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When the inference to be made is selected after looking at the data, the

classical statistical approach demands — as seems intuitively sensible — that

allowance be made for the bias thus introduced. From a Bayesian viewpoint,

however, no such adjustment is required, even when the Bayesian inference closely

mimics the unadjusted classical one. In this paper we examine more closely this

seeming inadequacy of the Bayesian approach. In particular, it is argued that

conjugate priors for multivariate problems typically embody an unreasonable

determinism property, at variance with the above intuition.

1. Introduction. A great deal of statistical practice involves, explic-
itly or implicitly, a two stage analysis of the data. At the first stage, the data
are used to identify a particular parameter on which attention is to focus; the
second stage then attempts to make inferences about the selected parameter.

Perhaps one of the most important intuitions which the discipline of
Statistics has to offer — and perhaps one of the hardest to put across to the
outside world — is the inappropriateness, in such circumstances, of a "face-
value" approach, in which the second stage proceeds just as if the quantities
identified at stage one had been chosen before the experiment. Instead, the se-
lection or optimization applied at the first stage introduces a bias which needs
to be allowed for — either by explicit modelling of the whole two-stage pro-
cess, or by some general de-biasing technique such as cross-validation (Stone,
1974) or prequential analysis (Dawid, 1992).

In this paper we contrast the Bayesian approach to this problem with
the above intuition. Since Bayesian posterior distributions are already fully
conditioned on the data, the posterior distribution of any quantity is the same,
whether it was chosen in advance or selected in the light of the data: that is, for
a Bayesian, the face-value approach is fully valid, and no further adjustment
for selection is required. This seeming paradox is all the more striking in
problems where the face-value Bayesian inference closely mimics (in form, if
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not in interpretation) the face-value frequentist inference. If the latter would
appear to require adjustment, why should not also the former?

EXAMPLE 1. Treatment selection. In an agricultural trial, p varieties
are tested, with the aim of choosing that having highest mean yield. We might
select, for future use, that variety i* associated with the largest of the sample
means (X*). (Note that this need not, of course, have the largest population
mean.) For simplicity we suppose Xi ~ N(μi,σ2) independently (σ2 known).
We would then be interested in making inferences about the corresponding
population mean μι* = μ*, say. How should such inferences take account of
the optimization performed at the first stage?

The naive or "face-value" approach, which estimates μ* = μι* by X* =
Xi*, appears inadequate: z* is the realization of a random variable /*, which
the selection process biases towards those values of i for which Xi happens, by
chance, to be in the upper tail of its distribution. Thus — as will be confirmed
in Section 2 below — X* = Xj* is likely to overestimate μ* = μj*. This is just
the "resubstitution effect" which statisticians have learned to recognize and
try to deal with: if a method optimized for a data-set is (naively) assessed on
the basis of the same data, an over-optimistic view of its future performance
will be obtained.

Nevertheless there is a puzzling aspect to this analysis. We would have
been happy to estimate μz * by X;*, had i* been fixed before experimentation.
Why then should we not, after observing the data and finding /* = z*, still be
happy to do so? Why should the process by which we come to select a par-
ticular parameter for further attention affect the process of making inference
about that parameter?

The Bayesian approach respects this alternative intuition. Suppose, for
example, we use the improper prior π(μ) oc 1 . In the posterior we then have
μi ~ N(xi,σ2) independently. In particular, μ* = μ;* ~ JV(#*,σ2) , and #*
could be used as a Bayesian estimate of μ*. No account is thus taken of the
selection process, and no adjustment for bias is needed. Similarly, a Bayesian
(1 — α)% credible interval for μ* is #* ± crzia , identical with an unadjusted
face-value confidence interval.

EXAMPLE 2. We might alternatively select those two treatments z*
and j * yielding the greatest sample difference Xi* - Xj*. Frequentist analysis
would suggest that this overestimates μ* — μ ,̂ while an improper Bayesian
analysis would not.

EXAMPLE 3. The same issues arise if we use ]Γ α*X; to estimate
Σ α i Mt ? where α* is chosen to maximize ]>̂  αz Xj , subject to ]ζ α; = 0 and
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2. Optimization and selection: frequentist analysis

2.1. General structure. Suppose that we have a collection {φ\ : λejβ} of

parameters of potential interest. Each φχ is a function of the full parameter θ

underlying the distribution of the data X. Suppose further that for each fixed

λeC we have a "good" estimator Xχ of φχ.

