
ESSAY IV. APPLICATION OF THE PREDICTION PROCESS TO MARTINGALES

0. INTRODUCTION.

Let X(t) , t > 0, be a rights-continuous supermartingale relative to

an increasing family of σ-fields G on some probability space
it it it it

(Ω ,F ,p ) . we assume that the G are countably generated for each t .
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It is then easy, by using indicator functions of generators of G
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, to
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that {x(s),(X . (s)),s<t} generates G for each rational t. We can now

transfer both process and probability to the canonical space Ω of Essay 1.

We simply set P { W .(s) = 0 , all s > 0 and n > 1} = 1, and for
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Then we obtain a canonically defined process X ((w )) = w
o
(t) which is a

t n 2

supermartingale with respect to P and the σ-fields G° of Essay 1.

In the present work, we let X denote this process (rather than the

sequential process (
w

2n
^'

 a n d w e d r
°P

 t h e o d d
 coordinates from the

notation (i.e., we discard the set of probability 0 where they are non-

zero) . Thus we do not allow any "hidden information": ?? = G° . By a

well-known convergence theorem we have
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Hence X^ is a supermartingale relative to F° , and we can connect it

with its prediction process Z

As in Essay 1, the method requires that P be treated as a variable.

In the present work we are concerned initially with three familiar classes

of P on (Ω,F°), as follows.
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DEFINITION 0.1. Let M = {P: X is an F^
+
~martingale and

sup E X (t) < °°}, U - {P: X is a uniformly integrable martingale, i.e.,

X = EίX^lF
0
 }, and V - {P: X is a non-negative supermartingale of

class D with lim EX = 0} . The classes M and V are called

respectively the square-integrable martingales and the potentials of class

D, or simply the potentials (see [4, VI, Part 1, 9]).

Of course, we have M c (J, and most of the attention will be on M

and V . For P € M we have a decomposition

(0.1) Xfc - XQ - X^(t) + X*(t) ,

where X? is a continuous F° -martingale and X2 is a "compensated

sum of jumps" with E(X X ) = 0 . This decomposition is due to P. A. Meyer

[11], but it will be obtained here as a consequence of a result on additive

functionals of a Markov process (Theorem 1.6), more in the spirit of

H. Kunita and S. Watanabe [10]. Given such a decomposition (for fixed P)
p

it is clear that Z contains the distributions of both processes

X.(s) ° θ given F , but this approach is not useful because one does not
1
 p p «

have xT(s+t)-xT (t)=X^(s) °θ . Rather, one has at least in principle

so that the X.(t) become additive functionals of the prediction process.

To make this approach rigorous, it is very convenient (and probably

necessary) to transfer the setting once more to the prediction spaces of
p

Essay 1, Section 2. Here the Z are given a single definition not

depending on P, and for example the above X.(t) become actual additive

functionals of Z . In the setting of Ό, this enables us to avoid the

technical difficulties encountered in [7] with a similar question.

This approach permits the application of general Markovian methods to

the analysis of the X.(t), and to other decompositions in U and V .

In particular, we obtain the celebrated Doob-Meyer decomposition in V

as a theorem on Markov additive functionals (Theorem 1.8). Further

investigation of the discontinuities is based on the theory of Levy

systems ([1]). Thanks to the use of a suitably weak topology for Z , it

is possible to transfer directly the known components of the Levy system

of a Ray process to Z , including separate terms for the compensation of

totally inaccessible jumps and previsible jumps. Rather surprisingly,

this operation is in no way restricted to martingales. By returning the
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components to the original probability space (Ω,F°), we obtain (what is

termed) the Levy system of an arbitrary r.c.1.1. process (Definition 2.2,

Theorem 2.3).

Treatment of the continuous components, unlike that of the jumps,

is restricted to the case of martingales. The continuous local martingales

comprise a single prediction process (a "packet," as in Essay 1). By the

means of a time change inverse to an additive functional, they are all

reduced to a single Brownian motion (but it is a Brownian motion for many

different probabilities). We then specialize to the case of autonomous

germ-Markov probabilities, which generalizes the one-dimensional diffusion

processes in the natural scale on (-
00
,
00
) . Even in this case the variety

of possible behavior is large, and we do not obtain anything like as

comprehensive a theory as is available for ordinary diffusion.

A significant feature of the prediction process approach to the present

material is thus its generality. It is sometimes possible to restrict the

process to a subset which is especially chosen to fit a given P, but for

the present purposes there is usually no advantage in doing so. Instead,

by considering as a single packet all P such that (X ,P) has some

abstract defining property, we obtain at once the results which are

implied by that property. On the other hand, since the definition of X

is fixed, this approach is not as flexible as the usual one for treating

all processes adapted to F , relative to a fixed P .

1. THE MARTINGALE PREDICTION SPACES.

In this section we study the classes M, U, and V by transplanting

them to prediction space, as in Section 2 of Essay 1. In the following

Section 2, it is shown how these results can be interpreted in the

original setting of processes on (Ω,G ), at least if we only deal with

one process at a time. Some familiarity with the terminology and results

of Essay 1, Section 2, is assumed for the present section. One new basic

method is introduced which is in no way tied to the martingale setting,

although it is perhaps especially well suited to martingales. This is the

application of the Levy system of a Ray process to a packet of the

prediction process. In view of Corollary 2.12 of Essay 1, this is a

natural step to take. Here we do not propose to exhaust its implications

even for martingales, but only to use it for the limited purpose of

obtaining certain well-known decomposition theorems in the prediction

space setting. It is hardly surprising that these appear as results on

Markov additive functionals of the prediction process, since on prediction

space we have a richer structure than on the original space. A key
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ingredient is the fact that on prediction space the prediction process

behaves well under the translation operators θ , while on the original

space there is no corresponding operation. Throughout the present section,

we make one significant change in the notation of Definitions 1.8 and 2.1

of Essay 1. We let φ(z) denote only the first coordinate from its

previous definition. Thus with the present restricted definition of

X we retain the fact that for each h, (φ(Z ) ,Z. ) is P "equivalent to
t , t ^

<VV
We first establish that the martingale prediction spaces have the

nicest possible general properties.

THEOREM 1.1. The sets M, U, and V are complete Borel packets of the

prediction process (in the sense of Definition 2.1, 3) of Essay 1).

PROOF. Since for every h e H the processes X and φ(Z ) are

P -equivalent we may verify that the three sets are in H by using either
X or φ(Z ) . We choose to use φ(Z ) . The three sets' have in common
t t t

the uniform integrability of φ(Z ), 0 < t . By Fatou's lemma, we have for

any N > 0, h £ H, and t > 0,

lim inf E
h
(|φ(Z )

r+t+
 r

> E
h
(|φ(Z

t
)|; |φ(Z

t
) | > N) .

Hence uniform integrability is equivalently expressed, using the rationals Q,

by the condition

lim sup E
h
(|φ(Z )| |φ (Z ) | > N) = 0 ,

o < r^Q
 r r

and the set of h satisfying this is clearly in H . We now further

restrict this set by the martingale or supermartingale conditions. By the

Markov property of Z , these are respectively

h

P -a.s.

But a simple application of Hunt's lemma shows that when φ(Z ) is

uniformly integrable, if these are assumed only for 0 1 s, t € Q, we

can take right-limits to extend them to all s,t . Thus the class of

uniformly integrable martingales (respectively, supermartingales) is in H .

REMARK. For the martingale case, one can proceed more simply by writing

Zt Zt h
the condition as E φ (Z ) = E φ^, P -a.s., where φ^ = lim φ(Z )
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exists P -a.s., which is also a Borel condition on h .

Now to obtain M we have only to append the Borel condition

E

h

 φ

2
 < oo, go it remains to obtain V from the uniformly integrable

supermartingales. Clearly the conditions P {φ(Z
t
) > 0 all t > 0} = 1,

and lim E
h
(φ(Z )) = 0, are Borel in h, so we need only check the class

n-κ»
 n

D requirement. According to a criterion of Johnson and Helms (see [4,

IV, Section 1, Theorem 25]), for a positive, right-continuous supermartingale

φ(Z ) to be of class D it is necessary and sufficient, for any

increasing sequence 0 < C »°°, that lim E (φ (Z ); T < «) = 0,
k
 k-χχ>

 K
 o

where T. = infίt: φ(Z.) > C, } . Obviously φ (T ) β Z°, hence this is

K t K K

again a Borel condition on h, as required.

Since Z is Z -optional and our three sets are Borel, to show that

they are prediction packets it suffices to show that for Z -optional

T < °°, Z is P -a.s. in each set along with h . For s > 0, we

introduce the sets S
g
 = {z e H: E φ (Z

g
) = φ(z)}, and

S = ίz fe H: E
Z
 φ(Z ) < φ (z)} . Clearly these are in H, and the

martingale (respectively supermartingale) condition on h becomes

P
h
{z e s } = 1 (respectively, P

h
{z e s

<
} = 1) for all s,t > 0 .

u S t S

By the classical optional sampling theorems of Doob (Neveu [13, Proposition

IV, 5.5]) we have respectively, for h in the corresponding set,

P
h
ίz * S } = 1 and P

h
{z & S

<
} = 1 . Therefore, we have in the

J."ι U S Γrt S

first case

(1.1) 1 = E
h

P

h
( Z

τ + t
 e S

s
|Z

τ
)

= E
h
P

 T
( Z

t
 e s

g
) ,

z
τ

and therefore P {z
fc
 e S

g
} = 1, P -a.s. for each (s,t) with the

corresponding result using S in the second case. Therefore, they
•i S 2

hold, for P -a.s. Z , for 0 < s,t e Q with P
 T
-probability one.

z
But this means, in the martingale cases, that φ(Z ) is a P

 T
-martingale,

at least for rational t . Consequently, for fixed K the φ(Z ) are
Z«p Zφ t

P -uniformly integrable for rational t < K, P -a.s. Then as in the

first part of the proof we use Hunt's Lemma to extend the martingale

property to all (s,t) with s + t < K, and then let K •+ «> . The

case of positive supermartingales is a little different. One first

observes that simply by martingale convergence of conditional expectations,
Z
T

if φ(Z
r
) is a P -positive-supermartingale as r varies in Q, then

for any 0 < t < r, r e Q, one has
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17 rr

t
 Z

m .

E φ(Z ) = lim E

seQ

< lim φ (Z )
S

z
τ

= φ(Z
t
), P -a.s.

Then by positivity and Fatou's Lemma, for 0 < t < s one has
z
t

 z

t

E φ (Z ) < liminf E φ (Z )
S
~ r*s+

 r
"

Z
T

< φ(Z ) , P -a.s.

z
τ h

Thus φ(Z.) is a P -positive supermartingale, P -a.s.

