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The statistical models used in structural equation modeling are described.

The estimation theory for these models is reviewed for the case when all variables

are continuous. Estimation theory for the case when all observed variables are

ordinal is developed. This involves fitting the structural equation model to a

matrix of polychoric correlations by weighted least squares. The weight matrix

is a consistent estimate of the inverse of the asymptotic covariance matrix of

the polychoric correlations. The asymptotic covariance matrix of the estimated

polychoric correlations is derived for the case when the thresholds are estimated

from the univariate marginals and the polychoric correlations are estimated from

the bivariate marginals for given thresholds. Computational aspects are also

discussed.

1. Introduction. Structural equation models have proven useful in solv-
ing many substantive research problems in the social and behavioral sciences.
Such models have been used in the study of macroeconomic policy formation,
intergenerational occupational mobility, racial discrimination in employment,
housing and earnings, studies of antecedents and consequences of drug use,
scholastic achievement, evaluation of social action programs, voting behavior,
studies of genetic and cultural effects, factors in cognitive test performance,
consumer behavior, and many other phenomena.

Methodologically, the models have many names, including simultaneous
equation systems, linear causal analysis, confirmatory factor analysis, path
analysis, structural equation models, recursive and non-recursive models for
cross-sectional and longitudinal data, and covariance structure models.

The basic ideas and methods of structural equation models are explained
in Bollen (1989). Bibliographies on the theory and applications of structural
equation models are found in Joreskog and Sδrbom (1989) and Austin and
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Wolfle (1991). A number of different but almost equivalent model formulations

for structural equation models have been considered by Jδreskog (1973, 1977,

1978, 1981), McDonald (1978), Bentler and Weeks (1980) and McArdle and

McDonald (1984). The most commonly used is the LISREL model of Jδreskog

(1977) and we shall follow this formulation here.

In its most general form, the LISREL model consists of a set of linear

structural equations. Variables in the equation system may be either directly

observed variables or unmeasured latent (theoretical) variables that are not

observed but relate to observed variables. The model assumes that there is

a "causal" structure among a set of latent variables, and that the observed

variables are indicators or symptoms of the latent variables. Sometimes the

latent variables appear as linear composites of observed variables, other times

as intervening variables in a "causal chain". The LISREL methodology is

particularly designed to accommodate models that include latent variables,

measurement errors, and reciprocal causation.

Section 2 describes the statistical models used in structural equation mod-

eling. The estimation of the model is reviewed in Section 3 for the case when

all variables are continuous. Estimation theory for the case of ordinal observed

variables is developed in Section 4.

2. Models. As there is seldom any interest in means of latent variables

and intercept terms in the equations, it is assumed here that all variables,

observed as well as latent, are measured in deviations from their means. The

LISREL model may then be defined as follows.

Consider random vectors ηr = (771,772,- •• ,77™) and £' = (£i,£25

 # ,fn)

of latent dependent and independent variables, respectively, and the following

system of linear structural relations

η = Bη + Tζ + ζ, (1)

where B(mxm) and T(mxn) are coefficient matrices and ζ' = (Ci? (2? ' * > Cm)

is a random vector of residuals (errors in equations, random disturbance

terms). The element βij of B represents the direct effect of 77j on ηι and

the element 7^ of Γ represents the direct effect of ξj on 77;. It is assumed that

ζ is uncorrelated with ξ and that / — B is non-singular.

Vectors 77 and ζ are not observed, but instead vectors y1 — (3/1, y<ι, , yp)

and x' — (xι, #2? * * * ? %q) are observed, such that

e, (2)

and

x = Axξ + δ, (3)

where e and δ are vectors of error terms (errors of measurement or measure-

specific components). These equations represent the multivariate regressions
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of y on 77 and of x on £, respectively. It is convenient to refer to y and x as
the observed variables and η and ξ as the latent variables.

