
ESSAY I. INTRODUCTION, CONSTRUCTION, AND FUNDAMENTAL PROPERTIES

0. INTRODUCTION. In this first essay, our subject is introduced in a setting

general enough to cover its uses in the remainder of the work. Then the

fundamental properties and results needed later are developed and proved

from scratch, making only minimal use of the "general theory of processes,"

as presented for example in C. Dellacherie [5]. In the later material,

which prepares the method developed here for application in various more

specialized situations, it is inevitable that there be more reference to,

and reliance on, the results of the Strasbourg school as developed in

Volumes I-XII of the Strasbourg Seminaire de Probabilites [14], in

C. Dellacherie [5], in C. Dellacherie and P.-A. Meyer [4], and in R. K. Getoor

[8]. Yet it should be emphasized that the prediction process is not simply

another chapter in this development. Rather it is a largely new method. It

could be developed in the framework of the above, but whatever would be

gained in brevity and completeness would be offset, at least for the reader

who is less than fully familiar with the Strasbourg developments, by the

prerequisites. Consequently, we have tried to proceed here in such a way

as to be understood by the less initiated reader, and yet not to be

considered infantile by the initiated. For the reader who is familiar with

the Strasbourg work, and wants to get an idea of what the prediction process

means in that setting, the second essay below may be read as an introduction.

It does not depend on the more general theory to be developed. The aim here

is not to incorporate the prediction process into any general theory of

stochastic processes, but to develop it as an independent entity.

Having gone this far in setting our work apart from that of the

Strasbourg group, we must hasten to give credit where due. In the first

place, the present work borrows unsparingly from the papers of P.-A. Meyer

[12], of M. Yor and P.-A. Meyer [13], and of M. Yor [15], on the technical

side. The proof of the Markov property of the prediction process, which

was difficult (and possibly incomplete) in Knight [9], is derived in these

papers from a stronger identity holding pathwise on the probability space,

and we follow their method. Again, the very definition of the process in

[12] avoids the necessity of completing the σ-fields (until a later stage),
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and we adopt this improvement. The measurability of the dependence of the

process on the initial measure, too, is due to these authors. On this score,

we have not hesitated to profit from their mistakes, as described in [12]

and [13]. Further, the basic role of the set H of "non-branching points"

is due to P.-A. Meyer ([12, Proposition 2]). Finally and perhaps most

importantly, we adopt a new idea of M. Yor [15] to the effect that one need

not only predict the future of the specified process in order to get a

homogeneous Markov process of prediction probabilities. One may just as well

predict the futures of any countable number of other processes at the same

time. The only essential precondition is that the future of the specified

process (the process which generates the "known past") must be included in

the future to be predicted. This, in our opinion, places the prediction

process of [9] into an entirely new dimension.

Meanwhile, in regard to our use of the Strasbourg ideas and formalism,

we would emphasize the distinction between σ-fields on a probability space,

such as F , F etc., and σ-fields of a product space in which time is one

coordinate, such as the optional or previsible σ-fields. It is often very

convenient to use σ-fields of the latter type, and for a complete under-

standing of many results, they are probably unavoidable. On the other hand,

while σ-fields of the former type are needed to express the state-of-

affairs as it actually exists at a given t, σ-fields of the latter type

are needed rather to define various kinds of processes, usually as an

auxiliary, and they can always be circumvented at a cost of sacrificing some

degree of completeness. Thus, one will not go essentially wrong in the

present work, if one substitutes right-continuous and left-continuous

adapted process for "optional" and "previsible" process, respectively, and

limit of a strictly increasing sequence of stopping times for "previsible

stopping time". In particular, while the section theorems are used freely

in establishing results for all t, no use is made of the corresponding

projections of a measurable process, although they are heavily implicated

in the results.

To give a general preview of the applications treated in subsequent

essays, some of them (such as the Le"vy system of a martingale) may be stated

without any reference to the prediction process, and when possible such

formulations are included. For these, the prediction aspect is needed only

for the proofs. For most results, however, the prediction process is a

necessary part of the formulation of the idea or problem involved. The

central purpose is thus to elaborate, and by implication more or less to

phase in, the prediction process as a feature of the general theory of

stochastic processes. Once the reader becomes adept at thinking in terms
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of this process, other applications will suggest themselves immediately

according to the context, or so we have found. For example, very little is

done here in the way of using the prediction process itself in the manner

of probabilistic potential theory. In this way, many stopping times of the

given process would become first passage times of the prediction process,

but the interconnection of the two processes remains largely unstudied. It

might be of interest to follow such a direction farther. Even less (if

possible) has been done in connecting the present work with stochastic

integration, a medium in which the author is not highly proficient.

Accordingly, such matters are left aside in favor of applications in which

we can feel confident at least that a correct beginning has been made.

1. THE PREDICTION PROCESS OF A RIGHT-CONTINUOUS PROCESS WITH LEFT LIMITS.

We use the following standard notation for measurability.

1) If F and G are σ-fields on spaces F and G, a random variable or

function X : F •* G is V/G - measurable, or X e f/G, if X~ (S) e F

for S e G, and when X is real or extended-real valued and G is

the corresponding Borel σ-field, we write simply X £ F .

2) b(F) denotes the bounded, real-valued, F - measurable functions;

b (F) denotes the non-negative elements of b(F) . Further, we

denote the extended real line [-
00
, °°] by R, with Borel sets B

and the product space (X R, X B) by (R , B ) .
n=l n

=
=l oo oo

We begin with the following measurable space.

DEFINITION 1.1. Let Ω denote the space of all sequences

w(t) = (w
1
(t), w

2
(t),...,w

n
(t),...) of right-continuous extended-real-

valued functions of t > 0, with left limits for t > 0 . Let G°

denote the σ-field generated by all w (s), s < t, n > 1, and let

F denote that generated by all w
o
( s ) , n > 1, so that F° c 6° .

"t 2n t t
We set X = (w

2n
(t),n > 1) on Ω, and F° = V F°, G° = V Go .

 τ h u s

oo
X has right-continuous paths with left limits in X R with the
t n=l 2n

product topology. Finally, we set θ w(s) = w(t + s) on Ω, and denote

by P a fixed probability on (Ω,G°) .

Before going further, we give a brief rationale for selecting this as

the initial structure. In setting up a prediction process, we require

basically
1
 two things. The first is a process which generates the

conditioning σ-fields (in this case, the process X ) and the second is

a definition of the futures which are to be predicted (in this case,

θ. G°), which must contain those of X (namely θ"
1
F°) . Once we define

the process X and the futures θ G°, there may be some latitude as
t t
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to exactly how these futures are to be generated, but it seems to be necessary

that they be generated by processes in order to write then with shift

operators in the form θ" G° . This being granted, the remainder of our

set-up represents a compromise between the more general assumption of [9],

where X was only a measurable process, and the more familiar requirements

of the applications, in all of which X is right-continuous with left

limits (abbrev. r. c. 1. 1.). Since X is assumed r. c. 1. 1., it is

logical that the "unobserved" processes ^ n - i ^
 n
 -

 l r a r e a l s o r c l β 1 #

It should be pointed out that the choice of real-valued processes is

only a matter of convenience. If the actual process has values in a

locally compact metric space, or even a metrizable Lusin space (horaeomorphic

to a Borel subset of a compact metrizable space) we can obtain the above

situation by considering the processes composed with a sequence of

uniformly continuous functions separating points. Similarly, if the

actual process X is real-valued, we may take
 p

ί
w

2
 It) = 0, n > 1} = 1

and replace Ω by the corresponding subset, and so forth. It is easy to

see that our set-up is P-indistinguishable from the canonical space of

right-continuous paths with left limits in the product of any two

metrizable Lusin spaces, but we prefer the more explicit situation.

A property of (Ω, G°) which is needed in setting up the prediction

process is the existence of regular conditional probabilities, given any

subfield. For this it is of course sufficient that (Ω, G°) is the Borel

space of a metrizable Lusin space, i.e., a "measurable Lusin space" in the

language of Dellacherie-Meyer [4, Chap. Ill, Definition 16]. There are

many different topologies under which the present (Ω, G°) becomes a

measurable Lusin space. It suffices to write Ω = X Ω , then to give
n

=
l n

each Ω a Lusin topology as (a copy of) the space of all extended-real-
n

valued right-continuous paths with left limits, and finally to give Ω

the product topology. In the present work, we specialize on one particular

such topology, a transplant to the present context of the one used in

Knight [9]. This turns out again to be quite natural, and to have some

rather unique advantages. In brief, this is the topology of scaled weak

convergence of sample paths. This topology is metrizable in such a way that

the completion of Ω is the space of all sequences of equivalence classes of

measurable functions (with respect to Lebesgue measure). The completion is

then a compact metric space, which we denote by Ω, and Ω is embedded in

Ω as a Borel subset. For some purposes, Ω is a more natural space than

Ω, and a few results will concern Ω explicitly. The prediction

process can be constructed on Ω in complete analogy to Ω, but for

simplicity we leave this to the reader (see also [9] and [12]).
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Before beginning the construction, one more remark on its essential

nature may provide orientation. It it generally accepted that a stochastic

process, in application, is a model of a phenomenon which develops

according to laws of probability. But there is no such agreement as to

the nature of probability itself. Some authors (including such renowned

figures as Laplace and Einstein) seem to have doubted that probability even

exists in an absolute physical sense. However, it seems unlikely that

anyone can doubt that probability does exist in a mental sense, as a way

of thinking. If only because one does not know the entire future, it is

clear that probabilistic thinking is an alternative possible procedure in

many situations. Indeed, it may be the only one possible. Consequently, it

can scarcely be doubted that stochastic processes do exist in some useful

sense, if only, perhaps, in the minds of men. Furthermore, even if

objective probabilities do exist entirely apart from subjective ones, it

cannot be considered unimportant to study the more subjective aspects of

probability. As with many other branches of mathematics, one is in a

better position to make applications of probability to the physical world

once one understands fully the mental presuppositions which are involved in

the applications. Indeed, a large part of mathematics consists precisely in

cultivating and developing the necessary mental operations, and one of the

fundamental requirements for knowing how to apply mathematics lies in

distinguishing what is a physical fact from what is only part of the mental

reasoning. Thus, in stochastic processes as elsewhere in mathematics, it is

important and useful to understand what one is doing mentally.

Coming, now, to the case of the prediction process, in much the same

way as the probability distributions govern the development of a stochastic

process, so the prediction process governs, or models, the development of

these probabilities themselves. The prediction process, then, is a process

of conditional probabilities associated with a given or assumed stochastic

process. The given information will be that of the "past" (or observed

part) of the given process, and the probabilities will be the conditional

probabilities of the "future" (or unobserved part). In this way, the

prediction process becomes at first an auxiliary (or second level)

stochastic process associated with the given process. But the remarkable

advantages of the method appear only when we consider this as a process

per se, and define the original process in terms of it instead of conversely.

This last step constitutes, in a sense, the main theme of the present work.

The first step, however, is definition of the prediction process of the

given X , and this is our immediate task.
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We set p (x) = π (π/2 + arctan x) , -» < x < «>, and consider the

sequential process on Ω

Y(t) = (Y (t)) = (/* e~
S
p(w (s)) ds, 1 < n) . Since

n ' O n ~

d Y (
^

}
 = (e^pίw (t)), 1 < n) it is clear that {Y(s) , s < t}

dt
+ n

generates the σ-field G°_ = V
 <
 G° . In fact, the same is true of

{γ(r), r rational, r < t}, since the right derivatives at the rationals

determine the right-continuous functions p(w (s)) . In particular, G is

generated by Y(r), r rational, and hence by the countable collection of

random variables Y (r) = JT e
 S
p(w (s)) ds . This countability is

essential to the method, which relies on martingale convergence a.s.

