
ESSAY III. CONSTRUCTION OF STATIONARY STRONG-MARKOV

TRANSITION PROBABILITIES

Let X be a continuous parameter stochastic process on (Ω,F,P)

with values in a metrizable Lusin space (E,E) (i.e., E is the Borel

σ-field of a Borel set E in a compact metric space I) . In order just

to state the property of X that it be a "time-homogeneous Markov

process", it is necessary to introduce some form of conditional probability

function to serve as transition function. From an axiomatic standpoint it

is of course desirable to assume as little as possible about this function.

An interesting and difficult problem is then to deduce from such assumptions

the existence of a complete Markov transition probability p(t,x,B) for

(P,X ) which satisfies the Chapman-Kolmogorov identities

(1.1) p(s+t,x,B) = Jp(s,x,dy)p(t,y,B) ,

thus giving rise to a family (P , x £ E) of Markovian probabilities for

which
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The analogous time-inhomogeneous problem (of obtaining a p(s,x;s+t,B))

was treated by J. Karush (1961), and considerably later the present problem

was taken up by J. Walsh [9]. It seems, however, that for the homogeneous

case the solution remained complicated and conceptually difficult.

Since the publication of these two works, a new tool has appeared on

the scene which has an obvious bearing on the problem, namely, the

"prediction process" of [5] and [8]. Accordingly, the present essay aims

to show what can be done by using this method. But it is not simply a question

of applying a new device. Our view is that the prediction process is

fundamental to the problem, and the hypotheses which are needed to apply it

give a basic understanding of the nature of the difficulties. A suggested

way of viewing the entire matter is as follows. The prediction process is

in some sense the best approximation to X by a process which does have a

The hypotheses of Theorem 3 of [9] are ultimately consequences of ours
(Corollary 1.9 below).
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58 FRANK B. KNIGHT

stationary strong-Markov transition function. The problem is thus to

formulate the conditions under which the prediction process becomes

identifiable with X
fc
 itself.

Two immediate requirements are that the paths of X be sufficiently

regular, and that their probability space be sufficiently tractable, so

that the assumed conditional probabilities may be identified P-almost

surely for each t with the regular conditional probabilities which

constitute the prediction process. We will make the following initial

assumption (to be relaxed in Theorem 1.12).

ASSUMPTION 1.1. Let (Ω,θ , F ) denote the space of right-continuous

E-valued paths w(t), t > 0, with left limits for t > 0, and the usual

translation operators and generated σ-fields. We assume the canonical

representation X (w) = w(t) .

We now introduce the two basic definitions with which we will be

concerned.

DEFINITION 1.2. Let Q(x,S), X e E, S e F°(= V F°), be a probability

kernel, i.e. a probability in S for each x and E-measurable in x for

each S . A probability P on F° is called homogeneous Markov relative

to Q and F^_ (= ^ F°
+ £
) , t > 0, if for each t and S e F°

(1.3) Pίθ"
1
 S|F°_

+
) = Q(X

t
,S) P-a.s.

DEFINITION 1.3. The Chapman-Kolmogorov identities for Q(x,S) are

(1.4) Q(x,θ~\_(S)) = JQ(X,{X G dy}) Qίy^θ^S)

Sit S t

0 < s,t x ^ E , S ^ F ° .

REMARKS. Since regular conditional probabilities exist over F°, the

assumption of a Q as in Definition 1.2 is equivalent to assuming only a

marginal conditional probability kernel Q (x,B), B
 e
 E, for each s > 0 .

In fact, it is enough to have Q for rational s, since then

/ Q (X
τ
/dy)Q (y,B) = Q (X ,B) except on a P-null set for each τ .

S
l
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2
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l
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We can then use this identity, along with the fact that regular

conditional probabilities assign probability one to the r.c.1.1. paths,

to construct a Q satisfying (1.3). In fact, the measures generated by

Q on the space of E-valued functions of rational s > 0 must reduce,
s "™

when X is substituted as initial value, to the restriction to rational

s of any regular conditional probability on the r.c.1.1. paths given

o
F . Hence they extend to measures on the r.c.1.1. paths, P-a.s. for

every τ . The set of restrictions to rational s > 0 of r.c.1.1. paths

is a Borel set in the countable product space, so the condition that this
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set have probability 1 gives a Borel set of initial values. Outside this

set, we may take Q(x,S) = I (w(0)) .