In summary, the full LISREL model is defined by the three equations,

Structural Equation Model : η = Bη + Γ£ + ζ

Measurement Model for y : y — Ayη + ε

Measurement Model for x : x — Axξ + δ

with the assumptions,

1. ζ is uncorrelated with ζ
2. e is uncorrelated with η
3. δ is uncorrelated with £
4. £ is uncorrelated with e and 6
5. / - B is non-singular.

Let Φ(n X n) and Φ(m X m) be the covariance matrices of ζ and £5

respectively, let &ε(p X p) and &s(q X #) be the covariance matrices of ε and
5, respectively and let &δε(q X p) be the covariance matrix between δ and
e. Then it follows, from the above assumptions, that the covariance matrix

q) X(p + q)] of (y',x')'is

( Ay A(ΓΦΓ + Φ)ΛΆ; + Θ ε Atf AΓΦΛ^ + θ'δ
δε

where A = ( J - J 3 ) " 1 .
The elements of Σ are functions of the elements of the parameter matrices

Λy, Λ^, B, Γ, Φ, Φ, Θ<5, Θ ε , and Θ^. In applications, some of the elements of
the parameter matrices are fixed equal to assigned values, others are equal but
unknown and still others are free unknown parameters.

3. Estimation: Continuous Variables. Let θ = (0χ, 02, * ,#*) be a
vector of all independent parameters in the model. Then Σ in (4) is regarded
as a function Σ(0) of θ. The data is assumed to be a random sample of cases
(individuals) on which the observable variables have been actually observed or
measured. From this data a sample covariance matrix S is computed and it is
this matrix which is used to fit the model to the data and to test the model.

Following Browne (1984), the model is estimated by minimizing a fit
function of the form

F(S, Σ(0), W) = (l/2)(s - σ)'W-\s - σ), (5)

where
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is a vector of the elements in the lower half, including the diagonal, of the

covariance matrix 5 of order k x k (k = p + q is the number of observed

variables in the model),

I*' = (^11,^21,^22,CT315--- j^kk), (6)

is the vector of corresponding elements of Σ(0) reproduced from the model

parameters 0, and W is any symmetric positive definite matrix. To estimate

the model parameters 0, the fit function is minimized with respect to 0.

Let ΔO xί) = dσ/dθ1, where s = k{k + l)/2. The gradient vector of F

is

dF/dθ = - Δ ' W ^ s - σ ) ,

and the information matrix is

E = E(d2F/dθdθ') = Δ ' W ^ Δ . (7)

These quantities can be evaluated at any admissible point 0 of the parameter

space and can therefore be used in an iterative procedure to minimize F.

The family of fit functions (5) includes most of the fit functions that are

used in practice, i.e., ULS, GLS, ML, DWLS, and WLS, see, e.g., Jδreskog

and Sorbom (1989). Fit functions based on elliptic distributions have been

developed by Bentler (1983), Browne (1984), and Shapiro and Browne (1987).

To obtain consistent estimates, any positive definite matrix W may be

used. Under very general assumptions, if the model holds in the population

and if S converges in probability to Σ as the sample size increases, any fit

function of the form (5) with a positive definite W will give a consistent

estimator of 0. In practice, numerical results obtained by one fit function

are often close enough to the results that would be obtained by another fit

function to give the same substantive interpretations of the results.

Further assumptions must be made, however, if one needs an asymptoti-

cally correct chi-square measure of goodness-of-fit and asymptotically correct

standard errors of parameter estimates.

To clarify this a bit further, assume that S converges in probability to

Σo as the sample size increases and let 0o be the value of 0 that minimizes

iΓ'(Σo,Σ(0), VΓ), that is, 0o is the minimizing value when 5 equals the true

population covariance matrix Σo We say that the model holds if Σo = Σ(0o).