("almost surely", i.e., with probability one) at a critical place. The

random variables Y (r) are analogous to those of [9, Def. 1. 1. 1], and

also to those of the set V of [13, Lemma 1].

We note that 0 < Y (r) < 1, and that each Y (t) satisfies a uniform

~ n ~* n
positive Lipschitz condition of order 1 :

: 0 < Y (t+s) - Y (t) < e s < s . In particular, convergence of
~" n n •" *"

Y (r) for each rational r > 0 is equivalent to uniform convergence.

We will be concerned with the uniformly closed algebra of functions

generated on Ω by the Y (r) . Explicitly, this may be generated as

follows. For each m > 1, let f .(x., ,x ), 1 < j, be a sequence of
~ m,j 1 m ~

continuous functions on [0,l]
m
 which is uniformly dense in the set of all

such functions. Then the algebra in question is the uniform (linear)

closure of all the random variables f .(Y-(r,)
f
—,Y (r )), for all

m, 3 J. l m m
positive rationals r,...,r, l < j , l < m . This is easily checked

l m — ~
by first fixing m and r.,..., r , noting that the range of

l m
(Y_ (r

n
), .. . ,Y (r )) is compact, and then using the uniform continuity of

11 mm
f . in conjunction with the Stone-Weierstrass approximation theorem,
m, 3
REMARK. More generally, if we enumerate the Y.(r.), and choose any
countable collection of continuous functions on the Hubert cube X _ [0,1]

n=l

which is uniformly dense in the set of all such functions, the composition

of these with the sequence Y.(r.) can replace the above particular choice.

We let U denote this algebra, and summarize the needed function -

theoretic properties as follows.

THEOREM 1.2 a) The topology on Ω generated by Cί is metrizable by the

metric d(w
a
,w

b
) = Σ 2 -

n
| | y

a
- γ

b
|
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where ||f(t)|| = sup|f(t)| . The completion of Ω in this metric is a

compact metric space Ω, whose elements are identified with all sequences

of (equivalence classes mod Lebesgue-null sets of) measurable functions

w (t) : R -*• R, with the same definition of d . With this identification,
Π
 o

Ω is Borel in Ω, and the Borel field on Ω is G

b) The map (t,w) -* θ w is continuous from [0,«>) x Ω -> Ω .

PROOF. We have already noted that convergence in the topology generated

by U is the same as uniform convergence of each Y , proving the first

assertion. On the other hand, since this convergence is equivalent to weak

convergence of each Y considered as a distribution function, the

completion is a closed subset of the space of all sequences of distributions

of mass < 1 on [0,°°) , which is compact under weak convergence by Helly's

Theorem. Hence Ω is a compact metric space. An element of Ω is given

by a sequence of uniform limits of Y 's i.e. by a sequence cκ£ non-

decreasing continuous functions of Lipschitz constant 1. Such functions

being absolutely continuous, we may identify them as integrals of their

a.e. - derivatives p(w (t)) < 1, and w (t) is identified by applying

n ~ n

P

Conversely, given any sequence w of measurable functions, the

functions P(w ) are bounded by 0 and 1 and measurable. For such

functions, convergence in the metric d is simply convergence in finite

time intervals in the weak topology σ(L .L^), i.e. convergence of

/(pw
n
(t))f(t)dt for bounded measurable f with compact support (or

equivalently, only for continuous f, which are dense in L ). The

closure of the continuous functions pw is all measurable functions

n

bounded by 0 and 1, since it contains the L -closure in finite time

intervals. Therefore, the completion includes all measurable w as

n

asserted.

Finally, an approximation by Riemann sums shows that J p(w(s))ds is

G -measurable on Ω for each t . It follows that d(w ,w ) is

G -measurable on Ω for fixed w <= Ω, and therefore the inclusion mapping

(Ω,G ) •> (Ω,G ) is Borel, where G denotes the Borel field of Ω . By

a well-known theorem [4, III, Theorem 21] it follows that Ω e G° and

G = S |Ω, as asserted.

Turning to b), we have
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p(iΛs))ds| < (e
ε
-l) J ^ e

( t
"

s )
 p (w^s) )ds

- phζ(β)))dβ|

< ( e ε - l ) + 2 t | | γ « - 1 ζ | | + 2 e .

This easily implies b).

REMARK. This topology is somewhat artificial in that it depends on the

choice of the function p . The artificiality disappears, however, if we

begin with a process Y having values in a metrizable Lusin space

E c E compact, and consider
 w

n
(t) = f (Y.) where (f^) is a uniformly

dense subset of the continuous functions on E . Then the topology of Ω

reduces to that of weak convergence of sojourn time measures

μ(t,A) = /Jj I
A
(Y

g
)ds for the process Y .

We turn now to the state space of the prediction process.

DEFINITION 1.2. Let (H, H) be the set of all probability measures on

(Ω, G ), with the σ-field generated by {h(S), S e G } as functions

on H . We give H the topology of weak-* convergence with respect to

convergence in the topology of Ω . Let P and E , h e H, denote the

probability and expectation determined over G by h .

PROPOSITION 1.3. H is a separable metrizable space, with respect to which

H is the Borel σ-field. The metric may be so defined that H is Borel

in its completion H, the compact metrizable space of all probabilities

on Ω .

PROOF. Since Ω is embedded in the compact Ω, there is a uniformly

dense sequence f in the uniformly continuous functions on Ω . The
h
 n

functions E f then induce the topology of H", which is clearly
n __ ,

metrizable with completion H . Since E f is then measurable for

continuous f, by a monotone class argument E f is measurable for

bounded, G°-measurable f . Hence h(S) = E I is measurable for
s

S & G , as asserted. Finally, since H = {h e H : h(Ω) = 1}, H is

Borel in H .

For the construction of the prediction process we introduce a fixed

sequence of continuous functions which are suitably bounded, but the

outcome is entirely free of which such sequence is used.
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NOTATION 1.4. Let 0 < f < 1 be any fixed sequence of continuous

functions on Ω whose uniform linear closure is all continuous functions.

For example, the f .(Y
Ί
 (r_),...,Y (r )) of Theorem 1.2 suffice, when

m,j 1 1 m m
extended by continuity to Ω . We also need

LEMMA 1.5. For λ > 0, and bounded measurable f > 0, the expressions

f (t) = e~λtEh(/°° e~ λ s f θ d s l F t } a r e p h - s u P e r m a r t i n 9 a l e s i n

t for every h ^ H .

PROOF. This i s a familiar computation, due to G. Hunt.

A f 11 -L. «. U.

-λ(t-+ t_)1 2 h . r°° -λs _ Λ , I rO= e E (J e f θ ds |F )
1 2 s 1

-λt_ , -λ(t

^ Q
 2

In order to use martingale convergence with Lemma 1.5, we first choose

for each rational r > 0 a regular conditional probability W (S), S
 e
 G ,

of θ S given F . In fact, we choose W to be H x F measurable

r * r r r

in (h,w) as is possible by a well-known construction of J. L. Doob

(using the fact that F° is countably generated — for the method, see

also Theorem 1.4.1 of [9]). Thus we may be more precise in Lemma 1.5 for

f = f by setting

,. /

and we now assume this particular choice.

Next, we prepare one more lemma.

LEMMA 1.6. For any t > 0, h e H, and w e Ω, existence of the limits

along the rationale r

lim f (r)
λ,n,h

for all n and all rational λ > 0 is equivalent to the existence of

lim W
h

r

in the topology of H .
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PROOF. By definition of the weak-* topology, existence of the last limit

is equivalent to that of

w
h

lim E
 Γ
f

for all n . Now by Fubini's Theorem we have

f, , (r) = e f e E
 r

(f θ )ds ,
λ,n,h

 J
 0 n s

w
h

r

and by Theorem 1.2 b) we know that E (f θ ) is continuous in s,

uniformly in r . Clearly it is bounded by 1 . Thus f_ __ (r) is

λ,n,n

uniformly continuous in λ > ε > 0, uniformly in r, for each n and

Convergence of f̂  v,^
 a s r

 "*"
 t +
 ^

o r a
^ λ > 0 implies, by the

continuity theorem for Laplace transforms, convergence of the measures

h
W

r
f

n
θ )ds .

s
(E

By a simple use of equicontinuity of these densities in s, this is

equivalent to convergence of

w
h

E
Γ
 f θ

n s

for each s . But at s = 0 this implies convergence of w in H, as

n varies. Conversely, since each f θ is continuous on Ω,

convergence of W implies that of

w
h

E
 r
 f θ

n s

for each s . Hence by the dominated convergence theorem, we obtain the

existence of limits of f
Λ
 , (r) and the proof is complete.

We can now give the definition of the prediction process for fixed

h e H .

DEFINITION 1.6. Let T = sup{t : for 0 < s < t the limits

W , = lim W both exist and are in H} . We define the prediction
s± , r

r-*s±

process of h by
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lim W
h
 on {t < T }

i on {t > T }
— h

In discussing optional and previsible stopping times, it is

convenient to use the σ-fields F consisting of F augmented by all

h-null sets in the h-completion of F° . Furthermore, there is no loss of

generality in the following theorem to assume 0 < T < °° for previsible

stopping times T, since we may replace any T by T = T Λ n on { τ > θ }

and T = n on { T = θ}, and let n •+ °° (on { T = 0} the corresponding
n

form of the assertion is trivial).

THEOREM 1.7. a) For h e H, P {T, = °°} = 1, and Z^ is F° -measurable

n t , t+

for each t . It is right-continuous, with left limits Z in H except

perhaps at T < °°, and it is H X B X F measurable in (h,t,w) .

b) For every F -optional stopping time T < °°, we have

(1.7b) p N θ ^ 1 s l F τ + ) = Z T ί S ) ' S e G° '

c) For every F -previsible stopping time 0 < T < °° we

have

(1.7 c) p
h
(θ

τ

1
 S|FJ_) =

 Z
J_(S) , S e G° ,

where we set Z = h if the left limit at T < «> does not exist.
Ή

d) The processes Z and Z are respectively

F
t+
-optional and F -previsible, and either of these facts together with

(1.7b) or (1.7c) respectively, determines Z^ or Z uniquely up to an

h-null set for all t > 0 (> 0 if we set ZQ_ = h) .

REMARKS. It follows from [4, VI, 5] that z£ is even F°
+
-optional .

PROOF. By Lemma 1.6 and the classical supermartingale convergence

theorem of Doob (continuous parameter version) we know that

P {lim W = W exist for all s} = 1 . Unfortunately, there seems to be

r+s±
 r S

"

no way to deduce from this that the limits are concentrated on Ω (hence

are in H) except by first proving parts b)-d) for W
 +
 in place of

Z
 +
 (this is the price we pay for using Ω instead of Ω) . Accordingly,

let T be any finite F -stopping time, and let T = (m+l)2~ on

{m2~
k
 < T < (m+l)2~

k
} for all m > 0, as usual. Then by Theorem 1.2 b ) ,

and martingale convergence of conditional expectations, we have



12 FRANK B. KNIGHT

(1.8,

liπ. E X e"
λs

 fn
 θ ds|FΪ >

k-*» k k

;

= lim E
 k

(/£ e"
λ s
 f

n
 • θ

g
ds)

= E
W > Γ +

 Γ e-
λ s
 f θ ds .