The most that follows from (1.3), however, is that (1.4) holds for all

τ > 0 and S
 &
 F° except for x in a set E(τ,s) with P {X e E(τ,s)} = 0

In short, one can eliminate the dependence on t and S since the paths

are right-continuous and F is countably generated. But we do not see how

to eliminate dependence on s, much less on τ, without further assumptions.

Secondly, the reason for conditioning on F in Definition 1.1

is in one sense trivial: We could have used F° and X instead, but

it is less convenient. However, the distinction between F° and ψ is

t t

"unobservable" for the prediction process (see, for example, the Remark

following Theorem 1.9 of Essay I). So it is unrealistic to condition on

F except when it is shown (as following Theorem 1.12 below) that this is

equivalent to F. . The point here is that the prediction process is

automatically a strong-Markov process relative to F . Thus our method

dictates that the same will be true of X .

The problem is now to identify conditions (presumably verifiable

in practice) under which, given a Q satisfying (1.3), there exists a

Q*(x,S) satisfying both (1.3) and (1.4). To this end we first state the

relevant properties of the prediction process of X , as obtained in [5],

and [8], and Essay 1. Let (H,H) be the set of probability measures

z(S) on F° and the σ-field generated by {z : z(S) < a}, S
 &
 F°,

a e R . Further, for each t > 0 let F be the σ-field generated by

F and all z-null sets. Then the z-prediction process Z = Z (S,w),

for each z e H, is an F -optional process with space (H,H) such that

for each optional time T < <», and all S e F ,

d 5) P^θ;
1
 S|F*

+
) = Z*(S) , z-a.s.

(where P is another notation for z itself). The process "
Z
 is

unique up to z-equivalence.

REMARK. In [5] the spaces Ω and H were "larger" than the present ones.

But since Ω is here a Lusin space it is easy to see that the probabilities

Z(t) of [5] must already equal one on the Borel image of this Ω in the

space Ω' of [5], for all t z-a.s. Hence we can assume the present

(H,tf) .

The second essential feature of the processes Z concerns their

behavior as z varies. From Theorem 1.15 of Essay I we have:

THEOREM 1.4. There is a jointly Borel transition function q(t,y,A) on

(H,H) such that for each z the process Z (with the probability z
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itself) is a homogeneous strong-Markov process relative to F
fc+
, with

transition function q(t,y,A) . In particular, q satisfies the Chapman-

Kolmogorov identities (1.1).

An advantage of restricting to a space of right-continuous paths is

that one can be quite explicit about the connection of Z
fc
 and X

fc
 .

Indeed we have a simple functional dependence.

THEOREM 1.5. There is an H/E-measurable function φ such that for all

z « H

P
z
{χ

t
 .

 φ
(

Z

Z
) for all t > 0} = 1 .

PROOF. It is convenient to introduce the set of non-branching points of Z

H
Q
 = {z e H: P

Z
{Z

Q

Z
 = z} = 1}

= {z e H: q(O,z,{z}) = 1} .

We have H G H, and by Proposition 2 of Meyer [8] for all z e H we have

P
Z
{Z

Z
 e H , t > 0} = 1 (in fact, the distributions of Z * on H are

those of a right process on H with transition function q) . For

z <= H and B <= E, since

o
ι
 o

 B }
 ""

 (
 o

 B | F
o +

)

= P {X e B} , Z a.s.,

we must have P {X = φ(z)} = 1 for some function φ(z) on H . Since

z(S) is H-measurable for S e F° and X is F°-measurable, we see

that E
Z
 f(X

Q
) is H-measurable for f e b(E) (the bounded E-measurable

functions). Then we have {z: φ(z) e B} = {z: E
Z
I (X ) = 1 } e H, so
B 0

ψ is H-measurable on H . We set φ(z) = x on H - H for some

fixed x
Q
 G E . Now for any F -stopping time T < «>

 w e
 have for B e E

i
B
(x

τ
) = P

Z
 (x

τ
 fe B | F

Z

+
)

z

= P
 T
 (X

Q
 € B)

= I
β
(φ(Z

Z
)) , z-a.s.