The uniform integrability, or square integrability, of the

Zm
P -martingales now follows easily from the fact that convergence of

φ (Z ) to φ in L or L for P as t ~+ °° implies the same
T+t °°

convergence conditional on Z , at least for a sequence t •* <»
x jc

sufficiently fast. This suffices to identify φ as the value at t = 00
z
τ h

of the P -martingales for P -a.e. Z (see Neveu [13, IV, 5.6]).

It remains to verify that Z is of class D for P in the

supermartingale case, and to show that the three packets are complete.

With C as in the first part of the proof, and optional T < », let

T = inf{t > T: φ (Z ) > C, } . Then with the previous T we have

JC t JC JC

T < T and, for h e V, lim E
h
(φ(Z ); T < «>) = 0 . It follows that

£ k-*oo
 T

k
 K

E (φ (Z ); T < 001Z ) tends to zero in probability as k -*-«>. Now we
k

have

), τ <-|z ,
JC JC

by [4, VI, Section 1, [10]], hence by conditioning on Z we have

(1.3) E
h
(φ(Z ); T ' < » | Z )
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Therefore, the left side also tends to 0 in probability, and so there is

a subsequence k. for which it converges to 0 P -a.s. Clearly,

then, the sequence C satisfies the Johnson-Helms criterion for Z^,

P -a.s., proving that Z is a.s. of class D .

Turning, finally, to the completeness, we must show that for

Z -previsible 0 < T < °°, Z is in the corresponding packet, P -a.s.

First, we note that E
h
 E

 T
"|φ(Z ) | = E | φ (

z

τ + t
) | < °° ' hence φ(Z )

Zrp_ ft

has finite expectation for P , P -a.s. We can now verify the

martingale property (resp. positive supermartingale property) just as

before, except that in (1.1) the conditioning is on Z . The uniform

or square integrability then follows in the martingale cases, as before, by

convergence of Φ (
z

τ + t
 )

 t o
 Φα,' conditional on Z , and it only

k
remains to check the class D restriction in the supermartingale case. It
is clear as before that E (φ(Z ); T < °°|Z ) converges in

Tî  V T K T—

probability to 0 as k -> °° . Conditioning both sides of (1.3) by Z ,

we then obtain the same criterion, and the proof of Theorem 1.1 is complete.

REMARK. The supermartingale case could also have been handled by means of

the Doob-Meyer decomposition of φ(Z ), but since our intention is to

obtain this decomposition from the prediction space, this would lead to

a circular reasoning.

COROLLARY 1.1. The prediction process is a right-process on M Π H ,

lί Π H , or V Π H , and in each case φ(z) is an excessive function.

On M Π H
Q
 and ϋ Π H

Q
, φ(z) is an invariant function. On V Π H

Q
 it

is a potential of class D.

REMARKS. Since the literature of excessive functions is usually confined

to standard processes, this terminology is not quite orthodox. For

standard processes, such φ are considered under (1) and (2) of the Notes

and Comments to Chapter IV in [2].

PROOF. In all three cases, for z e H we have E φ(Z ) < φ (z), and

lim E φ(Z ) = φ(z) by right-continuity of φ(Z ) and the fact that

t+0 *
 t

P
z
{φ(Z ) = φ(z)} = 1 for z e H . Invariance, by definition, becomes the

martingale property E φ(Z ) = φ(z) . For the last assertion, which is

again true by definition, we observe that for any increasing sequence
T +oo of stopping times one has lim E φ(T ) = 0 for z £ V Π H_, since
n n u

n
-*oo

the φ(T ) are p
Z
-uniformly integrable and, by supermartingale

n
convergence, lim φ(Z ) = 0 a.s.
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We next take up the discontinuities of φ(
z

t
) Here our chief tool is

the Levy system of Z on the corresponding packet. The theory of Levy

systems was initiated by M. Motoo and S. Watanabe under the hypothesis of

absolute continuity [12], and developed further by J. Walsh and M. Weil

[16]. The final touches, and also the simplest proofs, are provided by

A. Benveniste and J. Jacod [1], whose formulation applies to all the

discontinuity times of any Ray process. Since we know by Corollary 2.12

of Essay 1 that on any Borel prediction packet the prediction process is

(in a sense) a Ray process restricted to a suitable Borel set, it is

natural to use the result of Corollary 5.2 of [1] which we now describe.

Continuing the notation (however unwieldy) of Essay 1, let H be

+

 A

any Borel prediction packet, and let (H Π H ) be the Ray compactification
-———— A U

of its "non-branching" points. We denote the canonical Ray process by X ,
— V — —

with probabilities P , transition function p, and resolvent R^ .

Then there exists a Levy system of X
fc
, which consists of four parts,

N, M, H, and L . Here N = N(x,dy) and M = M(x,dy) are Borel measure

kernels on (H
A
 fl H

Q
)
 +
 , while H = H

t
(w) and L = L

fc
(w) are additive

functionals on the probability space of X . In more detail, N(x,dy) is

defined for x s D, where D « (H Π H ) - B (with B as before denoting

the Ray branching points), while M(x,dy) is defined for x e B . Both N

and M yield finite measures on the Borel sets of D for each x where

defined, and are Borel measurable in x (B is a Ray-Borel set). Further,

N(x,{x}) = 0 , x G D, and M(x,{x}) = 0 , x c B . Next, we have

E
X
H < oo

 a n
d E

X
L < °° for x e D and all t . Finally, H is a

continuous additive functional while L is a purely discontinuous additive

functional which is previsible with respect to the usual σ-fields F of

the Ray process X . In fact, we have L = Σ f (X ) Ir- •, for

*
 t

 0<s<t
 s

~
 1

 s-
 e B

'

a Borel f > 0 .

These four objects have the property that (N,H) "compensates" the

totally inaccessible discontinuities of Z while (M,L) compensates the

previsible discontinuities. In more detail, let f(x,y) be any non-negative,

jointly-Ray-Borel function with f(x,x) = 0 . Then

(1.4)(a, E
x
 Σ f ( 5

s
, X

s
) I

{ J e D }

/>. N(ϊ

β
-'

dy) f (
V '

y )

and



76 FRANK B. KNIGHT

(1.4) (b) *"
 0
<ϊ<t

= E
X
 fa dL J M(X ,dy) f(X ,y> ,

for all x and t > 0 . We note that on the right side of (a),

X may be replaced by X since H is continuous.
S"~ S S _

We combine the Levy system by setting N = N + M, where N and M

are extended to be the zero measure for x at which they were undefined,

and H = H + L . Thus we have finally

(1.4)(c) E
X

for f, x, and t as before.

In order to apply this to the packet H , since left limits are

involved and we do not assume H is complete, we use the complete Borel

packet h(D ) Π H of Essay 1, Corollary 2.12. We recall that
A .

H_ c (h(D_) Π H) , and for h e (h(D
Λ
) Π H) we'have P {Z^ e H n L for

Ά A A t A U

all t > 0} = 1 . Thus h(
D

A
) ^

 H c a n
 be regarded as a packet of

entrance laws for Z on H Π H which, in addition, are given by

elements of H (and therefore, by distributions on h(D ) Π H ) . Since

-z A o

such an entrance law is determined by P for at most one point of

(H Π H ) , and in the present case by at least one, we see that the

mapping h(z) is one-to-one on D . Thus we can introduce the inverse
-1

h : h(D) -> D , and for any initial distribution μ for Z on
A A η - t

h(D ) Π H we can identify X = h" (Z ) and X = h" (Z. ) for

A U t t Z— t"~
t > 0 as a realization of a Ray process with initial distribution
μ(S) = μ(h(S)) on h"

1
(h(D

Λ
) Π H_) . Furthermore, we showed in the

A
 1 -1

proof of Essay 1, Theorem 2.13, that h (h(D ) Π H ) = h (h(D ) Π H) - B,
A U A

or in other words, for the right process Z on h(D ) Π H with
left limits in h(D ) Π H, the elements of (h(D ) ίi H) - H correspond

-1 -1

under h to the Ray-branching points in h (h(D ) Π H) . Thus we can

transfer the Levy system of X to obtain a Levy system of Z on

h(D
A
) Π H .

In detail, let Ω^ = {w,, ̂  Ω^ such that w (t) e
 n
(D ) Π H_,

Z , A Z Z Z A U
t > 0, and w^ίt-) e h(D ) Π H, t > 0} . Then Ω , with the σ-fields

"" ί> A Z, A

{A Π Ω A € Z } on Ω , is canonical sample space for Z as a

Z , A t l Z,A t
right process on h(D ) Π H . Using this sample space, we define the four

A \j

elements of a Levy system by
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(1.5) N
Z
( h

1 '
d h 2 ) ; hl € h ( D

A
) Π H

0

M
Z

( h
l '

d h
2

) - H
Q
 ,

? W z € Ω
Z,

L
Z,t

(
V ' u -,»

- -1 Z
where w(t) = h (w (t)) for t > 0 . Then since θ w corresponds to

Z "* t ^
θ w as w does to w (where θ is the Ray-translation operator), we
t Z t
see that H_ and L_ are additive functionals of Z on Ω_

Z Z X. Δ fP
H_ is continuous, while since
z

Also

0<I<t B}

where f h is Borel on h(D ) Π H, L is Z -previsible and purely

A Z t
discontinuous. Of course, the local integrability of H_ and

over to z e h(D
A
) Π H

Q
 .

carries

It is now just a matter of transferring (1.4) to the present context,

and setting N

THEOREM 1.2.

satisfy

For

N + M,,
Z Ct

and H,, H + L ,
Z Z

to obtain

0 < f(z
χ
,z

2
) H x H, f(z,z) - 0, the objects (1.5)

(1 6 ) ( a
>

d H
Z,s /

H Q

 N
z

( Z
s - '

d z ) f ( Z
s - '

2 )

0<I<t H-H
o
}

o<I<t
f (
V'

z
s

)

for all z €r h(DA) Π H Q
 and t > 0

Of course, the kernels N_, M are Borel in z and the measures

are concentrated on h(D )Π H Also, we may as well assume f(z ,z ) = 0
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except for z e h(D ) Π H and z
2
 e h(D

A
) fl H

Q
 . On the other hand, our

use of subscript Z instead of A for the elements of the Levy system is

quite appropriate for the following reason. We could just as well begin

with the case H = H, h(D) Π H = H . Then we obtain the four

components of the Levy system in a form which applies, except for

negligible changes, to any Borel prediction packet H c H . In fact, the

only objection to identifying the restrictions of these components to

h(D ) Π H and Ω with the components of Theorem 1.2, in general, is
A Z, A

that the measure kernels might not be suitably restricted to the

corresponding h(D ) Π H . However, for any fixed H one may redefine

A U A

these measures to be 0 outside M D ) Π H without losing property

(1.6). This follows by substituting f(z_,z_) = 1 - I
 n

 (z ) in

(1.6) and noting that for z e h(D
A
> Π H

Q
 the result is

0.