J
 0 n s

By monotone class argument using linear combinations of the f , it

follows that W defines a regular conditional probability on θ G

given F , and in particular W (Ω) = 1 a.s. Since

W (set Ξ o where it does not exist for all t) is F -optional, the

optional section theorem [4, IV, 84] shows that P
h
{w (Ω) = 1 for all t}

= 1 .

Turning to W , let 0 < T < °° be an F -previsible stopping

time. By [4, IV, 71 and 77] this is equivalent to the existence of an

increasing sequence (T ) of stopping times with T < T and

lim T = T < °° . Then by (1.8) and Hunt's Lemma [4, V, 45] we have
k
-*x> *

= E
V
 Γ e"

λs
 f θ d. .

Ό n s

But by [4, IV, 56 b) and d)] we have V F = F , and so by monotone

k

class argument VC_ defines a regular conditional probability on

θ G given F . Since W (set = 0 where it does not exist for all
T , T t

t) is F -previsible, the previsible section theorem [4, IV, 85] shows

that P
h
{w£_(Ω) = 1 for all t > 0> = 1 .

Combining the above results, it follows immediately that

P
h
{τ = °°} = 1 and we have (1.7b) and (1.7c). It is clear that T, is

π n
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even an F° stopping time, and obviously Z is right continuous, with

left limits except perhaps at T
h
 < °° . It now follows by [5, IV, T 27]

that Z is F -optional. To see that Z is F -previsible it

suffices to note that it is a measurable process h-equivalent to the

previsible process W , since F contains all subsets of h-null

sets. In view of the two sections theorems, this completes the proof of

d). Finally, the joint measurability assertion in a) follows from the

H x F°-measurability of W*
1
 since I (t) is H x 8 x F°-measurable

r r I u,T

and

z
t
 = w

t+
 I
[o.τ.)

 + h x
[τ. ,«)

n h

In fact, for later use we may state

COROLLARY 1.7. For ε > 0 and t > 0 , Z is H x 8 x F° -measurable

s [ 0, t J t ε
on 0 < s < t , where 8 , are the Borel sets of [0,t] .

~ ™ LU, tj

REMARK. This follows immediately by the same method, since

"Λ.
 I
rn m A / . ^ n

 i s
 F° -measurable for each s . It does not follow,

S+ LU,1 Λ (t+b } t+c-

however, that Corollary 1.7 holds if F is replaced by F

t+ε t+ ,

We next examine how to recover the process X = (w
o
 (t)) from Z

, t 2n t

In principle, this is possible because Z {(w. (0)) = X } = 1 for each

t 2n t

t, h-a.s.

DEFINITION 1.8. Let a mapping from H into R^ be defined by

φ(h) = (p"
1
(E

h
 P t w ^ t O ) ) ^ <

 n
 -

It is easy to see that φ(h) is K/B^-measurable. Now we have

THEOREM 1.9. For h ̂  H,

P
h
{φ(z£) = X for all t > θ} = 1 .

PROOF. Since φ is a Borel function and the components of X are right-

continuous, both sides of the equality are F -optional. By the usual

section theorem, it suffices to prove that for each optional T < °° we

have P {φ(z£) = x } = l . But for n > 1, by Theorem 1.7 b) we have

P
(w

2 n
(τ)) = E

h
(p(w

2n
(0)) θ

τ
|F£

+
)

= E
 T
 P(w

2n
(0)) , P

h
 a.s.

Applying p to both sides, we obtain the identity for the components of

X , completing the proof.
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REMARK. It follows in particular that {z , 0 < s < t} generates a

h S "~ ~"

σ-field whose completion for P contains that of F° . Consequently,

by Theorem 1.7b), for any 0 < s < — < s and B_ , ,B e B , we have

— — — n l n °°

easily

ίw(s
k
) *B

k
}|z^, β < t) .

But then, by obvious monotone extension, we have P (s|F ))

P (s|z , s < t) , S e G° . Gence it follows that the augmentation of

σ(Z
h
, s < t) by all P

h
-null sets is F^ .

S t +

We turn now to a basic homogeneity property first proved by

P.-A. Meyer and M. Yor ([12] and [13]), which is also the key to their

proof of the Markov property of Z . The proof we give is new in that

it avoids Theorem 1 of [13], which was in the nature of an amendment to

[12].

Here and in the sequel, we will use where convenient the following

abbreviation. h

NOTATION 1.10. Let Z^f denote E
 t
f .

THEOREM 1.11. For each h and F° -stopping time T < «>,
 w e

 have

z

z
τ+t

 = z
t "

 θ
τ
 f o r a 1 1 t

 - °'
 p h
 "

 a s

where θ on the right does not apply to the superscript Z (w)

PROOF. We first observe that, for f e U, Z f and

are right-continuous in t . Therefore, to prove Theorem 1.11 it suffices

to show that these are equal for all f in the sequence (f
n
) of

Notation 1.4 and t in a countable dense set {t > 0} such that, for

h h

each n, Z f is continuous at t = t , P - a.s. Such t exist

since Z
m
 f is r.c.1.1. in t . Thus Z

m
 is continuous at t = t. ,

T+t n T+t k

P -a.s., and since T + t is previsible Theorem 1.7a), b) show that

F
τ
 _ and F differ at most by P -null sets. Since we have

k k

F
° cF° c F°
T+t, - T+t, T+t, +

k k k

F may be included in this equivalence.

k
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Next, we note that for any t the two sides of Theorem 1.11 are

F° -measurable. The left side is clearly so. As for the right side, by

Corollary 1.7, for each t and ε > 0, Z is (tf x F
τ ε

) / ^ ~ measurable

and θ is F° ./F? - measurable, whence by composition Z θ_ is
T T"ί*ε Ί"t 11 ε -u _

(tf x F° )/H - measurable. Si

composing again it follows that

- measurable. Since also Z is F /tf - measurable, by

θ
τ

is F° - measurable, and thus F - measurable. Since
T t ε j?tτ

F , = F the proof of Theorem 1.11 is thus reduced to showing
T+t

+
 T+t, ,
k k

(1.10) E
h
(Y z£ f) = E

h
(Y(Z

 T
 f) θ )

for each Y e b(F^
+ t
 ) and all f e {f^} used above.

To prove (1.10) we need two simple lemmas.

LEMMA 1.12. F is contained in the σ-field F generated by all Y of

the form

Y = (b θ
τ
)g , g e

 b
(F°

+
) , b e

 b
(F° ) .

k

PROOF. It is easily seen from Galmarino's Test [4, IV, (100)] that

F
T+t

 i s
 9

e n e r a t e d b
y

 t h e
 stopped process X

( τ + t ) Λ g
, 0 < s . Hence we

k k

need only show that for each s this is in the σ-field F . Clearly we

have F°
+
 c

 F γ
, X

g M
, e F°

+
, and T e

 F
°

+
 . Hence X

s Λ T
 I ^

< τ }
 * F

γ
 .

Now we have

(s Λ T on {s < T}

T +((s - T) Λ t ) on {s > T}

hence it remains only'to consider the case s > T . Letting T = j 2"
n
 on

{j2~
n
 < T<(j+l)2"

n
}, 1 < j, we have

I X
{s>T} T+(s-T) Λ t

- i
{ s > τ }

 <"»

For each n, we can write
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X
T + ((s-T ) Λ t )

 X
 . -n

 Θ
T

n iζ. \ S
—
π ^ / ^ t

k

on {T = j 2
 n
 < S } , which is in F . Then it is easy to see that the

n Y

above limit on {s > T } in F , completing the argument of the Lemma.

REMARK. In fact we have F° = F , as is easily checked, but not needed

k
below.

The class of finite linear combinations of Y having the form stated

in Lemma 1.12 is closed under multiplication, hence it suffices to prove

(1.10) only for Y of this form. Then assuming Y = (b θ ) g, and

writing t for t , by Theorem 1.7b) we have

(1.11) E
h
(Y z j

+ t
 f)

θ
τ + t

|F°
( τ + t ) +

»

= E
h
(gE

h
((b θ

τ
)(f

E
h
(gE

 T
(b(f θ

t
)))

= E (gE (b E (f ΘJF°
+
)))

z
h
 z

h

h T T
= E (gE (b Z^f)) .

To go from here to the right side of (1.10) we need to reintroduce a

conditioning by F on certain occurrences of w . To justify this, we

have

LEMMA 1.13. Let K(w ,w ) be a bounded, F° x F° - measurable function.

Then

E
 T
 K(w,w

2
) = E

n
(K(w,θ

τ
w(|F°

+
)

for P -a.e. w, where the expectation on the left is with respect to w

over Ω .

PROOF. By linearity and an obvious monotone class argument, it suffices to

prove this for K of the form K ^ w ^ K
2
(w

2
), K

χ
 e b(F°

+
) , K

2
 e b(F°) .

Then K (w) factors out on both sides, and the result follows by Theorem

1.7b).
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We now apply Lemma 1.13 to the last expression in (1.11) with

K ( W
1 '

W
2

) =
 9

( w
l

} b
<

w

2

) ( Z
t

 f ) ( W
2 * *

This is justified by composition of Z^ f(w), which is H x F - measurable,

with Z , which is ^
+
/ ^ " measurable. We obtain

(1.12)

2
Ϊ

( W )

= E
h
(E

 T ( g ( w ) b
(

W
2

) ( Z
t

 f ) ( w
2

) } )

Z
h

= E
h
[E

h
((b θ )g (Z.

T
f) Θ_)|F° )]

h
 z
ί

= E (Y(Z f) θ )

proving (1.10), and hence Theorem 1.11.

It is now easy to deduce that the processes Z are all strong

Markov processes with the same Borel transition function. One may describe

this as the "intrinsic Markov property." When considering Z as h

varies we frequently write z in place of h .

DEFINITION 1.14. We set

q(t,z,A) = P
Z
(Z* ^ A) , z * H , 0 < t , A e H .

Since Z (w) is H x F° - measurable, we have by Fubini's Theorem

q(t,z,A) 6 F for fixed (t,A) . Further, by right-continuity in t,

q(t,z,A) e 8
+
 x H for fixed A & H .

THEOREM 1.15. As processes with state space (H,H) and σ-fields F° ,
•U tx

the Z , h
 fc
 H, are strong-Markov with transition function q .

PROOF. Let T < «> be an F^
+
 - stopping time. Then by Theorem 1.11

and Lemma 1.13,

z
h
 z

h

T T
P (Z t A)

q(t,Z^,A) , A e H

as asserted.
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Using Theorem 1.15, it is surprisingly easy to obtain a remarkable

result of P.-A. Meyer [12] concerning the set H of "non-branching points"

DEFINITION 1.16. Let H
Λ
 = {z e H : P

Z
{Z

Z
 = z} = 1} and let fL denote

υ o u

the intersections of sets in H with H
Q
 .

Clearly H e H, and H
Q
 is its topological Borel field. We

will see that H is an alternative state space for Z
fc
 .

THEOREM 1.17. For h e H, P
h
{z£ e H

Q
 for all t > 0} = 1, and for

h
 G
 H the processes Z comprise a Borel right-process on H

Q
, in the

sense of Meyer.

PROOF. The second assertion follows immediately from the first and the

definition of a right-process (see Getoor [8, (9.7) and (9.4)]) since

the Z are right-continuous, P { Z = h} = 1 on H , and q is Borel.