Furthermore, let θ be the value of 0 that minimizes F for the given sample

covariance matrix 5, and let Ω = nACov (5), where n is the sample size minus

one. Then the asymptotic covariance matrix of θ is given by (Browne, 1984,

eq. 2.12a)

nACov(θ) = E^1(At

0W-1nW-1A0)EQ\ (8)

where Δ o and Eo are Δ and E evaluated at θ = 0O, and σ is obtained from

the non-duplicated elements of Σ(0).
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Furthermore, let Δ and E be Δ and E evaluated at θ = θ and let Ω be

a consistent estimate of Ω. Then a consistent estimate of nACov (θ) may be

obtained by substituting Δ, Ω, and E for Δ,Ω, and E in (8).

To test the model, one can use

c = n(s- ^ ' [ Ω " 1 - Ω ^ Δ t Δ ' Ω ^ Δ Γ ^ Δ ' Ω - 1 ] ^ - σ). (9)

as a test statistic (Browne, 1984, eq. 2.20b). If the model holds and is identi-

fied, this is approximately distributed as χ2 with d = s — t degrees of freedom.

If the model does not hold, denote by Σo = Σ(0o)> which is not equal

to Σo and let σo be the corresponding vector formed from the non-duplicated

elements of Σo Then c is distributed as non-central χ2 with s — t degrees of

freedom and non-centrality parameter (Browne, 1984, eq. 2.21b)

λ = n(σ0 - σoypr1 - Ω ^ Δ o ^ Ω ^ Δ o Γ ^ Ω - 1 ] ^ - σ0). (10)

In practice, Ω is not known and a W must be chosen. The usual way of

choosing W in weighted least squares is to let W be a consistent estimate of

the asymptotic covariance matrix Ω of 5, i.e., W = Ω. This yields efficient

parameter estimates. In this case, we say that W"1 is a correct weight matrix

and we may substitute W for Ω in (9). Equation (9) then simplifies to

c = n(s-σ)fW-1(s-σ), (11)

which is 2n times the minimum value of the fit function. Also note that (8)

becomes

nACov (Θ)] = EQ1, (12)

In the case of a correct weight matrix, the asymptotic covariance matrix of

the residuals s-σ is given by (cf. Bentler and Dijkstra, 1985, eqs. 1.7.4-1.7.5)

nACov (β - σ) = Ω - Δ o ί Δ ^ Ω ^ Δ o ) " ^ . (13)

For the same case, Browne and Cudeck (1993) develop an unbiased estimate

and a confidence interval for the non-centrality parameter λ and demonstrates

how these can be used in model evaluation.

Once the validity of a model has been established, tests of structural

hypotheses about the parameters θ in the model can be developed. One can

test hypotheses of the forms

• that certain 0's have particular values

• that certain 0's are equal

• that certain 0's are specified linear or nonlinear functions of other pa-

rameters.

Each of these types of hypotheses leads to a model with fewer parameters

i/, where v (u X 1) is a subset of the parameters in 0, u < t. In conventional
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statistical terminology, the model with parameters v is called the null hypoth-

esis Ho and the model with parameters θ is called the alternative hypothesis

Hi. Let Co and c\ be the value of c for models JHΓo and Hi, respectively. The

test statistic for testing Ho against Hi is then

D2 = co - ci

which is used as χ2 with d = t - u degrees of freedom. The degrees of free-

dom can also be computed as the difference between the degrees of freedom

associated with Co and c\.

4. Estimation: Ordinal Variables. The theory developed above

holds in the case that the observed variables are continuous and a sample co-

variance matrix S is used to estimate a covariance structure Σ(0). In practice,

correlation matrices are often analyzed rather than covariance matrices. This

is particularly so when ordinal variables are used since these do not have any

natural units of measurement.