Another form of the same observation is useful in treating M, U,

and V . We may and do take as sample spaces the canonical prediction

spaces of all elements of Ω_ with values and left limits in the

z

respective (complete) packet. An inspection of (1.6) shows that we may just

as well restrict the components of the Levy system from H = H to any

such complete Borel packet, instead of just
 h

(D ) Π H . (This can also be

seen by intersecting the packet first with the corresponding h(D ), but

the step is unnecessary.) We may state

THEOREM 1.3. There exists a Levy system for any complete Borel prediction

packet and corresponding r.c.1.1. process Z . In fact, the components

of Theorem 1.2 with H = H may be restricted to yield such a system.
A

For application to φ(Z ), we need to restate the properties of

the Levy system in a somewhat different form.

COROLLARY 1.3. For any complete Borel prediction packet, the properties

(1.6) of the Levy system imply that for any 0 < f(z ,z ) G S* H, and

any Z -previsible process y
 G
 R, (1.6) holds with f(Z ,z) replaced

by f(y
t
.z>i

( Z t
_

/ z )
 -

PROOF. We justify the substitution in (1.6)(c), the other two cases being

analogous. First we consider f and y of the special form

f(y,z) = k(y)g(z), k e B, g e tf, and y = I (w )I,(w_)I,. (t) for

t A Z A ί» \t , t_J

A fe Z _ . Now by (1.6)(a) and the Markov property of Z , for z in

the packet we have
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(1.7)

= lim
Z t r

r
 /

t

2
-

r

g(z)

,
2
dδ.

Z,S
N (Z ,dz)I.

0 ^ S-
f V

Multiplying both sides of (1.7) by I and taking the expectations E

remove the conditioning, we obtain the assertion for this y and

to

k(y) By [3, Chapter IV, Theorem 67], the previsible σ-field

is generated by such y and sets of the form {0} x A, A Z , whose

indicators satisfy the assertion trivially. Moreover, the class of

finite sums of disjoint indicators of the form y is closed under

multiplication. Since the class of indicators y satisfying the

assertion is monotone, it follows by [3, Chapter 1, 19] that it contains

all Z -previsible indicator functions, and hence all previsible

y > 0 . Since k(y ) is again previsbly for 0 < k € β, we obtain the

result for f(z ,z
2
) k(z )g(z

2
) immediately. Therefore, it holds for

finite positive linear combinations of such, and by [3, Chapter 1, 21]

it holds for 0 < f ̂  B x H as asserted.

We first apply this method to obtain a well-known decomposition of

square integrable martingales due to P. A. Meyer [11] and Kunita, Watanabe

[10]. We recall that two square integrable martingales are called

orthogonal if their product is a martingale. If they are additive functionals

h e M . The

M, U, or V, according to

of Z , then one requires this to hold for every P

following notation will be used for h

context.

NOTATION 1.4. For t > 0, let φ (t) = limsup φ(Z ) We recall that for

any h & H, φ_(t) exists P -a.s. for all t > 0 as an ordinary left

limit, and φ_(t) is P -equivalent in distribution to X (Definition

2.1, 2), of Essay 1), as φ(Z
fc
) is to X

fc
 .

t-

Our object is to disengage the jumps of φ(Z ) into a separate

martingale, called the "discontinuous part," by means of the Levy system.

For this we need

LEMMA 1.5. For either h ^ M or h ^ U , P {φ (t) f φ(Z ) implies

Z f Z , all t > 0} = 1 . In words, the discontinuity times of φ(Z )

are contined in those of Z^ .
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PROOF. For ε > 0, let T = inf {t > 0: |φ(Z ) - φ (t)I > ε} Clearly
ε t —

T
ε
 is a Z -stopping time, and by right-continuity of φ(Z ) we have

P (T > 0} = 1 for all h . By the strong Markov property and the

existence of φ (t) for all t > 0, the iterates T
Π +
 = T ° θ , with

ε ε n
1 h

 ε

T
£
 = T , tend to °° along with n, P -a.s. Hence by the strong Markov

property it suffices to show that

p h {
V *

 Z
T
 } = p h { T

ε
 <
 °°

}
 "

ε ε

By [3, IV, Theorem 81c)] there is a decomposition T = T Λ T ,

A
C

where T is the totally inaccessible part of T for (Z.,P ), and

T
 c

= T
Ω -A

 i s t h e a c c e s s i b l e
 Part. According to Theorem 2.13(ii) of

Essay 1, we always have Z f Z P -a.s. on {T = T } . On the other
Ύ
l ε ε A

hand, since Z
τ
_ is Z -measurable on A° ([3, IV, 57]), and by the

moderate Markov property we have

d 8) P (φ(Z ) ^ B | Z ) = q(0,Z ,{φ(z) - B})

ε ε ε

P -a.s. on A
C
 Π {T < «} for B e B, it follows that

P (φ(Z ) = φ (Z ) |Z ) = 1

ε ε ε

on {z
τ
_ e H

Q
} Π A

C
 Π {T

£
 < «>}, P

h
-a.s. Therefore, we have

Z f H , P -a.s. on A Π { T < °°}, and so Z ^ Z as required.

We now state and prove the decomposition theorem in M . Let

Ω
IW = ^

w
r,

:
 w_(t)

 e
 M for all t > 0 and w (t-) e M for all t > 0} .

J
V z z "~ z

THEOREM 1.6. There is a decomposition φ(Z ) - Ψ(Z
Q
) = M (t) + M (t),

where for h
 e
 M, M is a continuous, P-square-integrable,

c

 h

martingale additive functional on ίίw, M, is an E -mean-square limit

of martingale additive functionals of bounded variation, and M is

orthogonal to M, . The decomposition is unique up to a P -null set for
α

all h .

In the course of the proof, and also later, we need

NOTATION 1.7. For any r.c.1.1. process M(t), let ΔM(t) = M(t) - M(t-),

t > 0, where M(t-) denotes the left limit at time t, and we use

oo - oo . In particular, let Δφ (t) = φ (Z ) - φ (t) .

PROOF. If M(t) is any P -square-integrable martingale (in particular

E M («>) < oo) then it is a familiar fact that M(t) has orthogonal
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increments. Thus if {t ., 1 < i < n} is a sequence of partitions of [0,t]
n, 1 — —

with maximum separation tending to 0, then by Fatou's Lemma, with

h 2 h
 Π
 2

E M (t) = lim E Σ (M(t .) - M(t . _)

> lim E
h
 Σ (ΔM(t. ) )

2

" ε-MH t.
 D

'
ε

3*ε

where the last sum is over all t. <t such that Δ M(t. ) > ε . Letting

t + «>, it follows that

(1.9) E
h
M

2
(«) > E

h
 Σ (ΔM(t.))

2
 ,

j
 D

where t. enumerate the discontinuity times of M(t) .

We now fix 0 < a < b, and apply Corollary 1.3 with y = φ (t)

(which is Z -previsible by [3, IV, Theorem 92]), and f(y,z) =

(φ(z) - y )
1
/ - ^ (

z
)_

v
<b) * Letting φ

w
 = limsup φ (Z

fc
) , (1.9) implies that

E
h
| Σ f(φ (s), Z )| < a"

1
 E

h
(

Φoo
-φ(Z ) )

2
 < « .

0<s<t
 S

Then we may subtract the right side in Corollary 1.3, and by Lemma 1.5

and the Markov property of Z we obtain that the process

M
(a,b)

( t )
= [

- / $
d δ
z ,

s
/

H o
 V V '

d z ) f ( < ( >
-

( s )
'

z )

is a martingale additive function of Z on Ω,, (here f(y,z) was

substituted explicitly only in the sum).

The martingale M. . . (t) is clearly of bounded variation, and we
(a,Dj

now evaluate its mean square precisely. Denoting the above difference by

M
U , b )

( t )
 -

 M
( a , b )

( t )
'
 l e t T

N -
 i n f { t : M

( a , b )
( t ) + M

( a , b )
( t )
 >-

 N }
 '

 T h e n

T is a Z -stopping time, M . (T ) < N + b, and T •+ °°
t
 P -a.s.,

N t (ΆfD) v* — N

as N •> °° . Also, as in (1.4), M. , . (t) has at most only accessible times
(a,b)

of discontinuity, and for previsible T < «> it follows by (1.8) of Lemma 1.5

and Jensen's inequality for conditional expectations that
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Then by decomposition of T we have easily

< (N+b)
2
 .

Next, for t > 0 fixed, let t . = jt2~
n
, and reapply the argument

n, j

beginning the proof to the martingale M (t Λ T ) . Simply by decomposing

paths of bounded variation into continuous and jump components, we see that

the sums of the squared increments of M . (t Λ T ) along the partitions
a,b N

t . converge P -a.s. as n -> « to Σ (ΔM, , . (t. Λ T )) , where
n,3

 t < t
 (a,b) 1 N

the sum is over the jump times less than t . Also, the sums of squares

of increments of M alone are decreasing with n, as are those of M
2 2 2

alone. Using (c-d) < (c +d ) to bound the squared increments of M,

the sums are dominated by (M* ,_, (t Λ T,)) + (M~ . , (t Λ T )) , which
(a,b) N (a,o; N

has finite expectation. Hence by the dominated convergence theorem,

E
h
M

2
 .(t Λ T ) = E

h
 Σ (ΔM (t Λ T ) )

2
 .

(a,b) N t <t

Letting N ->• °°, it follows readily that

(1.11) E
h
M

2
 ..(t) = E

h
 Σ (ΔM , ( t . ) )

2
.

(a,b)
 t < t

 a,b I

In particular, by (1.9) it follows that E M (t) < E M (°°) ,
(dL

 r
D)

hence M . is square-integrable.

Furthermore, for 0 < a < b < c we have by (1.11) that

E h M
( a , O

( t )
 =

E h
<

M
( a , b )

( t ) + M
( b , c )

( t ) ) 2

Hence E ( M
 U

\ ί*
1
^
 M
/ w x ( t ) ) = O , and by the Markov property of Z it

{3.,D) (D
r
C) t

follows that M. . and M
(
, . are orthogonal. Similarly, for

c < d < 0 we can define M, . to compensate the negative jumps
(c, α)

c < φ(Z ) - φ (s) < d, and (1.11) applies. Finally, since -M, . has
"" S "~ ^C, Q;

the same form as M. ,
 x
, it is seen that

(a,b)
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Hence M, ,
 x
 and M, _. are orthogonal, and

(a,b) (c,d) *

E
h
(M, (t) + M (t))

2
 < E

h
M

2
(») .

