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A machine, or other type of "system", can often be divided into several

subsystems and these subsystems again can be divided into several subsystems

(second generation), . This process forms a "system tree". Suppose that the

distributions of the life spans of subsystems in the system tree are exponential

distributions. To estimate the parameter of the distribution of life span of the

equipment (the entire "system tree") based on data collected from subsystems,

the virtual system method, an alternative to the obvious ML method, is presented

in this paper. It is proved that the series of estimators constructed by the virtual

system method is asymptotically efficient and that the calculation of the estimator

is quite simple while the likelihood equation of the system tree is complicated.

1. Introduction and Main Result. In practice, an equipment
(System) is usually divided into several subsystems and these subsystems again

can be divided into several subsystems, . Finally a system tree is formed.

In this paper a system tree is denoted by a finite set of indices M = {m =

( ή , ?ΰ)} satisfying

(i) m i s a finite series of natural numbers,

(ϋ) m = ( ή , ,ifc) E M =ϊ h = 1,

(iii) ( ή , , ύ ) E M = > (ii, , ΰ - i ) E M,(ii, , ΰ - i , j ) E M, j =

An example of the system tree is given in Figure 1. Later on, we also call

m (G M) a subsystem.
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Figure 1. Example of system tree

DEFINITION 1.1. Let fh, m £ M. fh is said to be a subsystem of
m, if m = (ii, , ik) and fh = (ii, , i*, , i{). fh is said to be the first
generation subsystem ofm ifm = (i1 ? ,i k) and TO = (ii, , ik,ΰ+i) ^̂  is
said to be the last generation subsystem of the system tree M if no subsystem
in M is a first generation subsystem ofm.

In Figure 1, (1,1,1), (1,2,1), (1,2,2), (1,3,1,1) are the last generation
subsystems of the system tree. Denote

Mo = {m : m is the last generation subsystem of M}, (l l)

M{m) = {fh : fh is the first generation subsystem of m}. (1.2)

In [1], the lower confidence limit of the reliability of the system tree is
constructed based on binomial trials. In this paper we suppose that every
subsystem m in M has its own life span Xm.

DEFINITION 1.2. {Xm : m E M} is said to be an exponential system
if

(i) The marginal distribution of Xm is exponential, i.e.,

P{Xm > x} = exp I -^- \ , meM, x > 0, (1.3)

(ii) For every m G M\Mo, the parameter θm depends on {0~,ra G
M(m)}, i.e.,

θm = θm(θ~,meM(m))y (1.4)

where the symbol #m(#~, ™> G M(m)) means that θm is a function of the
arguments {0~, fh G M(m)}.
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EXAMPLE 1.1. Let the subsystems be connected in series, i.e.,

^ {} (1.5)
meM(m)

and the marginal distributions of Xm, m G M, are exponential distributions

with parameters 0 m , m G M. The parameters satisfy the following relation

ra£M(ra)

According to Definition 1.2, {Xm, m G M} is an exponential system.

It is easy to show that the set of independent parameters of an exponential

system is {θm, m G Mo}. In reliability engineering, people are interested

in estimating the parameter of the machine (the first generation m = (1)

in the system tree) from the lifespans of machines and the lifespans of the

components as well. All these lifespans are independently observed. Suppose

that {xmi, m G M, i — 1, ,n m } are independently observed data, i.e., the

joint density of {#m ί , m G Λf, i = 1, , nm} is in the form of

| / j Π θ-n-exp{-Tm/θm}, (1.7)

where

n

Let ηr=(θmi, , 0mfc) be the independent parameters of the distribution fam-

ily (1.7), where {mi, , πik} = M). The information matrix of {xmt , m G

M, i = 1, ,n m } is

Γ _ v ^ ^m 5βm dθm

For the estimator of the parameter θ^, the Cramer lower bound of the vari-

ance of estimators is
dθ dθ

where θ^ is a composite function of 77 and -τpτ is a row vector of the partial

derivatives. In this paper we create a virtual system so that we can calculate

the Cramer lower bound of variance for estimators of 0(i) in the virtual system

instead of the original one.

Let mo be a subsystem in M such that M(πio) C Mo Denote

= M\M(m 0). (1.11)
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Without loss of generality, suppose that Mo={mi, ,mfc} and M(mo) =

{m ί +i, ,mfe}. Let

M^ = {m1, ,mι,moh ( L 1 2 )

η^T = (θmi, --,θmnθmo). (1.13)

It is easy to show that M^ is a new system tree. Define

nm, m

+ ? n = mo.