Theory and applications of structural equation models when some or all

of the observed variables are ordinal have been considered by several authors,

for example, Muthen (1984), Lee, Poon, and Bentler (1990), Jόreskog (1990),

and Aish and Jόreskog (1990). Typically the estimation of the model is done

in two steps. The first step involves estimating polychoric, polyserial and

other correlations for the observed variables. The second step estimates the

parameters of the model by weighted least squares using a weight matrix

which must be a consistent estimate of the asymptotic covariance matrix of

the correlations estimated in the first step. Different formulas for the weight

matrix have been given by Muthen (1984) and by Lee, Poon, and Bentler

(1990). None of these is really feasible when the number of ordinal variables

is large. For the case when all variables are ordinal, Jδreskog (1993) gives

a procedure for estimating the asymptotic covariance matrix of polychoric

correlations which is feasible and relatively straightforward even on computers

with limited memory.

Equations (12) and (13) do not apply directly to a correlation matrix

R instead of S. Firstly, a correlation matrix has fixed ones in the diagonal,

so that rows and columns of W corresponding to diagonal elements would

be zero, which would render W singular and the fit function (5) indetermi-

nate. Secondly, a procedure for estimating the asymptotic covariance matrix

of sample variances and covariances does not apply to the correlations in R.

To resolve this problem it is suggested that the fit function (5) be replaced

with

F{θ) = {τ-p)'W-\r-p), (14)

where
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and
,Pk9k-l(θ)),

where the Pij(θ) are population correlations implied by the model as functions
of 0.

The asymptotic covariance matrix Wr in (14) should be a consistent
estimate of the asymptotic covariance matrix of r. The diagonal elements of
the correlation matrix are not included in this vector.

A small problem arises here because the fit function (14) is not a function
of the diagonal elements and, as a consequence, parameters such as the diag-
onal elements of Θε and Θ^ in LISREL (Jδreskog and Sorbom, 1989) cannot
be estimated directly. However, the error variances of a standardized observed
variable can be estimated as one minus the estimated variance contribution of
all the factors that influences the observed variable. Standard errors of these
estimated error variances can be obtained by the delta method.

Observations on an ordinal variable are assumed to represent responses
to a set of ordered categories, such as a five-category Likert scale. Here it
is only assumed that a person who responds in one category has more of
a characteristic than a person who responds in a lower category. Ordinal
variables are not continuous variables and should not be treated as if they
are. Ordinal variables do not have origins or units of measurements. Means,
variances, and covariances of ordinal variables have no meaning. To use ordinal
variables in structural equation models requires other techniques than those
of the previous section.

For each ordinal variable z {z may be a y- or z-variable in the LISREL
model), it is assumed that there is an underlying continuous variable z* which
is normally distributed with mean μz* and variance σ2

z*. The assumption
of normality is based on the belief that, for most attitudinal variables, most
people are in the middle and fewer people are at the ends. The normality
assumption can not be falsified at the univariate level, but for every pair of
variables, Jόreskog and Sorbom (1989) provide a test of underlying bivariate
normality. Quiroga (1992) studied the robustness of the procedures described
here against departures from underlying normality.

We write z = i to mean that z belongs to the ordered category i. The
actual score values in the data may be arbitrary and are irrelevant as long as
the ordinal information is retained. That is, low scores correspond to low-order
categories of z which are associated with smaller values of z* and high scores
correspond to high-order categories which are associated with larger values of
z*.

The connection between z and z* is

z — i <=ϊ Ti-ι<z*<Ti, i = 1,2, ••• , m ,

where
r0 = -oo, 7Ί < r2 < < r m _i, τm = +oo,
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are parameters called threshold values. With m categories, there are m - 1
threshold parameters.

Since only ordinal information is available about z*, the mean μz* and
variance σ\* of z* are usually not identified and are therefore set to zero and
one, respectively. However, when the same ordinal variable is measured one
or more times, as in longitudinal or panel studies and in multigroup studies,
it is possible to estimate the means and variances of the underlying variables
(relative to a fixed origin and scale) by specifying the thresholds to be the same
for the same variable over time and/or groups. In the following we assume
that μz* = 0 and that σ\* = 1. Otherwise, replace τt by (rt — μz*)/&z* in
what follows, where τ\z' is the ith threshold for variable z.