The first assertion is really a familiar consequence of the strong

Markov property. To prove it, we introduce momentarily for fixed h e. H

a canonical version (P,Z ) of Z on the space of r.c.1.1. paths with
Z

values in (H,H), and let θ denote the usual translation operators, and
P
F the usual right-continuous, P-augmented σ-fields on this space. Of

course by Theorem 1.15 this makes sense, and Z remains a strong-Markov

process on this space, with transition function q . Also, Z is

F - optional, hence by the section theorem it suffices to show that for

optional T < °°, p{z € H } = 1 . But since Z θ^ = Z and Z is

Fψ./H - measurable, the strong-Markov property implies

p { z
τ
 e H
o

}

= 1 ,

which completes the proof.

REMARK. Usage of this sample space is introduced systematically in the

following section. Here it was used only for notational convenience,

because we do not have Z * θ = Z .

We turn finally to the "moderate Markov property" of the left-limit

processes Z , t > 0, in the terminology of Chung and Walsh [2]. This

was anticipated by Theorem 1.7 c), and provides a "practical" form of

the Markov property in the sense that it can be applied without knowledge of

the future (unlike Theorem 1.15).

THEOREM 1.18. For h ^ H, let T be an F - previsible stopping time

with 0 < T < oo . Then for t > 0 and A e H,
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ϊ l
F
i 4-'

A)
 '

 ph
-
a s

PROOF. By [4, IV, Theorem 78] there is an F - previsible stopping time

T° equal P - a.s. to T, and it suffices to prove the assertion for

T° . Further, by [4, IV, Theorem 71] we can as well assume there is an

increasing sequence T < T , P {lim T = T } = 1 . We may replace T

n
-xx>

by lim T in proving the assertion, and then F = V F , where the

it*»
 n
 T^ n T°

n

T° are F - stopping times [4, IV, Theorem 56] . Again by [4, IV,

Theorem 78], F and F differ only by P -null sets, so it is

T- T-

enough to prove the result conditional on F° . In short, we have shown

T-

that the entire assertion is equivalent to that obtained by replacing T

_o
by a strict limit of an increasing sequence of r - stopping times, and

v»
might as well have been so formulated (except for the fact that F - stopping

times are needed in applications).

We need to use the analogue of Theorem 1.11 for previsible stopping

times.

LEMMA 1.19. For h 6 H, and F° - previsible T with P
h
{0 < T < «} = 1,

we have

z
τ+t

 = z
t ~ '

 θ
τ
 f o r a 1 1 t

 - °'
 p h
 "

 a
'

s

PROOF. As for Theorem 1.11, the problem reduces to showing the analogue of

(1.10) with Y, f, and t as before:

(1.13) E
h
(Y Z^

+ t
 f) = E

h
(Y(Z

t

T
"f) θ ) .

To do this, we need only apply the analogues of Lemmas 1.12 and 1.13. The

latter is proved just as before, and we have

Z
t -

( w )
 h

E K(w,w
2
) = E (K(w,θ w) |F ) ,

for F
τ
_ x F - measurable K(w ,w ) . As to the former, where g e b(F° )

is replaced by g <= b(F
τ
_), the same proof applies except that we must

use the familiar fact that T e F for previsible T . Then we write

i s Λ T on {s < T}

T +((s-T) Λ t ) on {s > T}
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where X I
r
 \ = X

I
/ ^ \

e
F (by definition of F ) . For

s Λ T is < Tj s is < Tj T- T-

the second case, there is no change on {s > T} . Finally, on

{s = T } we have X I
r
 -, = (X_ θ ) I

r
 -,, which also has the

s is=T} 0 T {s=T}

required form.

We now apply the two lemmas, along with Theorem 1.7 c), replacing

F and Z by F and
 z

τ
_'

 t o
 obtain first the analogue of (1.11)

and next the analogue of (1.12). This then completes the proof of Lemma

1.19.

To complete the proof of Theorem 1.18, one need only apply Lemma 1.19

and the analogue of Lemma 1.13 to obtain

, z
h

Z 7

P (z
t
 6 A)

completing the proof.

2. PREDICTION SPACES AND RAY TOPOLOGIES.

As already became apparent (in the proof of Theorem 1.17 for example)

it is a technical obstacle to have to define Z separately for each z .

Furthermore, in view of Theorems 1.9 and 1.15 it is an unnecessary

obstacle. We have X = φ(Z ) for all t, except on a fixed set

N & F° with P
Z
(N) = 0 for z & H . Thus we are free to transfer the

Z to a more convenient sample space, and study X in terms of Z instead

of conversely. This leads to the following concepts and definitions.

DEFINITION 2.1 1) The prediction space of (Ω,G°,F° ,G° ,θ ,X ) consists

t+ t+ t t

of (Ω. 7 ,Z ,Θ.Z ) where
Δ t t t
i) Ω is the set of all right-continuous H -valued paths

Z 0
w (t), t > 0, with left limits w (t-) in H for t > 0 .
z Z

ii) Z° is the σ-field generated by {w (s) , s < t}; Z° = V Z° .

5 z
 t

iii) θ* : Ω^ •> Ω_ is defined by θ w (s) = w(s+t) 0 < s,t .
t Z Δ t Z Z ~"

iv) Z (w ) = w (t) , 0 < t .
t it Δ

2) The prediction process (without specification of a fixed

probability) is the canonical process Z on prediction space with

transition function q(t,z,A), as justified by Theorems 1.15, 1.17, and

1.18. Thus, Z is a strong Markov process and Z is a moderate Markov

process on H ("process" being meant in the sense of E. B. Dynkin [6]),
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and it is a right-process on H when considered only for initial

distributions concentrated on H . In both cases, we have the same

augmented right-continuous σ-fields Z containing all P*
1
 - null sets in

the P^ completion of Z° for all permissible μ, since by right-

continuity of path at t = 0 every μ on H indices a \χ^ on H
Q

with P^ = P ° . Finally, in view of Definition 1.8 and Theorem 1.9, for

each h e H the processes (φ(Z ),Z ) are jointly P -equivalent in

distribution to (X ,Z ) , and both components are P - a.s. right-

continuous with left limits in their respective topologies. It is to be

noted that we use the same notation P for a probability on either

(Ω,G ) or (Ω , Z ), the distinction being clear from the context,z
3) By a packet of the prediction process we mean a non-void

universally measurable subset U of H such that, for all h e u,

P {z £ U for all t > 0} = 1 in the sense of outer

measure. If U e H, then ϋ is a "Borel packet", while if

U c H it is an "H packet". We say that a packet ϋ is "complete"

if P
h
{z _ e u for all t > θ} = 1 for h € u .

REMARKS. Given a packet U, it is clear that U Π H is an

H
Q
 - packet, and on an H - packet Z is a right process in the sense

of Getoor [8]. But completeness may be lost in this operation, and on a

complete packet one has the moderate Markov property of Z . I n

anticipation of things to follow, we point out that starting with a process

Z
fc
, or collection of such (i.e., of P's on (Ω,G°)), it is often

possible to find a packet which contains the given process (or

processes), but little or nothing superfluous. This is beneficial in

applying the prediction process.

As a first step in the construction of packets, we prove

THEOREM 2.1. a) Given any non-void subset A c H, let R be a

z
 A

P {

z
Borel subset of H (i.e., R € H) with P {z^ 6 R for all t > θ} = 1

A h

for z e A . Then

packet, with A c

h
f o r z e A . T h e n t h e s e t H = { h e H : P { z e R , t > θ } = l i s a

A t A

A

b) For each h e H , there is a Borel packet H with

h & H c H , and further H ^ {z € H : P {z € H, for all t > 0} = l} .
n Ά n t h —

c) The packet H of a) is complete.

PROOF. Let T = inf { t > 0 : Z
fc
 e H

Q
 - R^} be the hitting time of

R on Ω . Then T is Z(=V Z ) - measurable, and for α > 0 the

h

function E (exp - αT) is α-excessive for the right-process on H

(as in [1, I, (2.8)]). Further, we have for any α > 0 H Π H =

{h fc H : E (exp -αT) = θ}, which (since the right-process has a Borel
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transition function) is a nearly-Borel set [8, (9.4) (i)]. Since we

have H = {h : q(O,h,H Π H ) = l}, it follows that H is nearly

Borel in H . Hence it is universally measurable. Also, for h e H the
z
t

process E (exp -αT) is h - a.s. right-continuous. For h e H ,

Z
 A

e E (exp - αT) is thus a positive right-continuous supermartingale

starting at 0 . Hence it is 0 for all t, and H is a packet.

Turning to the proof of b), we use a familiar reasoning due to

P.-A. Meyer. Since H is nearly Borel, for h e H there is a Borel set

, _ A , η A

HΓ with Hn c (H Π Hj and P {z e H for a l l t } = 1 . Then by the
n 1 A 0 t n l z l

same reasoning as for part a) the set Ĥ  = {z £ H : P {z e H , t > 0} = 1}
is a packet with P {z_ e w } = 1 . Similarly, we define by induction a

l o 2n—1 2n
sequence H o H D HT :> . . . such that for a l l n, H_ e H and H,

^ h 2n °° 2n
i s a packet with P {z ^ H } = 1 . Then plainly Ĥ  = Π Ĥ  =
Π R n " 1 defines a Borel packet and P {ZΛ € H°°} = 1 . Finally, we set
n n ra Oh
H = {z : P {z c H } = 1} . Then H, is a Borel packet, h e H , and if
h 0 h n h
Pz{z & H for t > 0} = 1 then obviously z e H .

t h ~ n

Before proving c), we mention two simple Corollaries.

COROLLARY 2.2. For any probability μ on H
A
, there is a Borel packet

H c H
A
 with p

μ
{z

Q
 e H } = 1, and further H

y
 ̂  {z e H : P

Z
{Z

t
 e H

for all t > 0} = 1} .

PROOF. By definition of nearly - Borel set, there is an

H
1
 c H Π H , H

1
 & H, with ^ί^

t

 e
 H

1
 for all t} = 1 . Then as in

part a) the set H = {z e H : P
Z
{z & H , t > 0} = l} is a packet,

and P
μ
{Z e H } = 1 . Proceeding by induction as in b), we obtain a

decreasing sequence H c H Π H with H
 e

 H, and H a packet
such that p

μ
{Z

Λ
 e H

 n
} = 1 . Now let H°° = ΓΊ H

Π
, and

0 μ μ n
H = {z : P {Z

Λ
 e H

00
} = 1} .

μ 0 μ

COROLLARY 2.3. For any packet K such that K fl H = H Π H , we have

K c H . Thus H is the largest packet having the given non-branching

points of H .

PROOF. For any packet K, one has q(O,z,H (Ί H ) = 1 for z € K . But

it follows by the definition of H , using the Markov property again,

that H contains all z with q(O,z,H Π H ) = 1 . Thus the Corollary

Ά A U

is proved.

REMARK. We observe that for any initial probability μ on H , an element

h of H is defined by

h(S) = / / q(O,h,dy)y(S)μ(dh)

A 0

=
 J

H
 (/„ q(O,h,dy)μ(dh)) y(S) , S e G

0 A
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where the probability in parentheses is concentrated on H Π H .

U A

Returning now to the proof of Theorem 2.1 c), for h € H let

\ c H be a Borel packet as in b). We wish to show that

Ph{Z e H for all t > 0} = 1, and we know that P {z e H for all
t- A t n

t > 0} = 1 . Now 1 (Z. ) is a Z - previsible process, and for each
Hh t- t

previsible stopping time, T, 0 < T < <», we have by the moderate Markov

property

ph(Zt e Hh for all t > τ|Z )

V
= p (Z e H for all t > 0)

= 1 .

Consequently, by b) we have P {Z e H^} = 1 . By the previsible section

theorem it follows that P {i (Z ) = 1 for all t > 0} = 1 , and so

H
h
 fc

~

P {Z e H for all t > 0} = 1 as required.