(a,b) (c,d)

We next choose a sequence a •> 0+, b -> », c -*• - », d -»• 0- .
n n n n

It follows directly from the above that for h e M and 0 < t < « there

exist E -mean-square limits of M , . (t) + M, . (t) along this
(Q.fD) (C,Q.)

sequence. Furthermore, it is known from general theorems of analysis that

such limits always may be chosen so as to be valid for all h (see

[14, Theorem 3]). Accordingly, we denote such a choice by M*(t), and

define
lim M*(r) if this exists for all t < » and

M (t) = I equals 0 for t = 0 ,

0 elsewhere.

For each h, we have easily

M*(r) = E
h
(M*(«)|Z

r
) , P

h
-a.s. ,

from which it follows that M,(t) is a right-continuous version of

Vι it

E (M (°°) I Z ) for each h, and thus it is a square-integrable martingale.

To see that it is an additive functional of Z , we note that for fixed

s,t, and h G M we can choose α , $. , γ , and 6 such that
Jc jc jc K

P
h
(S

g + t
) = 1, P

h
(S

t
) = 1, and P

 t
(S

g
) = 1 for P

h
-a.e. Z^, where

s

u
'
 u

 - °'
 i s

 given by

S = {M (u) = lim (M, . (u) + M, (u))} .
d
 k-^

 ( α
k'

β
k

) ( Y
k'

6
k

}

Since then

n

P
h
(θ"

1
 S ) = E

h
(P

 t
(S )) = 1 ,

u S S

the property M,(s+t) = M,(t) + M,(s) ° θ. , P -a.s., follows from the
α α α u

corresponding fact for M. ,
 x
(t) + M, ,

x
(t) .

(a,b) (c,d)

Similarly, it follows from a classical martingale theorem of Doob

([5, (Theorem 5.1), p. 363]) that for each h we can choose a subsequence

n, for which M^ is the limit of M, . + M. . uniformly in t,
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P -a.s. for a = a , etc. Clearly, then, M,(t) contains all the

\
 d

totally inaccessible jumps of φ(Z ) . But for previsible T < <», we

have ΔM (T) = Δφ(T) plus a quantity which is Z -measurable along with

the ΔM" v* (T), and since E
h
(ΔM,(T)|Z

m
 ) = 0, this quantity must be 0

KdLfD) α T—

Hence we see that M (t) = φ (Z) - φ(Z
Λ
) - M,(t) defines a continuous

c t U α

martingale additive functional of Z . It remains only to show that M

and M, are orthogonal, or again that M and M, . are orthogonal,
d c va, D j

To this effect we have only to apply some of the argument for (1.11) to

M (t) + M, ., (t) with T
M
 redefined by inf{t: (M* ,. (t) + MT .. (t) +

c (a,b) N (a,b) (a,b)

|M (t)I) > N} . It follows readily that in computing

E
h
(M (t Λ T ) + M, . . (t Λ T

M
) )

2
 along {t .} the sum in j of the

c N (a,b) N n,j

cross-products of increments of M and M, . . in (t . _,t .) is
* c (a,b) n,3-l' n,j

bounded by 2N (M* . , (T ) + M T -
%
 (T

M
)), which has finite expectation

(a,r>) N (a,o) N

and the sum tends to 0 along with the partition size 2 , P -a.s.

By dominated convergence we obtain E ( M ( t Λ T ) M , ,
x
( t Λ T ) ) = 0 ,

c N (a,b) N

and to conclude the existence proof it suffices to observe that, by using

Fatou's Lemma,

lim E
h
(M(t) - M(t Λ T ) )

2

(t) - lim E"(M*(t Λ T ))= EV

= 0 ,

for any P -square-integrable martingale M(t) with respect to Z .

As to the uniqueness, since any two choices for M, differ by a

continuous martingale additive functional, it needs only be shown that such

cannot be the E -mean-square limit of martingales of integrable total

variation unless it is E -a.s. identically 0 . The reader will readily

check that the proof of orthogonality of M and M just given

c (a,D)

applies without change to any square integrable martingales which are

respectively continuous and of integrable total variation (where

M (t) + M~(t) is defined to be the total variation at time t) . Hence

the former cannot be approximated in the mean square by the latter, and the

uniqueness is proved.

In the present section we make no further use of the packet II,

except to remark that any class D right-continuous submartingale X
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may be decomposed in the form X
fc
 - E(xjG°

+
) - (E(xjG°

+
) - X

fc
) where the

first process on the right is in U and the second is in V . For the

elements of the packet V, we will derive the celebrated Doob-Meyer

decomposition theorem as a theorem on Markov processes. It will be seen

that this yields the corresponding decomposition result for X by

expressing it in the above form.

Many proofs of the Doob-Meyer decomposition are known, and some are

perhaps easier than ours. Nevertheless, ours seems worthwhile because it

connects the decomposition with the prediction process, and provides

additive functionals where the decomposition alone only provides unrelated

pairs of processes. Besides, it does not use the theory of Levy systems,

and most of the work needed for the proof has already been done in [2,

Chapter 4, Section 3] and therefore need not be repeated here. We let

Ω = {w : w it) G V for t > 0 and w_(t-) <= V for t > C} .
Z Z "" Z

The result to be proved is as follows.

THEOREM 1.8. There is a decomposition

φ(Z
fc
) - φ(Z

Q
) = M(t) - A(t) on Ωp ,

where A(t) is a (non-decreasing) additive functional of Z ,
•i t

Z -previsible for every h ^ D, and M(t) is a uniformly integrable

martingale additive functional. The decomposition is unique up to

equivalence (i.e., P -a.s. for all h e p ) .

PROOF. The method of the proof is to write φ = φ + φ + φ , where

the three terms on the right are class D potentials of Z on V, and

moreover φ corresponds to discontinuities of φ (Z ) at which Ẑ_
1 /U. t t

is continuous, φ
2
 corresponds to discontinuities of φ(Z ) with

Z e H - H , and φ is a regular potential. The asserted decomposition

is obtained separately for each of the three terms.

Recalling from Notation 1.4 that φ (t) is a Z -previsible process

indistinguishable from the left-limit process of φ(Z ), for fixed ε > 0

let
T = inf{t > 0: (|Δφ(t)|l,_ _ .) > ε} .

(Z
t- " V "

Since φ(
z

t
) i-

s
 r.c.1.1. except on a null set, its jumps of size ε do

not accumulate, and hence we see that on {T < °°} φ (Z ) has a jump of

size at least ε at t = T where Z is continuous. Also, since T is

a Z (hence Z ) stopping time, (and a terminal time), it follows by

Theorem 2.13 of Essay 1 that T is Z"_-previsible for each initial

distribution μ . Then by the moderate Markov property
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(1.12) E
h
(φ(Z

τ
)|Z

τ
J

V
= E φ(

z

Q
)

= φ (Z ) , P -a.s. on {T < «} .

Since φ(Z ) is a supermartingale, the optional sampling theorem implies

that φ(Z ) < φ (T), P -a.s. on {T < »} (see [4, VI, Part 1, Theorem

14]).

Letting T = T and T = T ° θ , 1 < n, it follows in the same

h
 n

way that Δφ(T ) < 0, P -a.s. on {T < «} for all n . Next, by the

same supermartingale property we see that

E
h
|Σ Δφ(T )| < E

h
(φ(h) - lim φ(Z ))

n=l
 Π

 t-x»
 t

= φ(h) .

As e ->• 0+, the same facts are seen to hold for all ε . Hence we may

introduce the process A (t) = -Σ Δφ(t.), the sum being over all

t
±
<t

 X

t. < t with Z = Z and Δφ(t.) < 0 (in case this yields

i i-

A, ^(0+) = oo, we set A, ^(t) = 0 for all t) . It is then clear that
l,d l,d

A, , (t) is an additive functional, and we have E A, . (°°) < φ (h) for all
l,d l,d

h e V . Moreover, for each ε the process

(1.13) A (t) = -Σ Δφ(T )
ε
 n:T <t

n-

is Z -previsible and equivalent to an additive functional. Therefore

A_ _ is Z -previsible (since it is P -indistinguishable from such, and
l,α t

Z^ contains all P
h
-null sets),

t ,
We now set

 Φ
,
 Λ
 (h) = E (A,

 Λ
 («>)) . It is immediately clear that

^l,d l,d

φ is a potential of class D, with φ < φ . Of course,
1 , Q 1 , Ct

the

iDoob-Meyer decomposition of φ -,(
z
.) for each P is given by

1 , Q u

-
A
i . d

( t )

According to our construction, A (~) is even Z°-measurable, hence

1 ,α
φ is Borel. Finally, le
1 ,d

on {T < «} . Then we have

φ is Borel. Finally, let 0 < T be Z -previsible with Z = Z
1 ,Cl u T — x
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(1.14) *P
lfd
<*> - ̂ V d ^ ' V "

 E h ( A
l,d

(
"

)
l

Z
T-

)
 "

 Δ A
l,d

( T )

= - ΔA
 d

(T) , P
h
-a.s. on {T < «} .

Consequently, φ (Z ) contains all of the discontinuities at times T of#
j. ,Q t n

φ(Z ), and does not introduce any others of the same kind. Setting

φ = φ - φ. -, it follows that φ
o
 (Z ) has its discontinuity time set

contained a.s. in that of Z .

It is next to be shown that φ. is excessive, hence a potential of

class D . Setting φ (h) = E (A (°°)), since φ (h) increases to

φ, . (h) as ε -*- 0+ it suffices to show that for each ε and t > 0
l#d

E
h
(E (φ(Z

t
) - Ψ

ε
(Z

t
)) < φ(h) - φ

£
 (h) ,

or again that this holds with t Λ T in place of t, for every n .

Starting with n = 1, we have

(1.15)
 E

\
( z

t
 Λ T

 )
 "

 φ
ε

( h ) =

E
h
(E

h
(A («) - A (t Λ T )|Z

 A τ
 )) - E

h
A (oo)

ε ε i u Λ x _ ε

= -E
h
A

£
(t Λ T

χ
)

On the other hand, by the previsibility of t Λ T and optional sampling

for supermartingales

φ(h) - E
h
φ(Z

/4
.
 A m

 . ) • (φ (h) - E
h
φ (t Λ T-)) - E

h
(Δφ(t Λ T-))

(t Λ T
χ
) - 1 1

>-E
h
(Δφ(t Λ T

χ
) T

χ
 < t)

= E
h
(ΔA

£
(T

1
) T

χ
 < t) .

This finishes the case n « 1 . Assuming the case n and writing

φ (Z ) = E
h
(A («) - A (t Λ T )|Z

 Λ τ
 ) it follows similarly that

(1.16) (a) E
h
(φ (Z^

 A m
 ) - φ (Z,.

 A m
 ) t Λ T < t Λ T .)