It follows easily that X = φ(Z
Z
), z-a.s. Then, since both X and

z z
"
 x
 are F -optional processes, the optional section theorem of

— UT

[1, IV, 84] finishes the proof.
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Before proceeding, let us review our notations. P without superscript

refers to the original process on Ω, and at the same time we have

P fc H . P
Z
 and E

Z
 are simply z and its expectation, for z e H, but

P z
we do not write P . Z is the prediction process of z; in particular,
p

Z is that of P . We will need to use Q(x,S) in three distinct

senses: first, as a probability kernel; second, as a mapping Q : E -v H

defined by Q(x) = Q(x,(•)); and third as a set mapping Q{x e S} =

{Q(χ) : x e S} .

The essential requirement for using the processes Z to construct

a transition function for X is that the mapping Q: E -*» H

defined by the given kernel Q(x,S) should have a range Q(E) sufficiently

p

large that P{Z e Q(E), t > 0} = 1 . The most natural way to insure this

is to introduce:

ASSUMPTION 1.6. Q is continuous for the given topology on E and some

topology on H such that

i) H is the σ-field generated by the open sets, and
P

ii) Z is P-a.s. right continuous in t .
There are usually many different topologies generating H and making

P
Z a.s.-right-continuous. Perhaps the most natural one is the weak*-

topology with respect to the topology of weak convergence on Ω, discussed

below. We postpone further discussion of Assumption 1.6 until the

construction of the transition function Q*(x,S) is complete.

LEMMA 1.7. Under Assumption 1.6 there is a K c H , K e H, such that

Qφ = identity on K and P{Z* £ K , t > 0} = 1 .

PROOF. By (1.3) we have for each t > 0, P{Q(X.) = Z^} = 1, hence

p "* t t

P{Q(x ) = Z for all rational r > 0} = 1 . By right-continuity of

X
t
 and Z^ it follows that P{Q(X

t
) = Z*, t > 0} = 1 . Next, let S (x)

denote {w:w(0) = x} . By Theorem 1.5 we have P{X = φQ(X ), t > 0} = 1,

and since we have Z^ e H
Q
 this implies P{Q(X

t
,S(X )) = 1, t > 0} = 1 .

We set K
Q
 = Q{x: Q ( X , S ( X ) ) = 1} Π H

Q
 . Since {x: Q(x,S(x)) = 1} Π

{x: Q(x) e H } e E, and on the above intersection we have φ Qx = x,

then Q is one-to-one on this set, whose image under Q is K . It

follows by [1, III, 21] that K e H. We have Q φ Qx = Qx, hence Qφ

is the identity on K and the proof is complete.

REMARKS. We did not quite have to require that Q(x) be continuous,

but only that it be measurable and that its graph be closed in E x H .

Furthermore under the not unreasonable conditions that Q(x,S(x)) = 1

for all x and that Q(x, |F°
+
) = Q(x, ) for all x (where the

conditioning is on Q(x)) we have K
Q
 = Q(E) .
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We now use the set K of Lemma 1.7 to construct a state space for the

prediction process on which it can be identified with Xfc .

LEMMA 1.8. There is a K c K , K £ H, such that P{ZP € κ
χ
} = 1 and

for all z ^ K ,

z, z
p Z { z

t € κ
i'

 t
 -

 0 } =

REMARK. In the terminology of Essay I, Definition 2.1, 3), K is a Borel

packet of Z

PROOF. (In part like Theorem 2.4 a) of [6]). We begin by setting

K = {z e H
Q
: P

Z
{Z

Z
 e

 K Q
, t > 0} = 1} .