A natural question is whether, given a set A € H, there is a

smallest packet containing it. The example of a Brownian motion B (t) in

R , with A = {(0,0)}, shows however that no smallest packet need exist.

Here the points (x,y) € R correspond to points of R via the usual

P , and clearly any polar set may be subtracted from R (but no

non-polar set may be subtracted) to leave a packet. It can be shown that in

this example H is the set of all Brownian probabilities corresponding to
2 2

initial distributions μ on (R ,8 ), but the proof probably requires Ray

compactifications (see Discussion 3) and 4) of Conjecture 2.10 below).

It also should be noted that the definition of packet depends only on

the transition measures q(t,h,dz) of the prediction process, and these do

not depend on the exact choice of Z (which is not unique since it involves
•i t

the W of Definition 1.6). In short, a packet is just a continuous time

analogue of "conservative set" for a Markov chain. In the case that the

elements of A are themselves Markovian probabilities on Ω (as in the

Brownian example above) the measures q(t,h, ), h e A, are usually easy to

identify, and the appropriate packet becomes evident.

This leads to a method of finding a "nice" transition function for a

Markov process, which is the subject of the third essay. Here we can

illustrate it in a more classical case by continuing our example of

B (t) . Let B be a Borel, non-polar set in R , and consider the usual

2 2 2

killed process B.(t) = B (t) for t < T , and B.(t) = Δ for t > T
Δ B

0
 Δ

 "
 B

0
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where Δ is adjoined as an isolated point. Classically, the probabilities

p
( x
'

y )
{B^(t) e c} C e B

2
, are only known to be universally measurable in

(x,y) . Thus one obtains for B a universally measurable transition

function. However, using the prediction process it is easy to get a

transition function on a countably generated subfield of universally

measurable sets which is the restriction of a Borel transition function on a

larger space. The natural state space of B is Δ together with the

(finely open) set (B*)
C
 = {(x,y) : P

( x
'

γ )
{T > 0} = 1}, i.e., the

°
 B

0

complement of the set of regular points for B . Since α-excessive

functions for B are Borel measurable, and E (exp -αT ) is

0

α-excessive, it is not hard to show that (B ) is a Borel set, but we

need only its universal measurability. Identifying B (t) with

(w (t) , w (t)) , where Δ= C
00
,
00
) and all other coordinates are set

identically 0 for Έ> , we obtain a one-to-one mapping of

(B^)
C
 U Δ into H defined by (x,y) + pf

X
'

Y )
 Let R denote the

image in H . We have

R
Δ
 = {z € H : φ(z) e U B * )

0
 U («,«)} x X*

=3
(0,0)

ana ;

where φ(z) is the Borel mapping of Theorem 1.9, and φ«(z) denotes its

first two coordinates. Since G is countably generated, and
 P

Λ
 ^

s

universally measurable from (B ) U Δ into H, it follows by using a

generating sequence S in place of S that R is universally

measurable in H . Then the trace of H on R is mapped by φ onto a

countably generated σ-field of universally measurable sets in (
B
Q )

C
 U Δ,

and q on the trace maps by φ into the transition function of B. on the

image. In the present case, it can be shown that the image σ-field is

really the Borel field, but this seems to require in general Meyer's

hypothesis of "absolute continuity".

The theory of Ray processes (and Ray semigroups) is rather well under-

stood, and will not be developed here. We refer instead to Getoor [8] for

all of the facts we shall need. By means of the familiar compactification

procedure (to be described below) this theory may be brought to bear on any

parcel of the prediction process. Thus, it leads to a more satisfactory

form of Theorem 2.1 (Corollary 2.12), and also to an interesting open

problem (Conjecture 2.10) which is discussed in some detail. It also makes
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possible a transcription of much of the "comparison of processes" from [8] to

the prediction process setting, but some of this we leave to the reader. Part

of the material which we do cover is needed again for the fourth essay.

We start with any prediction packet which we denote by H for

convenience although A alone is unspecified and H has no reference in

A

general to Theorem 2.1. It is clear from Theorem 1.17 that Z becomes

a right process on H Π H , with the Borel transition function q (even
if H Π H is not Borel, we have for z e H ίl H , q(t,z,B) =

A U A U

q(t,z,B Π H Π H ) for B € H, where the right side is the extension to a

universally measurable set). Consequently, we may consider H ίl H as a

subset of the compact metric space H of Proposition 1.3, and form its Ray

compactification (as in Chapter 10 of [8]) relative to H, which will be

denoted by (H Π H )
The definition of (H Π KL)

+
 is as follows. Let C

+
 denote the

A 0

restriction to H fl H of non-negative continuous functions on H .

Then C has a countable subset which is dense in C in the uniform norm.

Letting R g(z) denote the resolvent of the right-process Z on
λ t

H Π H , we form the minimal set of functions containing

A 0
 +

{R g : λ > 0, g
 6
 C } and closed under the two operations:

λ
a) application of R for λ > 0 ,

λ

b) formation of minima f Λ g .

Since we have (f Λ g) + (h Λ k) = (f+h) Λ (g+h) Λ (f+k) Λ (g+k), it is easy

to see by simple induction that the set is closed under formation of linear

combinations with non-negative coefficients. Hence, it is the minimal

convex cone closed under operations a) and b). A crucial lemma ([8, (10.1)])

now asserts that this cone contains a countable uniformly dense subset.

Furthermore, the cone separates points in H ίl H
Λ
 since R does so.

+
 A 0 λ

We now define (H Π H ) to be the compact metrizable space obtained
by completing H ΓΊ H

Λ
 in a metric Σ°° . α If (z.) - f (zj I , where (f )

A 0 n=l n
1
 n 1 n 2 ' n

is uniformly dense in the cone, α > 0, and

Σ _ α(max f ) < « .
n=l n

Clearly the topology of (H Π H ) does not depend on the particular choice

of f or α . It is homeomorphic to the closure of the image of

H Π H
Λ
 in X

00
 . [0,~) by the function f(z) = (f, (z) , f

o
(z),...) .

A 0 n=l 1 2

If H is Borel, then its one-to-one image in (H Π H_) is also Borel,
A A 0

while in general its image is universally measurable [8, (11.3)].

It is now easy to see by the Stone-Weierstrass Theorem that the space

C(H Π H_) of continuous functions on (H Π H
Λ
) is the uniform closure

A 0 A 0
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of the differences g - g of elements of the cone, extended to

(H Π H ) by continuity. Letting f denote a uniform limit of such

differences on H Π H_, and f its extension by continuity to

(H Π H )
+
, we now define a resolvent on C(H Π H )

+
, by

(2.2) R
χ
 f = R^F , f G C(H

A
 Π H

Q
)

+
 , λ > 0 .

The resolvent R has the special property that it carries C(H Π H )
λ A U

into itself. Finally, one shows [8, (10.2)] that every element of the

cone is λ-excessive for some λ > 0, hence R. separates points and so
+
 λ

RΛ is a Ray resolvent on (H n U)A
 A 0

It follows by a Theorem of D. Ray that there is a unique right-

continuous Markov semigroup P on C(H η H
n
) with resolvent R. , whose

t A U λ

transition measures we denote by p(t,h,dz) . We also introduce the Ray

Space (of Z on H η H ) as in [8, Chapter 15].

DEFINITION 2.4. The Ray Space is the set

(i) = 1 } .

REMARKS. More properly, one should write ϋ
 n
 ^

 n Q c o n f u s i o n w i l l

A 0
arise. It is clear that U does not depend on λ > 0, and that it is

+
universally measurable in (H Π H ) . If H e H then U is also Borel.

A 0 A A

Three basic facts about P from [8, Chapter 15] which serve to connect

P with the prediction process may be summarized as follows.

PROPOSITION 2.5.

1. For z e H
A
 Π H

Q
 and f € c(HA Π H Q

)
+
 we have P f(z) = Q f(z) .

Thus p and q may be identified on H Π H
Q
 .

2. For z e u we have P. (I
u n u

 (z)) = 1 for t > 0 (where 5 is

A t H_||π t
A 0

defined for universally measurable functions by the usual extension

procedure).
3. For the canonical Ray process (X , P ) on the probability space

of r.c.1.1. paths with values in (H Π H
Λ
)

+
, we have for z e u

A 0 A
P

Z
{5 e H Π H_ for all t > 0} = 1 ,

t A 0

and

P
Z
{X e u for all t > 0} = 1 .

Recalling again the space H of probabilities on the compact

metrizable space Ω of equivalence classes of measurable functions, we will
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show that the Ray topology is stronger on H Π H
Q
 than the H-topology.

Hence (H Π H ) is "saturated" by the equivalence classes of elements

corresponding to the same element in H, and these classes reduce to

single elements on H Π H . Furthermore, on ϋ the corresponding

elements of H have a special form: they assign probability one to paths

which are r.c.1.1. for t > 0 . Only the right-limits at t = 0 are not

known to exist, hence the mapping does not quite have its range in H .

Nevertheless, it is sufficient to permit properties of the Ray process to

be applied to the process Z for h e H Π H
Q
 .

Turning to the details, we first characterize convergence in H by

LEMMA 2.6. A sequence h € H is Cauchy in H if and only if, for the

ticdense sequence f of Notation 1.4,
n

/ 0 exp(-βt) fn
 θ

t
 dt

is a real Cauchy sequence in k for each n and 3 > 0 .

PROOF. By Theorem 1.2 b) the integrals are uniformly continuous on Ω .

Hence our condition is clearly necessary. To prove sufficiency, we observe

by the same result that

E
 k
f θ
n t

are uniformly continuous and bounded in t, uniformly in k, for each n .

Then by inversion of the Laplace transforms (as in Lemma 1.6)

r-
 h

k
J

o
 exp(- βt) E f

n
 θ

t
 dt

we have convergence in k of

h
k

E
 K
f θ,.
n t

for each t > 0 and n . For t = 0 this reduces to convergence of

(h^) in H, as required.

Using the Lemma, we may compare the Ray and H-topologies.

THEOREM 2.7. If we have h e H Π H , 1 < k, and lim h, = z exists
JC A vJ "™ , K,

+ * • -

in the topology of (H Π H ) , then lim h = h exists in the topology
A
 ° k-*»

 K

of H . Furthermore, let h(z) denote the induced mapping: h(z) = z on
H Π H

Λ
, h(z) = h if z £ H Π H_ and (z,h) correspond as above. Then

A 0 A 0

h(z) is continuous on (H 0 HJ . Finally, for z e U we have

P
 {Z)

 {paths r.c.1.1. for t > 0} = 1 .
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PROOF. Let h e H f] H be a convergent sequence in the Ray topology,

with limit z e (H Π H )
+
 . This requires convergence of R.g(h^) for

g € C . Still more particularly,

for 0 < f e c(Ω) . Then we have

+ z

g e C . Still more particularly, let g(z) = E f (= zf in Notation 1.10)

H 7

(2.3) R.g(h, ) = E
 k
 Γ e"

λ t
 E

 fc
f dt

λ Jc u

•
 k
 /g e"

λ t
 f θ at, λ > 0 .E " • - "

λ t

Thus convergence in the Ray topology implies convergence in the topology of

5 by Lemma 2.6. Accordingly, there is a unique h(z) e H such that

h
k
 •> h(z) . Since H

ft
 Π H

Q
 is dense in (H

A
 Π H

Q
)

 +
 , the mapping h(z)

is well-defined and continuous: (H, Π H_) •+ H, and reduces to the

A 0

identity on H Π H .