= E
h
( A

ε
( t Λ T

n
) -A

e
(t A T

n + 1
»

= -E
h
(ΔA

ε
(T

n + 1
) T

n + 1
 < t . and
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(b) φ(h) - E h φ(Z )
U Λ n+r

= (φ(h) - E h φ(Z ) ) + E h ( φ ( Z t ) - φ (Z Λ τ ) )
n n n+1

> (cp (h) - E ω (Z ) ) + E (ΔA (T ) T _ < t ) .
- ε ε t Λ T ε n+1 n+1 -

n

This proves the case n + 1, and hence the assertion. We note that only

the previsibility of the T , is used here, not the continuity of Z(t)

n+1
at t = T .

n+1

We next compensate the accessible jump times of Ψ
2
(

z

t
) Since

these are contained in those of Z , it follows by Theorem 2.13(ii)

of Essay 1 that these are contained in the set of times where Z e H - H

By taking accessible parts of all the discontinuity times of Z , it

is easy to see that {(t,w ): Z e H - H } is contained in a countable

h h

union of graphs of Z -previsible times, P -a.s. for each h . Then

by [3, IV, 88 b)] this set is equal to a countable disjoint union of graphs

of such times. Let (T ) denote such a set, and for each n let

n
(T. , 1 < k < n) be defined by T, = T. on the set where exactly k
κ,n — — κ,n 3

among (T , ..., T ) are less than or equal to T. . Then the T are
in ~2 K ,n

Z -previsible, and define a natural ordering of T , ..., T

We now set φ (t) = limsup φ
o
(Z ), t > 0 and (letting <» - <» = 0)

define

V
A

n
(t) = Σ ( φ

2
J T

k n
) - E Φ

2
(Z

0
))

k,n-

Since the last term on the right is a version of E(φ (Z )|Z ) ,
k,n k,n

it follows by the supermartingale property that 0 < E (A (t)) < E*\p (0) -

E (φ (t)), and the A (t) are increasing in n for all t, and in t

for each n, P -a.s. Thus we may define

V-
(1.17) A (t) = Σ (Φ

2
Jt) - E

 X
 <P

2
<Z

0
))

' 0<t.<t
i-

where the sum is over all t. with Z _ e H - H and

V- "
 Γ

0 < φ (t.) - E
 X
 Φ

2
(

z

0
) if this gives A

 d
(0+) = 0, and A (t) = 0

elsewhere. Then A
o
 is an additive functional and, setting

h
 2

'
d

Ψo j(h) = E A_ , (°°) , we have 0 < φ_ (h) < φ_ (h) . Moreover, since
2,d 2,d - 2,d - 2

φ is Borel it is easily seen that A is Z -previsible for every h .
2. 2

 f
 Q t
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Then φ^ _ is a potential of class D, and for each P the Doob-Meyer
2,d

decomposition of φ
o
 _ (Z ) is
2,d t

We recall, now, that a potential φ of class D is called a

regular potential if, for any increasing sequence T of Z -stopping
n t

times, and any h e V,

E
h
 lim φ

r
(Z

τ
 ) = E

h
 φ ^ )

LEMMA 1.8. Set φ = φ - φ = φ - φ - φ . Then φ is a regular
r z z fd -L/Ci z

 t
cx r

where T = lim T and φ (Z ) = 0 . The key fact needed to reduce
it** n ^r *

Theorem 1.8 to standard methods of Markov processes is

LEMMA 1.8. Set φ

class D potential.

PROOF. We have seen that φ > 0, and clearly lim E φ (Z ) = 0 and
r
 ~ t-*»

 r t

lim φ (Z ) = φ (h), P -a.s. If we show that E φ (Z ) < φ (h), then φ
t-K) r t r r t ~ r r

is a potential of class D . To this effect, we need to repeat the argument

used for φ
2
, and for this we require the analogues of A and φ

Using the same symbols as before, we introduce

T = infίt > 0: (<p
2
jt) - E

 fc
" Φ

2
(Z

0
))I

( Z t
_

 6 H
_

H Q )
 > ε} .

Since A^ ^ί
00
) < » holds a.s., it is now easy to see that T > 0 a.s.,

and setting T = T, T = T ° θ , we see that lim T = « a.s. Thus

n n-χ»

we may define as before an A and φ by

z
τ

-
(
V "

 E Π (
P

2

( Z
0

) ) ; φ
ε

( h ) = E (A (00))
 '

ε ε

and observe that A is equivalent to a 2 -previsible additive

functional, while φ (h) increases to φ (h) as ε •»• 0+ . It is

now easy to check that the proof of (1.15) and (1.16) applies here with

φ replaced by φ , showing that E φ (Z ) < φ (h) .

Finally, let us prove the regularity. Let T be any sequence of

Z -stopping times increasing to T < » . Then clearly

lim E {φ (Z ) T = «>} = o . On the other hand, over {T < «} there is

n-*
30 r

 n

no difficulty in passing to the limit on {T = T for large n} . Then

setting S = { τ < T < < » , all n} we have
n

A
ε

( t ) =
n

Σ
:T <t

n-
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(1.18) lim E
h
(φ

r
(Z

τ
 ) - φ^Z^) S)

n

lim E
h
(φ

r
(Z

τ
 ) - ψ

r
 (Z^ {Z^ = Z^} Π S)

+ lim E
h
(φ

r
(Z

τ
 ) - φ^Z^); {Z^ e H - H

Q
} Π S)

τr*» n

= E
h
(Δφ(T) - Δφ_ _(T) - Δφ_ (T) {Z^ = Z_} Π S)

+ E
h
(Δφ(T) - Δφ

χ d
(T) - Δφ

2 d
 (T) {Z^ e H - H

Q
} Π S) .

But on {z = Z } Π S we have by (1.14) Δφ(T) = -ΔA (T) = Δφ
 d
(T),

while by (1.17) and the martingale property of E
h
 (A , (°°) I Z^) we have

2, d t

E (Δφ (T) {Z = Z } ίl S) = 0 . Hence the first summand on the right
z fCX τ ~ T

vanishes. As for the second, on {Z € H - H } we have ΔA (T) = 0,
h
 T- 0 l,α

and therefore E (Δφ. (T) {Z
m
 e H - H

n
} ίl S) = 0, while by (1.17)

and the moderate Markov property

E
h
(Δφ (T) - Δφ. (T) {Z^ € H - H.} Π S)

= E
h
(Δφ (T) + ΔA

2 d
(T); {Z^_ € H - HQ} Π S)

h V
= E (φ

2
(Z

τ
) - E φ

2
(Z

0
); {Z^ e H - H

Q
} Π S)

= 0 .

This completes the proof of Lemma 1.8.

As mentioned at the beginning, the rest of the proof has already been

done in a somewhat different context in [2, IV, Section 3], It follows

that there is a continuous increasing additive functional Z (t) with

φ (z) = E A (°°) . The method used is that of Sur [15] , together with

refinements which reduce the problem to a bounded regular potential. The

proof is unfortunately not short. Some simplifications can be made

because the multiplicative functionals M of [2] are not present, and

hence S and the S 's of [2] are absent, but it does not seem merited

P
to rewrite the proof. In the present case there may be branching points,

but it can be checked that the proof in [2] makes no use of quasi-left

continuity of X and so applies also to Borel right processes (see

Getoor [6,9.] for the relevant information on hitting times and excessive

functions.)
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In the extension argument of [2, p. 168] from bounded to unbounded

potentials, use is made of the uniqueness theorem to the effect that Z (t)

is uniquely determined by its potential ([3, IV, (2.13)]). However, this

1 2
is easy to see directly from martingale arguments. Thus if A,, and A

l
 c

are continuous additive functionals with φ (z) = E A (°°) = E
Z
A^ («>) , then

for each h the identity

1 0 Vi

implies that A (t) - A (t) is a continuous, (P , Z )-martingale of

bounded variation. By arguments given in the proof of Theorem 1.6 (since

1 2
the martingale may be stopped at any N) this implies that A - A is

c c

indistinguishable from the zero martingale. But the same reasoning applies

if A and A are only assumed to be Z -previsible. Indeed, a
c c u.

previsible right-continuous martingale M is continuous: otherwise,

since M - M is a previsible process, a bounded previsible stopping time

T could be found with P {M ? M } > 0, leading to immediate contradiction

with the fact that M is Z^-measurable ([3, IV, 67]). It follows that

any decomposition of the type asserted by Theorem 1.8 is unique up to

equivalence. Hence we must have

A(t) = A_ _(t) + A (t) + A (t) ,
l,d 2,d c

M(t) = φ(Z
t
) - φ(Z

Q
) + A(t) ,

and the proof is complete.

2. TRANSITION TO THE INITIAL SETTING: THE LEVY SYSTEM OF A PROCESS.

In order to translate results back and forth between the prediction

process setting and their original setting, it is useful to examine more

carefully the connection of (Ω,G ) and (Ω ,Z ) . Since the connections

Δ

we have in mind are completely general, not requiring any restriction on the

probabilities, we return temporarily to the notations of Essay 1, Section

2. Thus Ω_ is the space of all paths w_(t) e H_ which are right-

Δ Δ U

continuous with left limits in H for all t > 0, φ(h) is the function

of Definition 1.8 (rather than only its first coordinate) and φ (t)

denotes coordinatewise limsup φ(Z ) . As remarked at the end of Essay 1,(Ω ,Z ) may be topologized as a coanalytic subset of a Lusin space. While
Z

neither this nor the following assertion is essential to the development

here, it is worthwhile to have them on record.



92 FRANK B. KNIGHT

PROPOSITION 2.1. Let Ω = {w : φw (t) is r.c.1.1. in R with the

φ Z Z °°

product topology}, where φw^(t) = φ(w_(t)), t > 0 . Then we have

Z Z —
Ω G Z°, and φ(Ω ) = {all r.c.1.1. paths in R } .
φ φ °°
PROOF. Since φ is a Borel function, the components of φw (t) are

z

Z°-progressively measurable. We now apply the results of [3, IV, 17],

according to which the two processes defined as the right limsup and

liminf of φ(w (r)) along rational r > t, r Ψ t, are Z -progressively-

z — t+

measurable, and the two processes defined as the left limsup and liminf

along rational r < t, r f t, are Z -progressively-measurable in t > 0 .
The condition w e Ω is simply that the two right-limit processes should

Z φ
equal φ(w (t)) and the two left-limit processes should equal each other.

Z

Since φ(w (t)) is also Z -progressively-measurable, these conditions

Δ t+

define a set in Z

To see that φ(Ω ) = {all r.c.1.1. paths}, we fix w e Ω and let
h be the unit probability at w . Then h e H, and so we can define
w
 h

 w
w

its prediction process Z as in Essay 1, Section 1. By Theorem 1.9
h h
w w

there, we have P { (Z ) = X for all t} = 1, meaning in the present

case that the even coordinates w^ (t) of w are identical with those

h
 h

 2 n

w w
of φ(Z ) at w . Since Z at w defines an element of Ω , and any

t ( ) Z
r.c.1.1. path X. is obtained as X̂_ = (w_ (t)) from a w e Ω, the

t t 2n

assertion follows.