„ _ „ . 771 / 772m6M(m)

For the virtual system tree M^\η^ is the vector of independent parameters

of the system. Define

τ v - nft dθm dθm

as the information matrix of the virtual system M^\ The Cramer lower bound

of variance of the estimator of θ^ in the new system is

For the two bounds (1.16) and (1.10), we have

THEOREM 1.1. For the system M and its virtual system M^\ the

following equality

Uv(-\\ i Uuί'W Uv(Λ\ i OV(Λ\

1 z = ^ " J fΛ\ : — r . 1 . 1 /
CkVΊη- 77 p\ Λ ί Ί ^ 7 ? ^ ^ / ) ί l ) \ /

holds in the sense that when we substitute η^ = η^\η) into the right hand

side of (1.17), the two sides become identically equal.

REMARK 1.1. For the virtual system M^\ again we can construct a

new system M^ and by using Theorem 1.1, we obtain

dθw x aow _ dθ(1) dθw

Continuing this procedure, finally we obtain M^ku"> = {(1)} with only one

system as its member, where UM is an integer. For the virtual system tree
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= {(l)W f c Λ ί ) = (θ(1)),I(η)(kM) = -$£-. By repeatedly using Theo-

rem 1.1, we obtain

(1.18)
i i n ( 1 )

Before giving the definition of θ^, we first introduce the definition of the
virtual sample size Nm for every m G M. When m G MQ, iVm is defined by

where n m is the real sample size of the subsystem m. Suppose that m $• Mo
and that for every rh G M(ra), iV~ is already defined, then Nm is defined by

(1.19)

where 0m is a known function of its arguments {0~,ra G M(m)}. It is easy
to know that for m £ Mo, Nm and n m are defined recursively and that Nm

and nm both are function of (0~,7V~,ra G M(m)). We denote them by
JVm(0~, JV~,ra G M(ra)) and nm(θ~,N~,m G M(ra)). The main interest of
this paper is to estimate the parameter θ^ of the top subsystem m = (1) (the
parameter of the machine itself). The estimator 0(i) of 0(i), and the related
quantities Tm and Nm are defined recursively through the following steps,

(i) For m G Mo, they are defined by

§m = ί™-, (1.20)

fm = Γm, (1.21)

JVm = n m , (1.22)

where Tm is the total time of test for the system m, nm is the sample size of
the subsystem m.

(ii) m £ MQ. Suppose that for every fh G M{m), Γ-, iV- and ^~ have
been defined. Then for the subsystem m, the corresponding estimators are
defined by

L = 5=-, (1.23)

j ^ _ y^ _[_ nmθm (1.24)
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Nm = nm + nm, (1-25)

where

))9 (1.26)

nm=nm(θ~,Nm,m G M(m)). (2.27)

For the estimator θ^ of 0(i),we obtain

THEOREM 1.2. Suppose that for every θm, as a function of(θ^, m

G M(m)), (m £ Mo), the following holds

^ — , m G M(m)

Then, for the estimator θ^ ofθ^ given by (1.23), we have

REMARK 1.2. It is well known that it is very difficult to solve the

likelihood equation to obtain the ML estimator of θ^y θ^ is an alternative

estimator for θ^ which is also asymptotically efficient.

Suppose that #i,£2> " ->χn ~ ϋd \e~^->Q > 0. It is well known that the

lower confidence limit with level 1 - α is given by

Θ-=V-JΛ Λ
Γ n (1 - α)

where T = ΣΓ=i x * a n ^ Γ^1 (1 - α) is the (1 - α) quantile of the Γ distribution
with parameter n, i.e. Γ~ 1(l — α) is the solution of the equation

^ / tίn-1e- t t*t = l - α .
<n) JoΓ(

For the exponential system {xm,m G M} with data { xmn m G M,

i = 1,2, , nm }, we would like to construct a lower confidence limit of the

parameter θ^ . We consider (i\Γ(i),T(i)) as a virtual exponential system where

JV(i) is the sample size of the virtual system and T^ is the total experiment

time of the system. As in (1.29), we use

( i 3 o )

as an approximate lower confidence limit of θ^y For θ^^, we have
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THEOREM 1.3. Under the condition of Theorem 1.2,

— l - α , (1.31)

which shows that 0/-̂  is level consistent.

For the efficiency of 0^), we have

THEOREM 1.4. Under the condition of Theorem 1.2,

W'Ϊ'ΊΪΓ *

REMARK 1.3. In practice, we want to get the lower confidence limit
of the reliability i2(i) = exp{—^-}. According to Theorem 1.4, the lower
confidence limit of R^ is

ί ( 1 - α ) "

= e X P < — y —

In section 2, we will give the proofs.

2. The Proofs.
Proof of Theorem 1.1. Write

where

θmk

M(m0) = {m ί +i, ,mk}.