The parameters are estimated from the univariate and bivariate log-
likelihoods. These log-likelihoods have the following general form

logX =

where a runs over all cells of the marginal distribution, na is the frequency
(count) in cell α, and πα(0) is the probability of cell a as a function of a
parameter vector 01). The information matrix for 0 is

E =

Maximizing log L with respect to 0 gives the maximum likelihood estimate 0
of 0. The inverse of the information matrix E evaluated at the maximum of
log L gives an estimate of the covariance matrix of 0. The general theory is
given in Jδreskog (1993).

Consider k ordinal variables z\, z2,... ,2* with mi,m2, ,771* categories,
respectively. Altogether there are Σt=i πii ~~ ^ + ̂ (^ "~ -0/^ parameters to be
estimated, namely the thresholds (τ[g\ τ[ί , , r̂ f _ α ) , g = 1,2, , fc, and
the polychoric correlations pgh, h < g. The parameters are usually estimated
from the univariate and bivariate marginal likelihoods, that is, the thresholds
are estimated from the univariate marginal distribution and the polychoric
correlations from the bivariate marginal distributions for given thresholds; see
Olsson (1979), Muthen (1984), and Jδreskog and Sόrbom (1988). The uni-
variate and bivariate marginal likelihoods all have the general form given in
the previous paragraph.

Olsson (1979) considered the case k = 2 and studied two methods for
estimating the parameters:

(i) Estimate the thresholds and the polychoric correlation jointly from the
bivariate marginal distribution.

'This is a different parameter vector than the 0 in
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(ii) Estimate the thresholds from the univariate marginal distribution and
then the polychoric correlation from the bivariate marginal distribution
for given thresholds.

In both methods, an iterative procedure must be used to estimate the
parameters. Practical experience suggests that the two methods give almost
identical estimates. Method (ii) is computationally simple and is used most
often in practice. This is the method considered here. Method (i) would have
the disadvantage that different estimates of thresholds for one variable may
be obtained from different pairs of variables where this variable is included.

The model for the univariate marginal of variable g is

φ{u)du, (15)

where φ(u) is the standard normal density function. The parameter vector is

a _ _ _ (ΛQ) τ(g) .. Λg) \
υ ~ r9 - \T\ ->T2 > ->rmg-l)

Application of the general theory gives the maximum likelihood estimator
τg of Tg with information matrix Eg. The maximum likelihood estimator is
given explicitly as

f U) = φ - i ( p i + p2 + . . . + Pa), a = 1, , rrig - 1,

where Φ" 1 is the inverse of the standard normal distribution function.
τg is asymptotically linear in the proportions pg of the univariate marginal

distribution of variable g, τg = Bf

gpg, say, where Bg is a matrix of order
rrig x rrig - 1 (Jδreskog, 1993).

Let Φs/i be N times the asymptotic covariance matrix of τg and ffc. Then:

= B'gπghBhj (16)

since Cov(pg,ph) = ^gh — πgπh> a n ^ Bf

gπg = 0 (Jδreskog , 1993), where τzgh
is a matrix of population probabilities of the bivariate marginal distribution of
variables g and h and πg and π^ are vectors of population probabilities of the
univariate marginal distributions of variables g and h. Equation (16) holds for
g φ h. It holds for g = h as well, if πgh in (16) is interpreted as the diagonal
matrix with elements π[9 ,712 \ ,Kmg- Note that Ψgg = E~x.