The mapping φ on Ω is not one-to-one. In fact, since

P (Ω ) = 1 for every h e H (as usual, we use the same notation P for

φ

measures on Ω or on Ω) if φ were one-to-one then the prediction

k
 Δ

process Z on Ω would not depend on h except for null sets, which is
absurd. Thus we cannot use φ on Ω to transfer a process on Ω to one

on Ω_ . Instead, we must reduce Ω to a subset depending on h . Thus,

^ h
given h and a particular choice of Z on (Ω,G ), we can regard

Z as a measurable mapping of (Ω,F ) >(Ω ,Z ) . Then the set

Ω = {w & Ω: φZ, , (w) = w} is in F , and we have Z, , (Q) c Ω ,
h ( ) ( ) h

z
/ x (Ω, ) e Z , and φ is one-to-one on Z. . (Ω, ) . Also P (Ω, ) = 1,
( ) h

 Ύ
 ( ) h h

and hence we can use φ to transfer objects from Ω to Ω_, except for

z
an h-null set.

In the cases of interest here the problem is to go in the other

direction, from Ω to Ω, and this presents almost no difficulty. Thusz
we now define the concept of a Levy system for any h e H, and obtain its

existence and properties from Theorem and Corollary 1.3.
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DEFINITION 2.2 A Le*vy system for h consists of kernels N
w
 and M_ on

h
H , (as in (1.5) with H(D ) ίl H = H ), and F -previsible, increasing

processes H and L on Ω, with HL = L = 0, where IL

is continuous, L, is pure-jump, E U. < », and EL. < «, such
n,s n,s n, s

that for 0 < f(z z ) € H x H, f(z,z) = 0, we have
— » r *

(2.1)(a) E h Σ f(Z
h
 , Z

h
)I

0<s<t
 S

~
 S

 {Z^ 6 H
Q
}

= E
h
 /n

 d H
u L

 N
^(Z

h
 »dz)f(Z

h
 ,z)o n,s H- z s- s-

(b) E
h
 Σ f(Z

h
 ,Z

h
)l

0<s<t " {z"_ e H - H
Q
}

(c) E
h
 Σ f(Z

h
 ,Z

h
)

0<s<t
 s

~
 s

where H
h
 = ^ + 1^. and S

z
 = N

2
 + M

z
 .

DISCUSSION. Obviously a Levy system for h does not depend on the

particular choice of Z . Furthermore, when a Levy system exists then the

proof of Corollary 1.3 carries over without difficulty to show that, for

any F^previsible process y with values in (R^rδ^)* (2.1) remains true

if f(z£ ,z) is replaced by f(y. ,z)I . for 0 < f € g x H . In

particular, for y = X we may replace this f(y ,z) by
t t"" t

f(y ,φ(z))I. . .
 x x
 to obtain the following,

t (y ψ φ (z))

(2.1) (d) For 0 < f(x
i r
x

2
) <= 8^ x 8^, with f(x,x) = 0, we have

E
h
 Σ f(X ,X )I

0<s<t
 S

"
 S
 (Z^ ̂  zj)

= E
h
 \\ dϊL / N (Z^ ,dz)f(X ,φ(z)) .

Analogous statements also hold corresponding to (2.1)(a) and (b). In

other words, the Lέvy system compensates the jumps of X which coincide
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in time with jumps of Z . On the other hand, this is the most that could

be expected. By Essay I, Theorem 2.13(i), a time of the form

T = i n f ί t > 0: | Δ φ t | l ( z = z } > ε}

on Ω is Z -previsible, where |Δφ I denotes the magnitude of
Z t t

φ(Z ) - φ (t) in any convenient Borel metric on X R . By the moderate

Markov property, we then have φ (Z ) € Z over { 0 < T < « > } . By

iteration of T, and letting e -*• 0, it follows in the usual way that

the processes Σ f(φ (s),φ(Z ))I,_ _ . are Z -previsible (where

0<s<t "
 S (

V " V
 t

f(x,x) = 0 as before). Therefore, these processes are their own

compensators, and the Levy system is irrelevant. It will be seen easily

from the proof to follow that this fact translates into the F -previsibility

of Σ f(X ,X ) I , hence there is no need to compensate these

0<s<t
 S

"
 S

 (Z
h
 = Z

h
)

S*~ S

discontinuities.

THEOREM 2.3. A Levy system exists for any probability h on (Ω,G ) .

PROOF. All that needs to be done is to define from Theorem 1.2 (with

V t
( w )

 =
 H
z , t < )

( w ) )
 '

L
h , t

( w )
 =

 L
z , t < )

( w ) )
 '

and to show that they are F -previsible processes. More generally, let us

show that if Y is any real-valued, Z -previsible process with

P {Y
Q
 = 0} = _, then Y (Z (w) ) is F -previsible. Since, by

definition the previsible σ-field is generated by the left-continuous

adapted processes (if we take F = F see [3, IV, 61]), and this

class is closed under linear and lattice operations, it will suffice to

consider the case of left-continuous Y (without assuming

P {Y = 0} = 1) . Then Y (Z (w)) is left-continuous, and we need only

show it is F -adapted, or again, that for S e Z we have

{w: Z (w) e S} e F . Let S
Q
 e Z

t
 be such that P (S Δ S) = 0 .

Then because Z is F -progressively measurable, it follows that

{w: Z . . (w) e S } e F Also, by definition of P on Z we have

P
h
 w:{Z^

#)
(w) € SQ Δ S}

= P
h
{S

Q
 Δ S}

= 0 .
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Consequently, {w: Z (w) e s} e F^
+
, and so Y (Z^ (w)) is F -adapted.

But by left-continuity this is equivalent to F -adaptedness for t > 0,

and at t = 0 we have the extra hypothesis needed to complete the proof.

In the more specialized contexts of martingales or class D

supermartingales, we have the decomposition results corresponding to Theorems

1.6 and 1.8. Here we return to the notation of Section 1: φ(z) and

X denote only their first coordinates, while F and G coincide.

THEOREM 2.4. Let P be any G -square-integrable martingale probability

for X = w (t) on (Ω,G°) . Then there is a decomposition X = X^ + X
t ^ t t t

c P

where X is a continuous, F -square-integrable martingale with

X = 0, X is a square-integrable martingale which is a P-mean-square

limit of martingales of bounded variation, and (X X ) is a martingale.

The decomposition is unique up to a P-null set.

p
PROOF. Choosing Z as any version of the prediction process of P on Ω,

we first write x£(w) = M (t,Z* (w)), and X^(w) = X + M
d
(t,Z* (w)),

where M and M_ are the martingales of Theorem 1.6 on Ω
A
ι . These

c α M

definitions are meaningful except for a P-null set since

P c d

P{Z, . 6 Ωμ> = 1 . Moreover, X and X are right-continuous, and by

arguing just as in the proof of Theorem 2.3 it follows that they are

F -adapted. Further, we recall from the Remark to Theorem 1.9 of Essay 1

P P

that F is P-equivalent to the σ-field generated by {z , s<t) . Thus,

since M is a P-martingale,

(
2 2

)
 E P ( X

s+t'
f Γ
t+

)

w N M ) Mz
P
, s<t})

= x£ , P-a.s.

The same reasoning applies to X , and to X X . Finally, the mean-

square approximation obviously transfers from Theorem 1.6 in the same way,

and the uniqueness proof was already formulated for fixed P . We have only

to apply it to X - X = X^ + (X
t
 - X

Q
) to complete the derivation.

Turning to the specialization of Theorem 1.8, we obtain the Doob-Meyer

decomposition of a class D, right-continuous submartingale (
γ

t
'^V+^

 b y

writing Y = E(γjG° ) - (E(γjG°
+
) - Y

fc
) , and noting that the last term

is a class D potential. Then we have only to decompose the last term, as

follows.
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THEOREM 2.5. Let P on (Ω,G°) be such that X is a class D potential.

Then there is a P-a.s. unique decomposition X = M - A , where M is

a G -uniformly integrable, right-continuous martingale, and A is a

G -previsible increasing process with A = 0 .

NOTE. Unlike the decomposition of Theorem 2.4, the present components

depend on the choice of σ-fields, and may be altered if one replaces them by

the σ-fields generated by X . Hence we denote them by G instead of

F , although in the present notation these are actually identical.

PROOF. We recall again that the uniqueness part of the proof of Theorem

1.8 was in no way Markovian, and applies here without change. For the

existence, we set

M (w) = M(t,Z^ ,(w))
t ( )

and

A
t
(w) - Aίt.Z^ίw)) ,

p
where A and M on the right are from Theorem 1.8, and Z is any

fixed choice of the prediction process of P on Ω . Since A (w) = 0,

the proof of Theorem 2.3 shows that A is G -previsible. Of course,

since E A^ < °° it is clear that M is uniformly integrable, hence it

need only be shown that it is a G -martingale. However, this follows by

the same reasoning as (2.2), completing the proof.

3. ON CONTINUOUS LOCAL MARTINGALES.

We pass over any examination of general local martingales or semi-

martingales. These are treated at length in [4], and it is not clear

whether our Markovian approach has anything to add. The continuous local

martingales provide not only a simpler application, but also one in which

the method of time changes can be aptly illustrated in a prediction

process setting. In point of detail, we avoid the "adjoined Brownian

motions" of the usual time-change result (as in H. Kunita, S. Watanabe [10],

for example). In the last part of the section, we specialize further to the

continuous local martingales which are autonomous germ-Markov processes, as

defined in [9]. These generalize the one-dimensional diffusions in natural

scale, and perhaps should be called germ-diffusion processes in natural

scale. However, this would be misleading in that no reduction of the

general germ-diffusion to a scale in which it is a local martingale is

possible.

p

We continue with the notations of Section 1: X (w) = w (t) = φ(Z ),

t £ t

etc., but our starting point is the prediction space of all continuous
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local martingales. We recall that A is a "continuous local martingale"

means that if T
N
 = inf{t: | Â_ J > N} then

 A

t Λ τ
 is a continuous
N

martingale for every N > 0 . Actually, we will deal somewhat more

generally with processes which are continuous local martingales given their

initial values. Thus we do not require that the initial value have finite

expectation.

PROPOSITION 3.1. Let L c H be the set of all probabilities h on

c ,
(Ω,G°) such that (φ(Z ) - φ (Z

Q
), Z ) is a P -continuous local martingale.