We will examine more closely the case z s u . Passing to the

limit in (2.3) yields

(2.4) R ^ U ) = E
h ( 2 )

 Γ
o
 e"

λ t
 f θ

t
 dt ,

but the middle term in (2.3) is no longer well-defined in the limit if

h(z) φ H (in the context of [9], Z becomes the prediction process on

H) . However, the same limit may be expressed in terms of the Ray

process X
fc
 of Proposition 2.5, since X

t
 = h(X

fc
) on H

A
 Π H

Q
 . To this

end, we need to establish

LEMMA 2.7. For g(z) = E f, f continuous on Ω, and z e u , we have

R̂ i"(z) = E
Z
 /

0
 e"

λ t
 E

 t
 f dt .

REMARK. This was also used for [10, Theorem 2.4 d)] with incomplete proof.

PROOF. For 3 > 0, the function R
o
 FLg is 8-excessive for X , hence
p λ t

it is known [8, (5.8)] that

lim R
β
IΓg" (XJ = R

β
 £Γg"(z) , P

Z
-a.s.

t
40

 M fc β λ

Also, by (2.2) and the resolvent equation,

lim β R. R.g = lim 3 R
o
 R

Λ
g

3 H »
 3 λ

 3̂ 00
 β λ

lim (3/(3-λ))(R.g - R.g)
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and the limit is uniform on (H
A
 Π H

Q
)

+
 . It follows that limits can be

interchanged to obtain

^ = lim lim 3E
Z
 R

Q
IΓg*(X )

S+oo t-*0 3 λ t

= lim lim βE
Z
 R R g(X )

t
+0 3_oo 3 λ t

= lim E
Z
 RΓg(X. )

fc*O
 λ t

But since for t > 0 we have X e H Π H P -a.s., the last expression

becomes

= lim E
Z
 R,g(Xj

= lim E
Z
 E

X t
 Γ e"

λ S
E

X s
f ds

tK)

= lim i
Z
 Γ e"

λ s
 E

X t + S
 f ds

t-K)

= lim i
Z
 e

λ t
 Γ e"

λ s
 E^f ds

t-K)
 fc

; dt
 f

completing the proof.

Combining this with (2.4) yields

(2.5) i
2
 /; e"

λ t
 E

X t
f dt = E

h ( 2 )
 Γ

o
 e"

λ t
 f θ

fc
 dt .

Since X is right-continuous in the Ray topology, which we have seen is

X

stronger than the H-topology on H, E
Z
 E f is right-continuous in

t > 0 . By Theorem 1.2 b), E
 Z

 f θ is also right-continuous.

Thus_by inversion of the transforms in (2.5) we obtain

E
Z
 E

 t
f = E

h ( z )
 f θ , t > 0, for 0 < f continuous on Ω . By

Proposition 2.5.1., the left side is

X

E
Z
 E

 t
(fI

Ω
) .

By monotone class argument the equality extends to bounded Borel f, hence

it follows that the right side is E ((fl
fi
) θ ) . This implies that
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for t > 0, p {paths which are r.c.1.1. in [t,°°) } = 1 . Letting

t -> 0, the last assertion of Theorem 2.7 is proved.

It is thus plausible that for z <=• U the Ray process may be

A

expressed as a prediction process on a slightly larger space than H, but

smaller than H . We introduce

NOTATION 2.8. Let Ω = {elements in Ω which are r.c.1.1. for t > 0},

and let H = {h e H : hίΩ^ = l}, H
χ
 = {A Π H : A e /?} .

THEOREM 2.9. Let F° = Π σ(X , 0 < s < t+ε) on Ω . Then for

t + ε > 0 S
 h

h
 &
 H , one can define the prediction process Z , and extend the

transition function q to (H , H ), in such a way that Theorems 1.7

and 1.15 remain true. Setting H = {h e H : P {Z = h} = l}, Theorem

1.17 also applies for h e H , if H is replaced by H .

REMARK. Note that X is not F° -measurable. This conforms to the

fact that as a "coordinate in Ω", X is not even well-defined. The

meaning of X for t > 0 is really in the sense of an essential right

limit, which happens to coincide with X since X = X .

PROOF. We will not elaborate all details, Z is just a special case

of the prediction process on H of [9]. The point is that, since

P (θ Ω|F ) = 1 for t > 0, we can use exactly the same σ-fields
v>

G and the same construction as before to define Z for t > 0, to show
that P {z e H for t > 0} = 1, and to show that the same transition

v>
function q continues to apply for Z , t > 0 . On the other hand, for f
continuous on Ω it follows by Hunt's Lemma that for rationals r > 0,

lim Z
h
 f = lim E

h
(f θ |F° )

r
 X H

) , P
h
-a.s.

Since Z is right-continuous for t > 0, we see that lim Z
fc
 = Z

Q
 exists

in the topology of H, P -a.s., and

E
h
(s|F°

+
) = zJ(S) , S e

 G
°(Ω) .

Now if we define q(t,h,A) = P
h
{z!) e A } for h e H - H, A e H , and

q(t,h,A) = q(t,h,AΠH ) for h e H, the Markov property of Z for

s > 0 implies that q(s+t,h,A) = /q(s,h,dz) q(t,z,A) for all s > 0 and

t > 0 . On the other hand, for s = 0 we have for t > 0

q(t,h,A) = P
h
{z£ € A}
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= E h P ° ( ^ 6 A)

= /q(O,h,dz) q(t,z,A) ,

completing the verification of the Chapman-Kolmogorov property of q .

Since H c H ,, it only remains to verify that for h e H ,

P {Z € H } = 1 . Since, by construction, Z is F /W -measurable,

this last is a consequence of the strong Markov property with T = 0 .

Formally, it follows because

implying that the expression in the last parentheses equals 1, P -a.s.

In view of Theorem 2.9, we define the prediction space and

prediction process of (Ω , G , F , θ , X ) in complete analogy with

1 t"" t t

Definition 2.1, and it has the same Markov properties noted there. We

are now in a position to state an interesting conjecture concerning the

relation of this prediction process to the Ray processes (see also Theorem 2.7).

CONJECTURE 2.10. For any packet H , h e u , and dy & (F/|H ) let

—"h — V»

μ
h
(dy) = P (h(X ) € dy) . Then X is P -equivalent in distribution

for t > 0 to the prediction process of (Ω , G , F , θ , X ) on H ,

with initial distribution μ, (dy) .

_ n

DISCUSSION. 1) Since X has right limits in H at t = 0 in the

H-topology, P -a.s., the conjecture follows if it is shown that the mapping

h(z) is one-to-one on the non-Ray-branching points of U . The converse

implication is also clear.

2) We do not conjecture that X is P -equivalent to the

prediction process of a fixed element of H . This is false in general.

For example, consider the sequence h , 1 < n, where h is the

n — n

probability of the process X which with probability 1/2 chooses one of

the two paths

w
χ
(t) = n"

1
 + (t-l)

+
 or w

2
(t) = -(t-l)

+
 ,

where (t-1) = max (0,t-l) . Then in the Ray topology lim h = h,

n-*»
 n

where h is the Ray branch-point which with probability 1/2 gives the
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prediction process of either of the deterministic processes X
fc
 = (t-1) or

X = -(t-l)
+
 . It is not hard to see that this initial distribution for

the prediction process cannot be expressed as P {Z
Q
 e (•)} for any

z e H . The necessary and sufficient condition for such a representation

is contained in Theorem 1.2 of [10]. On the other hand, in the

H-topology lim h
n
= z, where z fc H is the obvious probability

n-*»
concentrated on 2 points of Ω .

3) The importance of the conjecture, at least from the

standpoint of theory, lies in the fact that all entrance laws for the

transition function q on H Π H- (having mass 1) are expressed by

initial distributions on (H Π H )
+
 for the Ray process. This fact

seems to have first been noted by H. Kunita and T. Watanabe [11, Theorem 1 ].

Hence, our conjecture is equivalent to the assertion that every (finite)

entrance law for the prediction process on H Π H is realized by an

initial distribution of the prediction process of (Ω , G°, F° , θ , X ).

Of course, it suffices here to consider the case H Π H_ = H . The
A 0 0

analogous conjecture for the prediction process of [9] on H (or

equivalently, on the set H = {h e H : P
h
{Z = h} = l}) would be that

it is already closed under formation of entrance laws. Hence the Ray

space of H
Q
 would correspond to a subset of initial distributions over H

It is easily shown that this Ray space does define a process corresponding

to each P , h ^ H, and by Discussion 1) above it is then strictly larger

than H . The class of processes for t > 0 obtained from initial

distributions on the Ray space is then the same class as those obtained

from all initial distributions on H
Q
 (or equivalently, on H ) , if

this extended conjecture holds.

4) For the packet of an autonomous germ - Markov process, the

conjecture holds and X is even represented by a single element of H-

(see [10, Theorem 2.4] for a more general setting).

As far as concerns the left-limit process Z , it will be seen that

the result of Conjecture 2.10 does hold, at least for Borel packets. A

still more satisfactory result will be shown subsequently.

THEOREM 2.11. For any Borel H -packet H Π H
Λ
, let

_ ϋ A 0
C. = {z e (H Π H ) : for f & C (H_ Π H j + with corresponding f as
Ά A U A U

in (2.2), R
λ
f(

z
) = /p(0,z,dy) R

λ
f(h(y))}, where the integral is over

{y : h(y)
 e
 H

A
 Π H

Q
} . Then C

A
 is Borel in (H

ft
 Π H

Q
)

+
, and for

any z ̂  u , ?
Z
l\_

 e
 C

A
 for all t > 0} = 1 .
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PROOF. Since h(y) is continuous and p(t,z,dy) is a Borel transition

function, while q(t,h(y),A), A e H, is also Borel in the Ray-topology,

it is clear by letting f range through a countable dense set that C is

+
 A

Borel in (H Π H ) . Therefore, I ^
X
t-^ *

 i s a
 P

re
visible process

for the Ray σ-fields. To prove the second assertion, it suffices to

assume t > ε for some ε > 0, and since X and Z are identified

for t > 0 we may as well assume z 6 H Π H . Then X and Z are

identified for t > 0, and since the Ray and H-topologies induce the

same σ-fields on H Π H , we see that I ^t-*
 i s

 P
r e v i s i b l e f o r t n e

A
P -augmented σ-fields Z generated by Z , s < t . By the previsible

section theorem, it now is enough to show that for previsible T with

0 < T < °°, P
Z
ίl (X_ ) = 1} = 1 . Since X « H (1 H for t > 0, and

C T"* Iτt A U ~"
A

the Ray processes have the moderate Markov property, it follows that

E T
"

(2.6) R
χ
f (X

τ
J = E J

o
 e

 u
 f(X

t
) dt

":
τ-
rdy) R

χ
f(y), P

Z
-a.s.

Since h(y) =» y on H Π H , this is the asserted result.

Irrespective of Conjecture 2.10, we can regard C as a complete

Borel packet in the Ray space, each of whose elements corresponds to an

initial distribution on H Π H . However, a stronger result is evident

by comparison of (2.6) with the moderate Markov property of Z (Theorem

1.18). Thus the expression in (2.6) must also equal

Γ f ~
λt

H
A 0

 T

since both determine the probabilities of
 z

τ + t
 given Z . Denoting

this expression by R. f(Z ), it follows by the previsible section
A T—

theorem that for z e U ,

P
Z
{R.f(X. ) = R.f te ) for all t > 0} = 1 .