In Example 1 we have C = {1,2, ,p}, λ = i, φχ — μι and X\ = X{. For

example 2 we could take C = {(i,j) : 1 < i / j < p}, λ = (i,i), φχ = μ% — μ^

Xλ = Xi - Xj- and, for Example 3, C = {a : Σaί — 0 ? Σ α i — 1}> λ = α,

In an optimization problem, one focus of interest might be φ** = sup{̂ >λ

λ6£}, together with λ**, the (supposed unique) value of λ achieving this (sup-

posed possible). In so far as these are well-defined functions of 0, making

inferences about them raises no special conceptual difficulties, although in

practice it may be far from straightforward. In Examples 1, 2 and 3, we

have, respectively, φ** = μ** — sup{//;}; φ** = sup{μ; - μj}; and φ** =
s u P { Σ α i / ^ : Yjai = 0 , Σ α i = 1} — thfe last being in fact ^

achieved at αp = (μi - μ.)/(Σ(μi - μ.)2)K where μ, = p"ι

The relevance of such optimized parametric quantities φ** is limited by

the fact that, without fully knowing the parameters, it is not possible to iden-

tify the optimizing value λ**, so that, when we estimate 0**, we are estimating

an unachievable optimum: and it is not very useful to estimate sup{μi}, for

example, if we do not know which treatment to use to achieve it. An alterna-

tive, more useful, focus of interest might be φ* = φ&*, where the value Λ* is

suggested by the data as likely to be associated with a large parameter (for

example Λ* might index the largest sample mean). Since Λ* is known (af-

ter seeing the data), we can in this case identify the parameter about which

inference is being made. But Λ* is itself random, and φ* is thus a "data-

dependent parameter". General principles of inference for such quantities are

not well-developed.

2.2. Optimized parameter. Although the problem of making inference

about φ** = sup{</>λ} is not our primary interest here, it forms a useful half-

way stage on the road to our real concern: making inference about a parameter

φ* suggested by the data. We therefore now examine some aspects of this

problem.

Suppose X\ is unbiased for φ\, all λ. In considering estimation of φ**

and λ**, we might begin by examining the "naive" estimators

X* = sup{XΛ :

and

Λ* = argsup{Xλ :
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We then note that, since X* > X λ, all λ, EΘ(X*) > sup{Eθ(Xχ) : λβ£} = φ**
— with equality only if Λ* = λ** with probability 1. Thus X* is indeed
positively biased for </>**, and the bias can be strong if the set C is rich enough.
It would therefore not seem appropriate to use X* to estimate 0**, at least
not without making some kind of adjustment to take this bias into account.

EXAMPLE 4. Again take X{ ~ N(μι,σ2). Take λ = a(YJai = 0, £ α ?
= 1), φx = ( Σ aiμi)2. Then Xλ = ( £ α ^ ) 2 - σ 2 is unbiased for 0 λ . We have
<£** = Σ(W -μ.)2, ** = ΣίXi-X.f-σ2. Thus £(X*) = φ** + (p-2)σ\
and X** is positively biased for φ** if p > 2 (if p = 2, then, with probability

The above "bias" effect is not restricted to its effect on unbiased estima-
tion, but affects other forms of inference. In particular, in many problems we
have the following structure. There is a family Q = {Qφ} of distributions,
stochastically increasing in φ, such that, given 0, X\ ~ Qφλ Moreover, the
distribution of X* = sup{Xλ} depends on θ only through φ** = sup{<£λ} Let
Q*φ denote this distribution when φ** = φ, and Q* = {Qφ}. In Example 3 we

had φλ = Σ*iμu Xx = E ^ t , <£** = ||μ - μ.l||, ^ * = \\X - X.l\\. We
have the above structure with Qφ = N(φ,σ2) and Q£ = {^2Xp_i(^2/cr2)}^.

In such a case, Q^ must be stochastically greater than Qφ, all 0. For
let g be an increasing function, and let h(φ) = Eφ(g(X)). Then h is in-
creasing, and Eo (g(Xχ)) = h(φ\). Our previous bias argument now implies
that JEJ . (β(X*)) = Eθ(g(X*)) > h(φ**) = Eφ**(g(X)). Since g and 0 are
arbitrary, the result follows.

This property means that, under the (correct) model Q* for X* given <?!>**,
large values of X* are more likely, for any </>**, than under the (incorrect) face-
value model Q. This in turn suggests that any value of X* can be explained by
a smaller value of 0** under Q* than required by Q, and thus that any kind of
inferences made using Q are likely to be biased upwards (in an intuitive sense)
compared with those appropriate under the correct model Q*. In particular,
for testing φ** = φ0 against φ** > φ0, the face-value upper-tail P-value, if
X* = x*, is Qψo(X > x*), which is smaller than Qφo(X > #*), the correct
P-value. The real evidence against φ** = φ0, in favour of φ** > φ0, is thus not
as strong as face-value inference would indicate. Correspondingly, face-value
confidence limits will be higher than warranted.