Then L is a complete Borel packet of the prediction process,
c ,

NOTE: It is assumed that, P = a.s., Ψ (
Z
Q ) ? ± °°

PROOF. In the first place, since φ(Z.) is r.c.1.1. for any h e H,

P -a.s. the condition that φ(Z ) be continuous is the same as

φ(Z ) - ψ (t) = 0 . As seen in the proof of Proposition 2.1, this is a

Borel condition on h . By the usual optional section theorem argument this

implies that {h: φ(Z ) is P -a.s. continuous} is a Borel packet, and

the moderate Markov property plus the previsible section theorem show that

this packet is complete. In the definition of local martingale, we can

redefine T by T = infίr € Q: |φ(Z )| > N}, which is Z -measurable.

Then we see that φ(Z
 Λ τ

 \ " Φ(
Z
Q)

 i s
 Z -adapted, and in conjunction

with the continuity and boundedness of φ(Z ) the martingale condition
Z N
r
l h

becomes E φ(Z ) = φ(Z ), P -a.s. over {r < T }, for

2 N
 r

l IN

0 < r , r_
 e
 Q . Hence the set of continuous local martingale probabilities

for φ(Z ) - φ(Z
Q
) is in H .

To show that it is a packet, for Z -optional T < °° we can replace

the martingale condition by

on {r < T Λ T}, 0 < r,
 e
 Q, together with the conditions

T+r
E
 Φ(Z ) = ψ (

z

τ +
 )' 0 < *

3
 e Q, o

n
 {T + r < T }, since these

imply that over {T < r < T } one has
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= φ(Z ) ,

using Hunt's Lemma for conditional expectations in the first equality.

Then it follows immediately that Z is P -a.s. in L along with h

By the optional section theorem this implies that L is a Borel packet.

The completeness then follows because, for previsible 0 < T < <»,

p h {
V
 G L
c

}

= E
h
( P

V
{ z

0
 € Lc}>

= 1 .

We require the following lemma, which was first proved for Hunt

processes and square-integrable martingales by H. Kunita and S. Watanabe

[10]. But our situation is different, and we prefer to use again the

argument of M. G. Sur (see [2, Chapter 4, Section 3]). From now on, we

denote φ(Z ) - φ(Z ) by A .

LEMMA 3.2. There is a unique continuous (non-decreasing) additive
2

functional τ(t) of Z on Ω such that, for h e L , A - τ(t)

c

is a continuous local martingale.

PROOF. For each h & L and N,A is a bounded submartingale, and

by Theorem 2.5 it has a Doob-Meyer decomposition A = E (A |Z )

N N

- E (
τ

N
(°°)|Z.) + τ (t) , for an increasing previsible process τ (t) ,

depending on h, with τ (0) = 0 . Thus A -
 τ

N
(t) is a uniformly

2
 N

integrable martingale, and since A is continuous while τ (t) is

previsible, it follows easily that τ (t) is continuous, and of course

τ is a.s. constant for t > T along with A.
 Λ T

 Furthermore,

τ (•) is unique up to a P -null set, hence we can define

τ (t) = limsup
 τ

M
(t) to obtain a 1 -adapted, P -a.s. continuous,

N
~*

3
° 2 h

non-decreasing process such that A - τ (t) is a continuous, P -local-

martingale .

It now remains only to modify the τ to obtain an additive

functional τ(t), but the argument we follow would also suffice to define

τ(t) from scratch. We first observe that T
N
 is a terminal time of Z

fc
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on Ω . Indeed, since φ(Z ) is a.s. continuous and φ is Borel, we

c

may set T = infίr
 e
 Q: φ (Z ) € B } where B is the Borel set

B = ίz e L : |φ(z) | > N} . Then T is Z -measurable, and the process

JM C , vi
on E

χτ
 = i Π H Π {h: P (T > 0) = 1 } defined by killing Z^ at T is

N c 0 N t N

a Borel right process. Thus we define

Z for t < T , and

Δ for t > T

Δ N
P (Z = Δ for all t) = 1 . Then with the Borel transition function derived

N
from that of Z , Z becomes a right process on E U Δ .

We show next that if e (h) = E
 τ

h
(

τ

N
) '

 h e E

N
'
 a n d e

N

( Δ ) =
 °'

then e is a bounded regular potential for Z . Indeed, by the

h 2
optional stopping theorem we have e (h) = E A , h € E . Next we note

that there is no difficulty extending the additive functional property of

A to stopping times. Then for any stopping time S < T we have for

(3.1) Eh(A^ ) = Eh(A + A ° θ V

N N

h 2 h
 Z

S

= E (A
s
; S<T

N
) + 2E (A

g
E A

τ

^ S<T
N
)

Λ T
 } + E H ( E S

\ '
N N

Setting first S = t Λ T . we obtain

N

Z

E
h
(E

Since E A decreases to 0 as t -*• 0+, it follows that e
N
(h) is

N
 N

 2

an excessive function for Z . On the other hand, since
 A

t Λ τ

 i s

a bounded submartingale we have lim A = A , P -a.s. (or more

t-χ» t Λ T N
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precisely, the right side is defined by the left on {T
N
 = «}) . Thus by

h
 Z

t 2
dominated convergence we have lim E (E A ) = 0, and so e is a

t+
 X

N

bounded potential. Finally, let S < T increase to a limit T . Then

by (3.1) with S = S we have

li- E
h
 e

N
(

Z
» ) - E

h
e

N
(<)

n-*» n

= lim E
h
(A^ - A*

 Λ
 )

n-*» N n N

= 0 ,

proving that e is a regular potential.

N

It follows by the argument of Sur [15] that there exists a continuous

N

additive functional
 τ

N
(t)

 o f z

t
 with potential e . Of course, for

each h G E this
 τ

N
(t)

 i s p
 -equivalent to the one obtained by the

Doob-Meyer decomposition since their difference is a continuous martingale
Z h

of bounded variation. Now we have τ (s+t) = τ__(t) + τ (s) ° θ . P -a.s.
N N N t

on {s+t<T
N
} . To complete the proof we need only let N •> °° and note that

T
N "*" °°'

 p h
~

a s
 for h e L .

It is well-known that A(t) may be reduced in some sense to a

Brownian motion by the time change inverse to τ(t) (see for example

H. Kunita and S. Watanabe [10], Theorem 3.1). We wish to formulate a

result of this type in the present context, and it will be useful to make a

slight enlargement of the σ-fields Z to cope with the case when

P {lim τ(t) < °°} > 0 .

LEMMA 3.3. Let M = sup τ(t), and T = infίt: τ(t) = M>, where M

*
and T are permitted the value +°° . Let Z denote Z V

that is, the σ-field generated jointly by Z , the atom {τ>t}, and the

trace of σ(T) on {τ<t} . The family Z is non-decreasing, and for

h & L both A(t) and A (t) - τ(t) are P
h
-continuous local

C
 t*

martingales relative to Z .

t *

NOTE: T is not a stopping time of 2 , but it is not hard to see that Z

is right-continuous in t .

PROOF. A familiar argument using Jensen's Inequality (as for (1.10)) shows

that for 0 < r < r e Q,

P {τ(r_) = τ(r
o
)} = P {τ(r) = τ(r

o
); A(r_) = A(r

o
)}

1 2 1 2 1 2

whence we obtain without difficulty that P {A(t) = A(T) for all t > T> = 1
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Next, observe that any S € Z may be written in the form

S = (S
χ
 Π {T<t}) U (S

2
 Π {T>t}) with S

±
 e 2

t
, i = 1 or 2 . Then for

s > 0, with T = inf t: |φ(Z )| > N} we have trivially

E
Z
(A((s+t) Λ T

N
) ; S)

= E
Z
(A(t Λ T ); S. Π {T<t}) + E

Z
(A((s+t) Λ T ) S

o
 Π {T>t}) .

N 1 "" N 2

But the last term on the right becomes

E
Z
(A((t+s) Λ T

N
) ; S

2
) - E

Z
(A((t+s) Λ T

N
) S

2
 Π {T<t})

= E
Z
(A(t Λ T

N
) ; S

2
 Π {T>t}) ,

by the martingale property and the same reasoning as before. Adding the

two terms yields the local martingale property of A(t) relative to Z
2

The case of A (t) - τ(t) is clearly analogous.

This is the key step; the rest is somewhat routine and we will omit

some details. Set τ~ (t) = inf{s: τ(s) > t} with inf(φ) = «> . A

-1 *
routine check shows that τ (t) Λ T is a stopping time of Z. . Let

Z denote the usual indicated σ-fields, thus S Ξ Z

τ (t) Λ T _
λ A

 τ (t) Λ T

means that for c < ° ° s Π { τ (t) Λ T < c} e Z . Then we have

{M < d} = ίτ^Cd) = oo} = {
τ
"

1
(d) Λ T = T} ,

from which it follows easily that M is a stopping time Z

τ" (t) Λ T
The theorem we wish to prove is as follows.

THEOREM 3.4. For h e L , the process B(t Λ M) = A(τ""
1
(t) Λ T) is

C
 T*

a Brownian motion adapted to Z , stopped at time M . The

τ (t)^Λ T

times τ(s) are stopping times of Z , and A(t) = B(τ(t) Λ M)

τ (t) Λ T

for all t, P -a.s.

REMARK. It is a simple matter to see that B(t Λ M) remains constant for

t > M, so that our notation is consistent. It also would not be difficult

to adjoin an auxiliary independent Brownian motion and continue B(t Λ M)

beyond time M as an unstopped Brownian motion (as in [10]) but since M

is a stopping time the meaning is clear without this step.

PROOF. The adaptedness and measurability assertions are again routine,

and left to the reader. Since Aίτ"
1
(τ(t))) = A(t) = A(t Λ T), where

τ
 (τ(t)) = <» for t > T, the last assertion is clear.
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By a characterization theorem of J. L. Doob ([5, VII, Theorem 11.9])

*
to show that B(t Λ M) is stopped Brownian motion relative to Z _

2
 τ (t) Λ T

becomes equivalent to showing that both B(t Λ M) and B (t Λ M) - (t Λ M)

are martingales relative to Z . B y Lemma 3.3 and the optional

τ (t) Λ T

sampling theorem, they are plainly local martingales. Since t Λ M is

bounded by t, the second is then clearly a martingale. Thus E B (t Λ M)

is finite, hence so is E sup |B(S Λ M)| . Then by dominated convergence

s<t

as N -*- °° we obtain the martingale property of the local martingale

B(t Λ M) .