A t— A t—

But by continuity of h(z) we have

Z = lim Z = lim h(X ) = h(X ) .
t -
 s-̂ t-

 S
 s-̂ t-

 S Z
~

Substituting for Z in the above, we have shown

COROLLARY 2.12. For any Borel H -packet H Π H , let



D = {z

V
( z )

z e u

e ϋ
A
 : for

= R
λ
f(h(z))

P
Z
{X e

}

D
A

f

•

ec(H
ft

Then I

for all

ΠH
0
)

 +

) is

t > 0
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with f as in (2.2),

orel in (H
A
 Π H

Q
)
 +
 , and for

= 1 . Finally, the image

h(D ) Π H is a complete Borel packet in H containing H Π H
Q
 .

PROOF. Only the final assertion remains to be shown, since obviously D

+
 A

is Borel in (H Π H ) . But since z is determined uniquely in
(H Π H )

+
 by {R.f(z)}, we see that h(z) is one-to-one on D .

A U A A
Hence h(D ) is Borel in H., and h(D ) Π H is Borel in H . Since

A 1 A
for z € h(D ) Π H we have

A

P
Z
{Z e H and h(X ) = Z for all t > 0} = 1 ,

the result is proved.

According to Corollary 2.12, starting from any Borel H -packet

H Π H , we can form the complete Borel packet h(D
Λ
) Π H containing

A U A

it, all of whose elements determine the same processes as corresponding

initial distributions on h(D ) Π H-, and have the property that the

process Z remains in H Π H for all t > 0 . Thus it is quite

natural to replace the process on H Π H by the right process on

h(D ) Π H with left-limits in h(D ) ίl H . Since h(z) is one-to-one

A U A

on D
A
, we can regard this process equivalently in either the Ray or the

H-topology in so far as concerns its times of discontinuity. Thus, there

is no need to make an elaborate "comparison of processes," as in [8,

Chapter 13] for example. Instead, we can transcribe results for the Ray

process directly into results for the H-process. To conclude the present

section, let us illustrate this by transcribing Theorem (7.6) of [8,

Chapter 7].

THEOREM 2.13. For a Borel H -packet H Π H . let p be a fixed initial

distribution on H Π H (or more generally on h(
D

A
) Π H ), and let

T be a Z^-stopping time of Z (Z are the usual augmented σ-fields
u

for P
μ
) .

(i) If Z = Z on {0 < T < »}, P
U
-a.s. then T is

Z^-previsible and Z
μ
 = Z£_ .

(ii) Let B denote the set of Ray branch-points in (H Π H )

Then the totally inaccessible part of T is
T on A

T
A 1

 «> on Ω_ - A
z

where
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A = {0 < T < » , χ
τ
_ e (H

A
 Π H

Q
)

+
 - B, X

τ
_ f X ^

= {0 < T < co, z
τ
_ e

 H()
, Z ^ * Z

τ
>, P -a.s.

PROOF. Both (i) and the first expression for A in (ii) are taken

directly from [8]. It remains only to verify the second expression for A.

Clearly if
 z G D

A

 a n d h
<

z
)

 e H

o
'

 t h e n z
 =

 h
<

z
)
 a n d p Z

^
0
 = z} = 1,

hence z φ B . Conversely, if z £ n and h(z) e H - H , then

p
h ( z )

{Z = h(z)} = 0 . Hence P
Z
{h(X

Q
) = h(z)} = 0, and so

P { x = z } = 0 . Then z e B, completing the proof.

3. A VIEW TOWARD APPLICATIONS.

Since the object of the present work is not to study the prediction

process per se but to develop it for applications to other processes, we

conclude this essay with some general observations and partly heuristic

discussion of the simplest types of examples. It may appear at present

that by choosing different packets H one can obtain in the form Z

practically any kind of r.c.1.1. strong-Markov process, but this is not

quite true. A special feature of Z that is important in applications is

the absence of "degenerate branch points." Here a degenerate branch point

is one from which the left limit process jumps to a fixed point of the

state space. But since we have a Borel transition function q(t,z,A) for

the moderate Markov property, and q(0,h,{z}) = 1 if and only if

z = h <= H , such deterministic jumps do not occur. This is again an

expression of the fact that, by Corollary 2.12, Z is practically just

the Ray process of a right-process.

The same fact permits us to give criteria for Z to be a Hunt process,

or for it to be a Z -previsible process.

THEOREM 3.1. Let H be a complete Borel packet for Z (Definition 2.1, 3)).

A t

Then a) Z is a Hunt process on H relative to the usual σ-fields Z

t A t

if and only if H c H (i.e., H is an H -packet). This implies

the quasi-left-continuity of the σ-fields Z^ for each initial

distribution μ on H b) Z is Z -previsible if and only if it is

A "C t

continuous (P
μ
 a.s. for all μ) .

PROOF. If H c H then clearly Z is a right-process. The requirement

that it be a Hunt process is then quasi-left-continuity. By decomposing

any Z -stopping time T into accessible and totally inaccessible parts

for P
μ
 ([4, IV, 81]) one sees that for quasi-left-continuity it is

necessary and sufficient that for any increasing sequence T of

Z° -stopping times with lim T = T and P
μ
{

τ

n
 < T} = 1, one have
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P
μ
{Z = Z } = P

μ
{T < «}. But by the moderate Markov property,

T T-

(3.1) P
μ
(Z

τ
 = Z

τ
_ T < 00)

= E
μ
(P

μ
(z

τ
 = z

τ -
|Z

τ
_) T < co)

= E
μ
(q(O,Z

τ-
,{Z

τ-
}) T < 00)

= P
μ
{T < «} ,

since q(O,z,{z}) = 1 on H and H is complete. Finally, H c H
Q

is necessary even for a right-process, so the converse is obvious. The

last statement of a) is proved for Ray topology in [8, (13.2), (i)

and (iv)]. Thus it is another way of ensuring that X is a Hunt

process in the Ray topology, as remarked in [ibid, (13.3)]. However, by

considering
 H

A
(

C
 H ) as a subset of h(D) Π H from Corollary 2.12,

we see that for μ concentrated on H the process Z is quasi-left-

continuous if and only if it is quasi-left-continuous in the Ray topology.

Hence the result carries over.

Turning to b), continuity implies previsibility so we need only prove the

converse. Then if Z is Z -previsible, both Z and Z are Z -previsible

processes, and to prove that Z is continuous we need only prove them

indistinguishable. By the previsible section theorem, it is enough to

show that for Z -previsible T, 0 < T < ° ° , P^{Z = Z } = 1 (as usual,

we may replace general previsible T by T = N on {T = 0 or T > N},

and let N •* ») . By the moderate Markov property we have P
μ
{Z = Z }

= E
μ
 q(O,Z ,{Z }), hence we must show that P

M
{Z e H - H } = 0 .

However, since Z is previsible it is known [4, IV, 57] that Z is

Z -measurable. Since

and there are no degenerate branching points, we must have Z
 e

 H as

required.

To give a feeling for the applications, we will consider briefly three

situations:

a) X is a Markov process,

b) Z is a Markov chain,

c) (X ,(w ^(t))) is a Markov additive process.

It is to be noted that b) is a condition on Z , while a) and c) are

conditions on X . Thus our examples illustrate the point that in the
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combined study of X and Z
fc
 neither is necessarily the first to be

considered. One may start either with a known process or a known

prediction process. To be sure, one does not ordinarily make assumptions

on both X and Z
fc
, since each determines the other uniquely.

To study the case of Markovian X , if we are not interested in any

"hidden information" we can assume for convenience that

P{w_ _ (t) = 0 , l < n , t > 0} = 1, and drop the coordinates w_ .
2n-l - - 2n-l

from our notation. To relate the Markov properties of X and Z ,

since Z has the role of a conditional distribution relative to F

we must assume that X is Markov relative to F° . Alternatively,

we could equivalently use X , Z , and F , but we cannot use

in general since Z might not be F -measurable.* Let k ^ H denote

the probability of X , and let H be a Borel predict!oti packet for

X as, for example, in Theorem 2.1 and the discussion following its
k

proof. As noted in Definition 2.1 2), (φ(Z ), Z
fc
) is P -equivalent to

(X , Z ), and it suffices to look at the former pair. It is not hard to

see how the Markov property of X translates into an instantaneous

property of Z . In the first place, in view of Theorem 1.9 and the

Remark following, Z° is P -equivalent to the σ-field χ where

χ =σ{φ(Z ), s < t} . Hence, the Markov property of X is equivalent to
k o

the conditional independence (for P ) of Z and σ{φ(Z ), 0 < s}
t t+s *"

given φ(Z ) . But Z is also defined as a conditional probability over

the latter σ-field given Z , namely

Z
t
(S) = P ((θ^)""

1
 ίφ(Z ) e S}|Z°) , S e F° .

Since F is countably generated, it follows that Z is determined

P -a.s. by φ(Z ) (the details of this transparent reasoning are given in

[10, Theorem 2.2] and fortunately need not be repeated here). It follows

k —
that there is a P -null set N and a 8^/H-measurable ψ such that
Z = ψ (φ(Z )) for w Φ N . Conversely, if such N and ψ exist,
t t t z t t t

then plainly X was Markov at time t relative to F° . The function

ψ plays the role of transition function for X , by assigning to it the

conditional future Ψ
t
<

x

t
)
 I f

 Φ
t

 m a v b e
 chosen free of t, then by

definition X is homogeneous in time.

*A variety of analytic conditions making X Markov relative to F~
is given in H. J. Englebert [7]. If X

t
 is only Markov relative to

F°., then it is still germ - Markov relative to F£
+
 in the sense of [10] ,

and may be approached by the method developed there under suitable
conditions. From the standpoint of Ω (as in [9]) F. coincides with
F
fc
_, and the distinction becomes meaningless.
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Perhaps the most noteworthy fact here is that even if X is neither

homogeneous nor strong-Markov, the process Z (i.e., a standard modifica-

tion of ψ.(X )) with transition function q has both properties. Thus

any such irregularities of X are due to ψ. and N , not to Z .

t t t t

This provides a ready method of investigating transition functions of

Markov processes which, as mentioned already, is the subject of the third

essay.

At present, one may gain further insight by comparing this method to

another one: that of the "space-time" process. It is a familiar fact that

any Markov process (P ,X ) becomes homogeneous in time if we replace X

by (t,X ), so that an initial value (s,x) means that one considers the

process X , t > 0, conditional upon X = x, but with the added
STU S

coordinate s + t so that no value of the pair can recur. While this

device is very useful in particular cases, such as in studying the heat
generator (— - — ) , it has also been used occasionally in a general role

2. σt

(E. B. Dynkin, [6, 4.6]). Contrary to first impressions, the method of the

prediction process apparently is quite unrelated to this as a method of

"making a Markov process homogeneous". Not only are the respective

topologies quite different (assuming the product topology for the space-time

process), but more importantly the prediction process can repeat values, and

hence may be simpler. For example, a particle confined to the unit circle

0 < θ < 2π and moving with velocity v(t) = t - [t] (a saw-tooth function)

has prediction process with states corresponding to pairs (v,θ),

0 < v < 1, while its space-time process has states (t,θ), 0 < t < « .

In general, if X happens to be a time-homogeneous Markov process then it

is usually equivalent to its prediction process, while (t,X ) may be

somewhat artificial and intractable.

Taking up our second illustration, since Z is always a homogeneous

Markov process it is natural to ask under what conditions it is a process of

some special type. For instance, if Z is a pure jump process, i.e., a

sum of finitely many jumps with exponentially distributed waiting times for

the next jumps given the past, then X = φ(Z ) obviously has the same

property. But unlike Z , X need not be a Markov process.