By using partitioned matrix calculations, we rewrite the matrix Iη in the form
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where

nm dθm θθm

*»= Σ
m6M(')\mo

ΘI dm dη{'

nm dθm dθm dθmo

dθmo dη{'

2 2 =

dθ
mo

+
dθ

mo

(2.3)

'el
Thγγt i • ., l"Tι

Λ = diag

Similarly, we write the matrix /„(!) in the form

_ i •"!'.' B$

θmk

n
21

where

= Σ

= Σ dθm dθr,

n(l)τ

• t Λ t2 '

n ( l ) _

2 2 ~

By the inverse formula for partitioned matrices

j-i = fDiϊ + D^JDuA-^D^

(2.4)

(2.5)

(2.6)

where

Δ = D22 -
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Hence

9Θ(Λ\ -, dθ(Λ\

Oψ " dη V dη{ ' dθmo

" 1

dτJ2 dϊJ2 9τj2

From the definition of Dij and D\ • we know that

Substituting these formulas into (2.7), we obtain

η dη dWτ

7 n J

K

where
js Λ dθmo _x dθmo

dη2

i n — 1 r^ Λ —1 ΓΪ ΓΊ—1 ΓΊ—1 TΊ Λ —1 uuτπo \

(dηi\
) - l + D - l D Δ-1Γ>~.Γ>-1 n-ln Λ-ldθmo\ 9ΘW

(2.7)

From the above equality we know that to prove (1.17), it suffices to prove

dθjn^.-idθrn^ _ / (1) (l) (1) "1 (i)\ ~λ Λ ( 1 ) - 1 ( .

dητ

2 dη2 " V 2 2 2 1 n 1 2 / " * ( j

By using the following identity for matrices

where U and V are vectors, we obtain
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, n
mo
 dθ

mo
 dθ

mo n
(i) p.^1)-

1

 n
(i)dθmo_dθrnΛ dθ

mop n
2 1 " 1 2

m o

-D, ( ) rjC)

2 1 "

\1 \
TThQ I

tvΊΎhQ /

mo
21 ^ 1 1 -^12 j dm

- 1

^m0 Γ. / ^mn . θmn ( \"^ ^m / θβw

 X

n m o L \nmo nmo \ J-f 0*m \dθmo

Πm ί dθ^2

- 1

n ( dθ x 2

21 ^ 1 1 ^ 1 2

where n m o and Λ are given by (1.19) and (2.4) respectively.

For the proof of the Theorem 1.2, some preliminary lemmas are first
developed

LEMMA 2.1. Let {Xm,m G M} be an exponential system and
{xmi, m G M, i = 1,2, ,n m } be independently observed data. Suppose
that for every m £ Mo, θm, as a function of {θ^fh G M(m)}, satisfies the
condition

— , me M{m) φ 0.



Then, as min{nm,ra E M} —> oo,

Nm

Nrn
Nm
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(2.9)

(2.10)

(2.11)

#(0,1), (2.12)

#(0,1), (2.13)

Proof of Lemma 2.1. We prove the lemma by induction. When m E Mo,
according to the definition of θm,Tm,Nm (see (1.20)-(1.22)), it is straight-
forward that (2.9)-(2.12) hold. Now suppose that (2.9)-(2.13) hold for all
fh E M{m) (when fh E Mo, we only require that (2.9)-(2.12) hold for m m ) .
According to the definition of θm, we have

J- m "Γ Ή"

nm +nm

By the definition of θm we know that

(2.14)

θm=θm(θ~,meM(m)) θm(θ~,m e M(m)),wpl, (2.15)

from which, combining the consistency oίTm/nm, we know that (2.15) implies
that θm —• θm, wpl and fm/Nm —> θm, wpl, i.e. (2.9) and (2.10) hold for
m. By the definition of Nm and Nm, we have

Nn

\

\

nm +

\ m' m

From this expression, together with the facts that

2
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and 0~ = θ~(l + o(l)), wpl, we obtain

N
^ l + (l)

which shows that (2.11) holds for ra. Using a Taylor expansion, we obtain

fe = \fiξ (θm (jP-,m € M(m)) - θm(θ~,fhe

which shows that (2.13) holds. From (2.13), we know that

±= (Tm - nmθm))
^TO /

Πm. I \/Πm ~
(θm-θm)

i.e., (2.12) holds. By induction, we know that the conclusion of the lemma
follows.

Proof of Theorem 1.2. Examining the definition of the numbers N^

and n^ given in (1.18) and (1.25) respectively, we know that nL^' = N^y
Therefore (1.28) follows from (2.12), i.e.

V dvτ

Proof of Theorem 1.3. Let {/ be a random variable with conditional
distribution

P{U < x\N(1)} =

It is easy to show that

U - L|jv(1) Λ> N(o,i), Wpi
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from which it follows that

J
(2.16)

where «i_ a is the 1 - α quantile of the standard normal distribution. From
(2.12), we obtain

π

Combining (2.16), (2.17), we obtain

(2.17)

Γβ (1-β)

Proof of Theorem 1.4. First we have

From (2.16), we obtain

(2.18)

0(1))) -

(2.19)
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According to Theorem 1.3, we have

T<( i )

~ > m ) / \

U{1)

Hi)

which, together with (2.19), implies that (1.32) holds.
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