decreases algebraically

with degree ρ > l . Then the bias of h(n,x
Q
), Bias[h(n,x )], satisfies

(22) lim b
1 P
(n) |Bias[h(n,x )] | < α^ π

 1
 (p-1)

 λ

n
-^oo

thus the bias decreases at the rate b (n) .



PROOF: From (14), we have
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1

2π

t >
b(n)

<fc(t)dt i ± (t)|dt

t >
b(n)

We obtain from (14) and (21)

llm b
1 P
(n)|Bias[h,(n,x

0
)]| < —^ 2α*(p-l)

 1
 = α V

1
 (p-1)"

1

The following theorem is analogous to Theorem 2.

THEOREM 3: Suppose that the Fourier transform φ of the unknown failure

rate h exists and decreases algebraically with degree p > 1. Then, if b(n) in

the Fourier integral estimator of h, h(n,x ), given by (6), is chosen such that

b(n) = 0(n~ *
 P
~ ' )

9
 the optimal rate of convergence of the MSE of h(n,x ) is

of the order n

6. A Comparison of the Rates of Convergence of the MSE's

We can now compare the optimal rates of convergence of the MSE's for

estimates of h based on L kernels and the sine function kernel which is not

an L kernel.

In general, for L kernels which belong to the class A (i.e., an L

m
x\(x)dx = 0, for j = l,2,...,m-l),

exists (that is, if h is m times continuously differentiable),

kernel K which satisfies the condition that

and if h
( m + 1 )

then we have shown in SW (1982a) that the optimal rate of convergence of the

MSE of the kernel estimator of h is of the order
 n
"
2m
'(

2m+1
\
 τ h e

 following

results are immediate consequences of this and Theorems 2 and 3 of this paper.
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THEOREM 4: For the class of failure rate functions whose Fourier transform

exists, and decreases exponentially, the Fourier integral estimate (based on the

sine function) is better in terms of the rate of convergence of the MSE than a

kernel estimate based on any L kernel.

THEOREM 5: For the class of failure rate functions whose Fourier transform

exists and decreases albegraically with degree p, the Fourier integral estimate

(based on the sine function) is better in terms of the MSE than a kernel esti-

mate based on any L kernel belonging to the class A , if p > m+1 .

^ Concluding Remarks

It is evident from Theorems 2 and 3 that one would consider using

the Fourier integral estimate of h only when one had some prior knowledge about

h. A disadvantage of the sine kernel estimator stems from the fact that the

estimator of h can be negative at some points, a result unacceptable to

practitioners. One may argue that this is the price that must be paid for ob-

taining an estimator which has good bias and MSE properties. On the other hand,

a Bayesian may view this as another situation wherein unbiased estimation and

MSE minimization lead us to unacceptable answers.
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