To indicate the possibilities for X , we again take w (t) = 0,

1 < n, and suppose also that w (t) = 0 for 2 < n, so that X may be

regarded as the real-valued process w (t) . To construct a process X

£ t

having a pure-jump prediction process (apart from the case of Markovian X )

one can begin with any family K (x_,...,x t ,...,t (dx _xdλ )),

n 1_ n 1 n n+1 n+1

1 < n of probability kernels over R * [ε,°°) , for fixed ε > 0, and
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x
k
 e R, t > 0, 1 < k < n . Letting (x ,λ ) have any initial distribution

on R x [ε,°°), define X = x.. for 0 < t < e where e is a random

variable with P{e > t} = exp(-λ t), independent of x given λ .

Proceeding by induction, suppose that x_,...,x and e, ,...,e have been

In In
determined, and that X has been defined for 0 < t < Σ£ e . Then

we select a pair (x _,λ ) distributed according to the kernel K
n+i n+i n

with t = 0, t = Σ e., and x = X , 1 < k < n . The inductive
U JC ϊ

 =
1 ~j JC t , _ ""*""*

k-1

definition is completed by setting X = x for Σ*J e < t < Σ
n +
 e ,

t n-tΊ k—1 k k^l k

where e is a random variable conditionally independent of

{χ_,...,x _, e_,.. ,e } given λ , and Pie _ > t}
1 n+1 1 n n+1 n+1

CO

On the P-null set where Σ e < °° we define X^ = 0 for
n=l n t

oo
Σ e < t . It is evident that such X has a pure-jump prediction
n=l n - t ^

 J
 ^ ^

process, and it is plausible that any pure-jump prediction process Z

all of whose expected waiting times exceed ε with probability 1 is

obtained in this way (if φ(Z ) is a.s. 0 except for the first

coordinate).

In this construction, even if X can assume only a finite number of

distinct values, Z may have an uncountable state space since it

"predicts" the whole future sequence of X -values. On the other hand,

it is easy to give sufficient conditions on the K which imply that Z

is even a finite Markov chain (other than X being itself one). Thus if,

for some fixed N and all n > N, K = K depends only on
(x . , x ....,x ) while X
n-N+1 n-N+2 ' n t

moreover λ . is a fixed function λ (x
 H i 1

, x _,...,x ,x _)
n+1 n+1 n-N+l n—N+2 n n+1

depending only on the
 x

v
'

s
 shown, then it is clear that the finitely many

possibilities for these
 x

k
'

s
 imply that Z will be a finite Markov

chain. In particular, if the λ 's reduce to a single constant λ, then

X is a "generalized Poisson process based on an N-dependent Markov

chain," in the evident sense of dependence on the past only through the

last N states visited. Obviously, then, the possibilities for X such

that Z is a pure jump process are quite great, and we do not pursue

them farther here.

For a type of example which involves a non-Markovian X , and in

which the unobserved data (w _ (t)) are of basic importance, we

consider briefly the "Markov additive processes" (in the sense of

E. Cinlar; see [3] and [153 for a vivid introduction and further references),

1 2

Roughly speaking, a standard Markov additive process is a pair (X , X )
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where X
1
 is a standard process (in the sense of Blumenthal and Getoor) and

2
 fc

X is a real-valued process with conditionally independent increments

1 2
given X . In the applications X is observed, and one would like to

t 1
make inferences about the underlying process X . For simplicity of

1
notation we assume that w (t) = 0 for n > 2, and that X. is real-

n t
valued, so that we may identify the trap state Δ as °°, and let
1 2 1 1

X = w (t) , X = w (t) on Ω. Since X is Markovian, and given X
the future increments of X are independent of F , it is to be

P 1 o
expected that the prediction process Z of (X , X^) is determined by

0 1 o

the value of X and the conditional distribution of X given F .
If one is concerned only with X , it is simpler to treat

2 2 P

X - X
n
 as an additive functional, and consider Z restricted to sets of

the form S Π {x = 0}, S
 e
 G . Then the value X becomes irrelevant

in determining Z^ if the values of
 z

t
ί

χ

0

 e B
K B ^ 5, are known.

We can incorporate this change of view by redefining our translation

operators appropriately. We turn now to the necessary notation and

hypotheses.

DEFINITION 3.2. Let Ω* = {(w^t), w
2
 (t) ) : w

2
 (0) = 0 and w^t) j4 ± «>

for all t} . Further, let G*
+
 = {S Π Ω* : S e G°

+
} and

F* = {S Π Ω* : S & F° } . Finally, let θ*((w.,w.)(s)) =
c t +

 * *
 υ λ z

 *
(w

χ
(s),w

2
(s) - w

2
(0)) and

 θ

t
(

w
i ^

2

) = θ
0

 θ
t^

W
l

f W
2^ °

n Ω
 *

HYPOTHESIS 3.3. A standard Markov additive process (w (t), w (t)) on

Ω is a collection of probabilities P
X
 on G (= V G* ), x € R,

such that w (t) is a standard Markov process (we take Δ = + « as the

terminal point), and

(i) P
X
{(w

1
(t),w

2
(t)) e B

2
> is B-measurable for B

2
 € B^,

(ii) For G* -optional T < «>, one has

w (T)
= P λ

 ((w
lf
w

2
)(s) e B

2
) , B

2
 6 8

2
 .

We now introduce a notation for the process of conditional

probabilities of w (t) given F , which is our main concern.

DEFINITION 3.3. The filtering process of w (t) by w (t) for initial

distribution μ is the process F
P
( ): F

P
(B) = Z

P
{w (0) e B } , B e B,

where for each initial distribution μ on R we let Z
μ
 denote the

prediction process for

P
μ
 = / P

X
 μ(dx) , with P

μ
 (Ω -Ω*) = 0 .
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We remark that, of course, we have F
μ
(B) = P

μ
(w (t) € B|F^+) .

A remarkable result of M. Yor [15, Theorem 4] asserts that the

F (•) are themselves r.c.1.1. strong-Markov processes with a single Borel

transition function. Here we will deduce this from the corresponding fact

for the Z
μ
 . However, this does not quite give as nice a topology as

[15] (see the remarks following the proof). For our proof, we need a

further notation and lemma.

LEMMA 3.4. For each initial μ on R and y € R, we define a measure

P
μ
 on (Ω,G°) by first P

X
(S) = P

X
θ*(S

y
), where S = S Π {w

2
(0) = y},

S & G°, and then P
μ
 = /p

X
 μ(dx) . Let H* = {p

μ
, y € R, all μ} .

* y y y
Then H is a Borel prediction packet, and for each μ we have

(3.2) P
μ
{Z^ = P * for all t > 0} = 1 .

T- W ^ \^J

PROOF. For S of the form

S = {a < w
2
(0) < b, S

w ( Q )
 = S*} for S* e G* ,

we have P (S) = I, . (y) P (S ) . Let S be a countable sequence of

y
 ι a

'
D
' o

 n
 x

such sets which generates G . Since by (i) and (ii) P is a

one-to-one Borel kernel of probabilities on G with P {w (0) = x} = 1,

μ
we see that P is also one-to-one and Borel with respect to the

measure μ . Then it follows that the sequential range

{(P
μ
(S )), y ^ R, μ a probability on R> is a Borel set in X°° [0,1],

y n * . *
 k = = 1

implying that H M . To prove that H is a packet it suffices to

show (3.2), since clearly P
U
 = P

μ
 and if (3.2) is true then

F
μ

(3.3)
 P

ϊ
{ Z

t
 =
 V w

2
( t )

 f θ r a 1 1
 t > 0} - 1

 f
 y ^ R

by translation (we omit the superscript p
μ
 on Z ) . Since P

X
 is

Borel in (x,y), and F
μ
 is F

μ
 -optional, it is clear that both

sides of (3.2) are F -optional, hence it is enough to prove

for F
μ
 -optional T < » . Now by (ii) and the definition of Z

μ
, we have
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w (T)

ϊ
= P

w
2
( T )

( S )
 '

as asserted.

By this lemma, we can introduce the filtering process as a function
*

of the prediction process with state space H , and derive its properties

from the latter.

THEOREM 3.4. The probability-valued process F (B) = Z {w (0)
 e
 B>,

B € B, as a function of the prediction process Z on H*f is a

right-continuous, strong-Markov process for a suitable topology such that

the space (M,ί!) of probabilities on 5 with its generated σ-field is a

metrizable Lusin space. Accordingly, the same results are true for the

processes F^ .

u * h *
PROOF. For h = P e H , set F (B)=μ(B),B^δ (this is not to be mistaken

for F^, which has a subscript). Then for M e M, we let

A
XΛ
 = {h e H : F & M> . Clearly A

w
 e H, and writing now P

y
 for the

M M
 * y

 μ

probability of the canonical prediction process on H with h = P as

initial measure we have

(3-4)
 P

; ( F
τ + t

 c- M|Z°)

On the other hand, recalling the σ-fields χ generated by

Ψ(Z ), s < t, where φ(Z ) is P -equivalent to w (s), we can

transfer (3.3) to the canonical space and rewrite (3.4) in the form
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(3-5) p J ( F τ + t 6 M|χ τ + )

P

= /j{F
t
 « M}

F
τ

= q(t.P
0
 , A

M
) ,

where we used (3.3) with F in place of μ, along with the fact that in

distribution F does not depend on y for initial probabilities of the

u *
 t
 *

form P
 fe
 H . Accordingly, we may define a transition function q fory

F by q*(t,μ,M) = q(t,P
μ
,A

M
), and (3.5) becomes

(3.6) P
μ
(F

m
 e M | Z ° ) = q (t,F

m
,M) .

y T+t T T

x u

Since P was assumed to be Borel in x and PJ: is one-to-one in

μ, it is not hard to see that q is a Borel transition function on

(iϊ,ίJ) . Finally, the topology on M referred to in the theorem is just

that induced by the mapping μ -+• P
μ
 and the topology of H , since it is

easily seen that right-continuity of

Z
t
 P

y+w
2
(t)

in (3.3) implies right-continuity of

(from the right-continuity of w (t)) . Thus Theorem 3.4 is proved.

DISCUSSION. It follows directly from the (known) fact that the optional

projections of the r.c.1.1. processes f(w (t))), f e C(R), are again

r.c.1.1. P
μ
-a.s. ([5, Chapter 2, Theorem 20]), that F^ is even r.c.1.1.

in the usual weak -* topology. This, together with further

applications, is found in [15]. From an applied viewpoint, it is only

the processes F^_(b) = z
μ
_{w (0) e B>, B e B, which are realistic, since

only they do not depend on the future element of F° . Further, with the

usual convention that F° is degenerate, one has P
μ
{F^ = μ}= 1, unlike

F^
+
 . Using the fact that P

μ
{w

1
(T-) =

 w
 (T)} = 1 at previsible T < ξ,
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however, it is clear that F^ has no previsible discontinuities except

perhaps at the lifetime ξ of w (t) . Hence, the moderate Markov

property of F^ follows from the Markov property of F .

A final remark seems merited concerning the Definition 2.1 of the

prediction space Ω . According to [4, IV, 19], Ω
z
 is a coanalytic

subset of the space of all r.c.1.1. paths with values in H, and this

space is a measurable Lusin space. The question naturally arises of

whether, by restricting this space to the r.c.1.1. paths in some stronger

topology, one might preserve its function of representing the processes

Z and yet improve some other properties. A natural candidate is then

the Skorokhod topology of measures on Ω . However, as shown by D. Aldous

(unpublished) one does not have P {Z is r.c.1.1. in the Skorokhod

topology} = 1 . The difficulty is that the Skorokhod left-limits do not

exist unless X is P -quasi-left-continuous. Hence the topology of H

seems to be the most reasonable alternative.
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