While Theorem 3.4 provides a rough outline of the process A(t), it

conceals a variety of possibilities which emerges only when we introduce

further assumptions. For convenience, we let L denote a complete Borel

H -subpacket of L such that, for z e L P
Z
{M = °°} = 1 . Then it is

0 c d

clear from the theorem that A(t) is unbounded above and below, P -a.s.

for z e L . If we assume that (φ(Z),Z ) is a homogeneous strong-
d t t

Markov process, then it follows from well-known facts that it must be for

each z a regular diffusion in the natural scale on (-
00
,
00
) . Then the

representation of Theorem 3.4 becomes B(t) = A(τ (t)), and there is a

unique measure m(dx), positive on open intervals, such that we have

(3.2) t = / ^

where s(t,y) = — — / I (B(s))ds is the local time of B(t),

jointly continuous in (t,y) outside a P -null set for each z . Here

m(dx) is the "speed measure," and does not depend on z . The theory

of such processes is highly developed, going back to W. Feller in the

1950's, and is well-represented in the book of Ito and McKean [8]. It

will not concern us here, except as a starting point for the discussion.

Suppose, indeed, that instead of the Markov property we assume only

the autonomous germ-Markov property as in [9, Definition 2.2]. By

Definition 2.2 and Theorem 2.4 of that work, this means that there is a

packet (K Π K )
 c
 H

Q
 such that the trace of H on K Π K is generated

by the functions z(S), S ^ G (and hence, since H is countably
U"Γ

generated, by z(S
n
) for a sequence S e G°

+
) . The germ-Markov

property, as well as homogeneity in time, then follow for z ^ K Π K as

described below. But first we replace KlΊκ by L Π K Π K assuming

i-
c
 Π K ^ Φ, to obtain the packet of a continuous martingale autonomous

germ-Markov process.
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As discussed in [9], for such a process Z the future and past of

φ(Z ) are conditionally independent given the present germ

σ(Z (S),S e Gz ), and this is equivalent to conditional independence of

the future and past of φ(Z ) given the germ Π σ(φ(Z ), 0 < s < ε))

ε>0

Moreover, such a process ψ(
z

t
)
 h a s a

 stationary transition mechanism (a

function of the "germ-state") hence from an empirical viewpoint it perhaps

may be said to arise from essentially the same conditions as if it were a

homogeneous Markov process, i.e., in this case a regular diffusion.

However, most of the resemblance ends here, as we now indicate. In

the first place unlike the case of diffusion where <M
z

t
)

 a n <
*
 z

t

 m a v

be identified, here the process Z may be discontinuous, and the

discontinuities of Z may greatly effect the behavior of ψ(
z

t
)
 W e

give two such examples: in the first the discontinuities of Z are

totally inaccessible, while in the second they are previsible.
y

EXAMPLE 3.5 Let P be the probabilities of a Brownian motion B(t),

B(0) = x, and let e , e , ... be independent, exponential random

variables with parameter 1, independent of B(t) for each x .

Define a process X(t) on the same probability space by

f B ( t + T 2 n ) ? T 2 n ± t < T 2 n + l
X(t)

< T
2(n+l)

where T = 0 and T = Σ? e., n > 1 . Clearly (for each x) X(t)

is a P -continuous martingale, and we may introduce corresponding

probabilities P on (Ω,G , F X(t), θ ) in such a way that

w (t) Ξ 0 for k 7* 2, p
X
-a.s. so that we may assume G° = F° as

•K t"τ" t"Γ

before. Then we introduce the prediction space and process Z , where the

probabilities P are of two kinds: either

P
Z
{Z = Z for all small t} = 1, or

P {Z ψ Z
Q
} = 1 for each t, respectively,

according as the process Z , s > 0, starts during a "level stretch" of

φ(Z ), or during a "Brownian stretch" of φ(Z
fc
) . In each case there

corresponds a distinct P
Z
 for each initial point x, so that we can

write ί Π K Π K = {z(l,x), z(2,x); -°° < x < °°} for the prediction

state space. It is not hard to see that this does define a packet for

which φ(Z ) is an autonomous germ-Markov process and φ(
z

t
) is

 a

continuous martingale for each P . The times T become totally
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inaccessible stopping times, and the character of φ(Z ) changes

abruptly at each T . Of course, such exponential holding times are

impossible for diffusions because of the strong-Markov property. Here, the

strong-Markov property holds for Z because Z contains the "information"

that a level stretch has just ended or begun, but it does not hold for

Φ(Z
t
) .

EXAMPLE 3.6. Let P
X
 be Brownian probabilities for B(t) as before, and

let B (t) be an independent "instantaneous return" Brownian motion on

[0,1) for the same probability space, so that when B^t-) = 1, then

B (t) = 0, and we assume that 0 is a reflecting boundary for B^ in

the usual sense. Let P '
y
 be the joint probabilities for (B,B ) with

B(0) = x and B (0) = y, and assume further a sequence Q,,Q~, — of

x v 1

independent Bernoulli random variables with P {Q, = a or b} = — for

all (x,y), where a ^ b are two strictly positive constants. We

consider a process

X(t) = B(τ(t)) ,

where τ (t) is defined as follows. Let T..,T , ... be the successive

instantaneous return times of B (t) to 0 from 1- . Then we set

τ (t) = Q, SQ
 B
iί

s
)

 d s f o r
 0 < t < τ_, and for n > 1 we define

inductively

τ(t) = τ(T
n
)
 +
 Q

n + 1
 Jl B

l(
s)ds for T

n
 < t < T

n + 1
 .

n

Here the corresponding prediction state space is identified by triples

z = (x,y,c) in R x [0,1) x {a,b} where x = B(0), y = B (0) , and

c = Q
1
 . It is not hard to recognize that this leads to a Borel packet

of the prediction process for which φ(Z ) is autonomous germ-Markov and

a continuous martingale for each P . Here the times T are previsible

stopping times, since they occur when the "rate" dτ (t) = Q B (tj)dt

reaches its maximum Q
n
 on each cycle. Also, Z has a previsible jump at

each T
n
 since the value of Q is not determined by Z , but is

n
determined by Z (Z is thus a branching point). Since φ(Z ) is arbi-

n ή
 τ

n

trary, ψ(
z

t
)

 i s n o t a
 strong-Markov process in the usual sense. But

φ(Z ) is always a strong-germ-Markov process (as defined and proved in

Theorem 2.3 of [9]).

From these examples it is clear that germ-Markov processes exhibit much

more variety of behavior than Markov processes, even under quite restrictive

assumptions. The situation is not much simpler even if we require Z to
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be continuous along with ψ(
z

t
) Thus if we set a = b in Example 3.6, so

that the Q 's are constant, Z becomes continuous but X(t) still has

predictable but sudden changes of behavior at the times T

In this example, the time scale τ(t) is independent of B(t) . If

we permit dependence, then two general types of process (with continuous

Z ) still may be distinguished. The first may be called processes in which

the speed measure developes independently of position. Here we may begin

with any fixed speed measure m(dy), and any autonomous germ-Markov

process g(t) with a continuous prediction process and such that the process

ψ(t) = / g(s)ds is strictly increasing (in the last example,

ψ(t) = /Q B (S) ds) . Now let B(t), B(0) = 0 , be a Brownian motion

independent of ψ(t), with local times s(t,y) as in (3.2). We may then

define a random time τ(t) by

(3.3) ψ(t) = Γ_
m
 s(τ(t),y)m(dy) ,

and then set X(t) = B(τ(t)) . It is to be shown that X(t) is an

autonomous germ-Markov process, with a continuous prediction process, which

is a continuous local martingale. In fact, if X (t) denotes the regular
m

diffusion with speed measure m(dy) based on B(t) as in (3.2) and if

τ (t) is the corresponding additive functional of X (t), then we have
m m

(3.4) X(t) = X
m
(ψ(t)) = B(τ

m
φ(t)) .

Now since ψ(t) is independent of X it can be seen that

τ ψ(t) = lim Σ (X(—) - X(-^ί-))
2
 ,

n
x» k l

 n

at least in the sense of convergence in probability. This is enough to see

that τ ψ is an additive functional of X . Next, we will obtain
m

(3.5) J* g^φds^ψtsKy)

as an expression for the local time of X at y with respect to m(dy) .

Setting u = ψ (s), we have from (3.4)

where dψ (u) = (g(ψ (u))Γ du . But for bounded step functions f(u)

we have P -a.s.
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Jt
( t )
 I, . (X (u)) f (u)duJ

0 (-°°#y) m

= /.„ [/J
< t ) f ( u

>
d
?

( τ

m

( u )
'

y
)

since s(τ (u),y) is the local time of X . Since this holds P -a.s.
m m

for a countable family of step functions generating b(8), it follows by

monotone extension that it holds for all Borel f > 0 . Substituting

f(u) = (g(ψ (u)))~ , differentiating with respect to m(dy), and

finally returning to the variable s, yield (3.5).

Integrating (3.5) with respect to dy gives f_ g (s)d(τ ψ(s))
J
 0 m

which is therefore also an additive functional of X . We denote it by

C(t), and observe that

dτψ(s)

where the integrand is the Lebesgue density as indicated. Thus ψ(t) is

an additive functional of X . Then the germ of ψ(t) is contained in

that of X(t), and hence the germ of g(t) is also. But this together

with X(t) determines the prediction process of X(t) autonomously, in

view of our assumptions on g and B . It is clear that X(t) is a

continuous local martingale, and that its prediction process is continuous

along with that of g(t) .

It is quite apparent how to extend this type of example to germ-Markov

functionals ψ(t) other than those which have a density g(t) with respect

to Lebesgue measure. The analogue of the speed measure of the process at

time t is given formally by — m(dy), or (1/g(t))m(dy) in our special

αψ

case, and it evolves independently of the position X(t) .

Not surprisingly, this is not the only type of continuous local

martingale which is an autonomous germ-Markov process. There are also cases

in which the evolution of g(t) depends on B(t) . One such example is the

solution of the stochastic integral equation

X(t) = x
Q
 + /£ \ j

S

0
 X(τ)dτ dB(s) x

Q
 ft 0 .

The existence and uniqueness of the pathwise solution, given any (continuous)

Brownian motion B(t), is proved in Section 3.4 of [9]. Here the additive

functional τ(t) is clearly

rt Γ ,s 1
 2

τ
(t) = / I Γ (X(u))du ds .

L J
Thus if we write formally
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dt = d / s(τ(t),y)m(dy)
—oo

we find that this is satisfied at time t if

m(dy) = m
t
(dy) = 2 dy dt/dτ

= 2 JQ X(s)ds dy .

L J
On the other hand, if we fix m(dy) = 2dy as in (3.3) the analogue of

ψ(t) is just τ(t), and clearly it depends on X(t) . It might be of

interest to look for further examples of this type in which m(dy) ψ c dy .

As examples of continuous martingales, such processes are rather

specialized. However, in view of the significance of the martingale property

(or natural scale) for diffusion, it seems a natural first step to consider

it also for a germ diffusion. But perhaps the chief significance of

the examples is only to call attention to the fact that germ-diffusion

processes are very much less limited in behavior than ordinary diffusions.

Since they both give expression to essentially the same underlying physical

hypotheses, it would seem necessary to use some caution before assuming the

validity of a diffusion model of a real phenomenon.
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