Then in the terminology of [3, Section 12] for α > 0 we have

K = {z € H : P l(z) = 0} where P 1 is α-excessive for
0
 V

κ
o

 H
o"

κ
o

the transition function q . Since q is Borel and the prediction

process is a right-process on H (see Remark III. e. of Meyer [8]) K

is a nearly Borel set for the prediction process. It follows that for

z
 e
 K, I (Z.) is P -indistinguishable from a well-measurable

(optional) process of F , and so the section theorem implies that

P
Z
{Z

Z
 & K, t > 0} = 1 . We have, by Lemma 1.7, p{Z

P
 6 κl = 1, hence

P{Z^ Ξ K Π K
Q
} = 1 . Also, for z e K Π K we have by definition of K

that P
Z
ίz

Z
 e K Π K , t > θ } = l , so we may consider K Π K as state

space for the prediction process, and by Lemma 1.7 Q φ = identity on

κ n κ
0
 .

It remains to show that K Π K may even be replaced by a Borel subset

K . We use an argument due to P. A. Meyer [7] (see also the end of [9]).

Since K Π K is nearly Borel, it has a Borel subset K
2
 such that

P{Z
fc

 6
K / t > 0} = 1 . Let K' denote the nearly Borel set

κ
2
 - u « κ

2
. p iz

t
 € κ

2
, t 0) - u .

As before, we have

i) P{Z
P € K p = 1 and

ii) P
Z
ίz

Z
 e K^, t > 0} = 1 for z e κ'

Similarly, we define by induction a sequence KΓ "> K^ ~> K^ ... "> K "D K".

2 3 3 n n
where K is Borel, and K^ is nearly Borel and satisfies i) and ii).

n n
Now let K =

 n
Q

2
 K . Then K. is Borel, and obviously satisfies i).

But for z e K ~ we have P
Z
{zf e K", t > 0} = 1 for every n .

l t n —
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Since K = ^ K^, K' also satisfies ii) and the proof is complete.
1 n>2 n 1

We can now prove the main theorem.

THEOREM 1.9. Under Assumptions 1.1 and 1.6, given Q(x,S) and P as in

Definition 1.2 there exists a Q*(x,S) for the same P which satisfies

the identities (1.4).

PROOF. We have Q φ = identity on K , and P{X € φ(K ), t > 0} = 1 .

By [1, III, 21], φ(K )
 G
 E . Now we define

Q(x,S) if x e
 φ
(K )

Q*(x,S)
I

g
(w

χ
) if x f

 Φ
(K

χ
)

where w (t) = x for all t > 0 . Obviously Q* is a probability

kernel and satisfies (1.3) for P, and (1.4) for x ^ ψ(K ) . Finally,

for x e φ(κ )
f
 0 < t

χ
 < ... < t

R
, and B

χ
,...,B^ e E, by (1.5)

and Theorem 1.4 we have

Q*(x, Pi" X e B )
K-l t

k
 JC

where we used the fact that Q is an isomorphism of H|κ onto E|-

for the last equality (again by [1, III]). In the last term we may

omit the φ(K )'s just as for the first equality. Choosing B = E,

t = s, and t - t = t, this establishes (1.4) for S = π£_
9
{x & B } .

K. JL

The general case follows immediately by the familiar uniqueness of the

extension.

COROLLARY 1.9. For every initial distribution μ, we have the strong

Markov property:

P^e^slF^) - Q*(X
T
,S), P

μ
-a.s.

where P (S) = /Q*(X,S)μ(dx), and T is any finite stopping time of the

completed σ-fields F
τ +

REMARK. It follows that pJJ = F^ .
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PROOF. For μ concentrated on φ(K ) this follows from the analogous

?F by writing P
μ
-

1 >y
property of ?F , by writing P

μ
-a.s; X

#
 = φ(Z^ ) as in the former proof.

The part of μ outside of φ(K ) causes no difficulty since, for every T,

we have {X
Q

 μ

X
Q

We turn to a discussion of Assumption 1.6, which of course is the main

question mark in the theory. The essential fact in identifying such a

topology is

THEOREM 3.10. Let f be bounded and F °-measurable (f e b(F°)) . If

f o θ is right-continuous (resp. with left limits) in t for all w e Ω,

then for every z e H
Z

z

x t
P {E f is right-continuous (resp. with left limits)} = 1 .