The model for the bivariate marginal of variables g and h is

Φ2(u,v;Pgh)dudvJ (17)
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where <t>2(u, v'-> p) is the density function of the standardized bivariate normal

distribution with correlation p. The parameter vector is

(18)

consisting of the thresholds for the two variables and the polychoric correlation

Pgh
To estimate the polychoric correlation the bivariate log-likelihood

mg πih

logL(p,rg,fh) = i V £ J > i f hnπ[9

b

h >), (19)
α = l 6 = 1

is maximized with respect to p for given τg and f̂ . Here p^b ' are the sample

proportions in the bivariate marginal distribution for variables g and h. The

value of p that maximizes log L is the estimate pgh of the polychoric correlation

Pgh This estimate satisfies the equation

/(/δ,f ί r,fΛ) = 0, (20)

where / = dlogL/dp.

Olsson (1979, eq. 23) gives a complicated expression for the asymptotic

covariance matrix of

θgh = (τg,τh,pgh). (21)

From this one can obtain the regression of pgh on τg and r^. However, this

regression can be obtained more directly as follows. Expanding / to linear

terms, gives

a(p -p) + b'ifg - Tg) + c\τh - τh) = 0, (22)

where a =plim df/dp, b =plim df/dτg, and c =plim df/dτh The required

"plims" are given by Olsson (1979). Equation (23) can be interpreted to give

the asymptotic conditional mean of pgh for given τg and r^:

I rg,rh) = agh + β'g

9h)τg + β'[ah)τh, (23)

where αgh is a regression intercept term and βg' = - α ~ 1 6 and

—α~λc are vectors of regression coefficients.

The estimated thresholds and polychoric correlations are all asymptoti-

cally linear in the sample proportions of the univariate and bivariate marginal

distributions (Joreskog 1993). Since these proportions are linear in all the

sample proportions of the fc-way contingency table, it follows that the joint

distribution of all the estimated parameters is asymptotically normal.

Let

T = (τi,f 2, τ f c),
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be the vector of all estimated thresholds, and let

P = (/521,/331,/>325/34l5P42>/>43> ,βk,k-l)i

be the vector of estimated polychoric correlations. The asymptotic covariance

matrix of p is obtained as (see Rao, 1965, eq.2b.3.6)

ACov (p) = ACov [E(p | f)] + ACov (p | f ) . (24)

The first term is obtained from the regressions of each p on the thresholds.

Specifically, using (23), the covariance between pgh and βij due to variation

in T alone is

NACov(pgh, pi-) f

+ β'ί9h)Ψhiβlij) + β'ί9h)Ψhjβfj). (25)

Conditional on r = f, it follows from the general theory in Jόreskog

(1993) that asymptotically

mh

α = l 6 = 1

where

U =

Σ
a=l6=1

Similar expressions hold for variables i and j . Hence,

fΠg TΠh TΠi rΠj

( 2 7 )

ϋ ? * (28)
α = l 6 = 1 c = l d=l

where

i\^ov{p ,pcd ) - πabcd πab πcd

Here TrĴ cd are the probabilities for the four-way contingency table for vari-

ables <gr, Λ, i , j , which can be estimated consistently by the corresponding sam-

ple proportions p^Jd ^ f°U°w s from (27) that

mh

α = l 6 = 1

so that equation (28) simplifies to

rrig rrih mi

α = l 6 = 1 c = l d=l
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which may be estimated as

' (32)
α = l 6 = 1 c = l d=l

where ύ[9

b

h) is (27) evaluated at θgh. Equations (25), (31), and (32) hold for ev-
ery pair of variables gh and ij with g ψ h and i φ j . Evaluating (25) at sample
estimates and adding (32) gives the required estimate of NACov(pgh,pij).

Equation (32) involves the four-way contingency table for variables p, h, i,j.
However, these four-way contingency tables need not be computed. Let κaghij
= 1/JV, if zag = a,zah = 6, zai = c,zaj = d and naghij = 0, otherwise, where
zai is the αth observation on variable i. Then (32) is

N

Hence, this estimated asymptotic covariance is obtained by reading the raw
data and for each case multiplying ϋrfb ' and vr^ and cumulating over all
cases in the data.
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