PROOF. This follows immediately from two known results:

Z
t

a) E f is the F^-optional projection of f o θ [1, III,

Theorem 2], and

b) The F -optional projection of a right-continuous bounded process

(resp. with left limits) is itself right-continuous (resp. with left limits)

z-a.s, [7, Appendice 2].

Therefore, we have immediately

COROLLARY 1.10. Let {f c b(F°), 1 < n} satisfy the two conditions

a) for each w and n, f o θ. is right-continuous in t > 0, and

n t —
b) the monotone linear bounded closure of {f } is b(F ) .

n

 z
Then the topology on H generated by the functions E f , 1 < n satisfies
i) and ii) of Assumption 1.6.

z

PROOF. Only i) needs comment. But since each E f is measurable with
n

 z
respect to the σ-field generated by the open sets, so is E f for f
if the closure b(F°), as required.

There are many possibilities for such f . Perhaps the most

n
obvious is to take f = g (X ) where r runs over the non-negative

n m r
rationals and g runs over a uniformly dense set of continuous functions

m _

on a compact metric space E containing E as a Borel subset. Then the

condition that Q satisfy Assumption 1.6 becomes the Feller property
E

Q ( x )
 g (X ) e C(E) for rational r .

m r

A weaker type of requirement, but one which still involves the given

topology of E, utilizes all finite products

k

 r
 -

t

(1.6) f = Π J e g (X ) dt ,
n . _

 J
i. m. t

i=l l l

for 0 < r. rational and the g
 f
s as above. Here the topology

""i m
generated on Ω by the f is just the weak topology of the sojourn
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measures μ(t,A) defined by μ(t,A) = J I (X )ds . Indeed, we have

U A S

/ g (X ) ds = / g (x)μ(t,dx) . Hence, convergence of these integrals for
0 m 3 Em

all m is just weak convergence of μ(t, ) . On the other hand, this

convergence for all t and m is easily seen to be equivalent to that

generated by the f . This topology is metrizable, for example, with

metric d(w ,w ) = Σ w |f (w ) - f (w
2
)|, whence Ω is embedded as a

m

Borel subset of its compactification, which is the space Ω of

(equivalence classes of) measurable functions with values in the closure

of E (for this argument, see Essay 1, Theorem 1.2, where an analogous

but weaker topology is treated).

Accordingly, we can consider on H the weak-*topology generated by

this topology on Ω, by setting h(Ω - Ω) = 0 for h e H . Again,

continuity of Q(x) for this topology on its range can be expressed in

more familiar terms.

THEOREM 1.11. Continuity Q(x) for the weak-*topology generated by

E
Z
f for the f of (1.6) is equivalent to the continuity on E, for all
n n _

λ > 0 and continuous g on E, of

(1.7) E
Q ( X )

 /~ e""
λt
g(X

t
)dt .

REMARK. Let R g(x) denote (1.7). Then the last continuity is just the
λ

Ray property of R,g(x), except that we are not assuming the resolvent

equation. The proof below is not self-contained, but in the present

context it does not seem to merit that degree of emphasis.

PROOF. We rely on the construction of [5], where the coordinate functions

h are the present g . By the argument just given, convergence in the

space Ω' of [5] induces on Ω the topology of weak convergence of

sojourn time distributions.

Consequently, the topology of H in [5] reduces to the same weak-*

topology as above. The assertion of our theorem now follows from the proof

of Theorem 3.1.1 of [5] in two steps. First, we observe that the proof of

R : C(E) >C(E ) needs no change, where E is E with the Q-induced

λ Q Q

topology. This is simply the observation that each R g (x) is continuous

, λ n
-00 —λt

on E since each J e g (X )dt is continuous on Ω . Consequently,if E*
v
 'f are continuous on E then R

Λ
 : C(E) »C(E) . Second,

n λ

we note that the proof of Lemma 3.1.1 of [5] does not use the resolvent

equation or the compactness of E . Accordingly it applies unchanged, and

we obtain that if R
χ
: C(E) >C(E) holds, then
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/
 k
g (X )ds, 1 < k < n, t > 0,

Π
k

have joint distributions for Q
X
 which are weakly continuous in x (for

any choice of n, n , and t ) . This easily implies continuity of

E
Q ( x )

f f o r t h e f
 of (1.6) so the proof is complete.

n n

As seen above, both the Feller property and the Ray property are

essentially special cases of Assumption 1.6. It is thus of interest to

note that (at least formally) the later is much more general than either

of these. According to Corollary 1.10, if g
k
 e b(E) is any sequence

such that the monotone linear bounded closure of {9^} ^
s
 all °f b(E)

then the topology on H generated by E f for all f = / e g (X )ds,

n n r k s

0 < r rational, 1 < k, will satisfy the requirements i) and ii) of

Assumption 1.6. Hence one need only find a Q(x) continuous in such a

topology to obtain the conclusions of Theorem and Corollary 1.9. Moreover,

since the g involve only the σ-field E (and not the topology of E ) ,

one is now free to change the topology of E provided that X may still

be assumed to have right-continuous paths with left limits. Therefore,

rather than starting with Assumption 1.1, we could just as well assume such
Q(X

t
)

a continuity of E f . This leads to the following statement.
n

THEOREM 1.12. Let (Ω,θ ,F°) be the space of Lebesgue measurable

(E,E)-valued paths
 x

t
M = w(t) , t > 0, with the σ-fields F° augmented

to include
 σ

( /
Ω
 f(

χ
 ) dτ, s < t, f β b(E)) . Suppose given P on F

and a probability kernel Q(x,S) satisfying (1.3). Let g £ b(E) be any sequence

having monotone linear bounded closure b(E), and let f be an

r
oo - s

 n

enumeration of the random variables j ^ e g ( X ) d s , 0 < r rational,
1 < k . Suppose that the family h (x) = E ^ ^ f generates the σ-field E,

~ n n

and that the processes h (X ) are P*-a.s. right-continuous with left

limits, where P* is P-outer-measure. Then the conclusions of Theorem

and Corollary 1.9 hold when (Ω,θ , F ) is replaced by the space of right-

continuous paths with left limits in the topology on E generated by the

h (x), and when P is transferred to this space.

n
 r

FINAL REMARKS. Such a P on F is induced through completion by any

progressively measurable process. For 0 < g the processes
—+-

e
 h

n
(

χ

t
)
 a r e

 measurable supermartingales with respect to F° and P,

as seen by a familiar computation. Hence the martingale convergence

theorems can be used to aid in checking the right-continuity with left

limits. The question is simply whether, by making a standard modification

of X , the martingale right-limits along rational t can be evaluated by

substitution of X
fc
 in h

n
 . It is important to note that this is always
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possible if we permit the standard modification to take values in H

instead of just in E (regarded as a Borel subset of H through

identification with its image by the mapping Q ) . Thus by (1.3) the

limits along rational t may be evaluated a.s. at each t by

p
substitution of X . Letting Z denote the general prediction process

t t
on Ω (see Section 1 of Essay I) we may assume without loss of generality

p
that for each r in a countable dense set P{X = φ(Z )} = 1 . Then if

p
we replace X by Z whenever this evaluation fails, and then replace

P P P

Z by φ(Z ) whenever Z e Q(E), we get a standard modification of X

with values in E U (H-Q(E)) which satisfies the conclusions of Theorem

and Corollary 1.9.

It is also of interest to note that for Theorem 1.12 one need only

assume (1.3) relative to F . Then the familiar "Hunt's Lemma" argument
showsthat the h (X ) are in any case conditional expectations relative

n t

to F° , and therefore Q(X ,S) satisfies (1.3) relative to F? . The

analytical question of giving conditions on a semigroup P under which,

for any corresponding Markov process, F and F are equivalent, is

dealt with at length in Englebert (1978). Here it has been implicitly

assumed (see the second remark after Definition 1.3).
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