2.3. Data-dependent parameter. Suppose again that Xλ is unbiased for
φ\, all λ. We now proceed with a two-stage approach. At the first stage we
use the full data X to determine the realized value λ*, of Λ*, which achieves
sup{Xλ}, and is thus likely to be associated with a large parameter φχ; and
at the second stage, having thus determined that the parameter of interest is
φ* = φx*, we proceed to make inferences about it.

If we ignore the fact that λ* was chosen as a function of X — what we
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have termed the face-value approach — then we could consider using the face-
value estimator X\*. In terms of the full two-stage process, this would mean
that we were again using the estimator X* — XΛ*, but this time to estimate
the data-dependent parameter φ* = 0Λ*5 rather than the optimal φ**.

Now necessarily φ* < <£**, and typically this inequality is strict with
probability 1. Since we have already shown that EΘ(X*) > <£**, we must
therefore consider X* as positively biased for φ* (even though the meaning of
this assertion is unclear when φ* depends on X), and indeed still more strongly
biased for estimating φ* than for estimating </>**. In particular, Eβ(X*-φ*) >
0 for all θ. If an estimate of φ* is to be based on X*, it thus appears that some
form of downward bias correction will again be required. Similarly, other forms
of face-value inference for φ* based on X* can be considered biased upwards,
and in need of adjustment.

3. Bayesian inference. Let now θ have a prior distribution, and
let Yλ be the posterior expectation E(φλ\X). Define Y** = E(φ**\X\ Y* =
E(φ*\X). Let Y1" = sup{yλ} be achieved at Λf, and define φ* to be the
corresponding data-dependent parameter φ^. Then Y^ = E(φ^\X). Y**,
Y"1" and Y* could be used as sensible Bayesian estimates of <£**, φt and φ*
respectively. It is readily seen that Y** > Y"*" > Y*. The frequentist analysis
of Section 2 would lead us to expect that Y**, and a fortiori Y"1" and Y*,
should typically be smaller than X*, so as to counter the effects of bias.

3.1. Improper priors. Now in many problems (such as Example 1)
it is possible to choose a (necessarily improper) prior for θ such that Y\ is
unbiased for φ\, all λ. That is, we can identify Yλ, with X\, and thus Λ"1",
Y f, 0t with Λ*, X*, φ*. But then the Bayesian estimate E(φ*\X) = Y* =
XΛ* = X*, which does not incorporate any correction for bias. Worse, since
Y** > Y*, so far from incorporating a negative bias-correction, as seems
required from the frequentist analysis, the Bayesian estimate of </>** adjusts
X* in a positive direction. These properties of the improper Bayes inference
seem highly undesirable, and appear to form yet another argument against
the use of improper priors.

3.2. Proper priors. To see that the above problems cannot arise in
quite the same form with a proper prior, we note that 0 = Y* — E(φ*\X) =
£(Y*-0*|X),sothat (in the joint distribution of (X, θ)) E(Y*-φ*) = 0. We
thus can not have EΘ(Y*) > φ* for all 0, since this would imply E(Y*-φ*) > 0.
In other words, for at least some values of the parameter, the Bayes estimate of
φ* does not share the positive bias associated with X*, and can not therefore
be ruled out on that score. The same holds for Y^ as an estimator of φ .
Similarly, EΘ(Y** - φ**) cannot be positive for aU θ (unlike ££(X* - 0**)).
However, even though free of logical inconsistencies, the behaviour of proper
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Bayesian inference under selection can still appear unsatisfactory.

EXAMPLE 5. In Example 1, take the proper prior μ; ~ 7V(0,τ2) inde-

pendently. In the posterior, μ* ~ N (yi, (^ + ^ ) J, with yι = (r^
τ

+Λ X{.

Correspondingly, μ* ~ N (y*, ( ^ + T ? ) " 1 ) (y* = ( τ ή ^ τ ) **)• We see that
large values of x* are indeed shifted downwards, although the effect depends
only on the size of x*, and in no way on the selection process (for example, it is
independent of the number of treatments selected from). However, if the prior
variance r 2 is large compared with the data-precision σ2 — whether because
r 2 is large, representing "vague prior knowledge", or because σ2 is small, being
the variance σ$ /n of the average of a large number n of replicate observations
— then y* will be close to #*, and one might feel that the shrinkage effect is
simply not enough to counter the effect of bias.

We can also consider the alternative proper prior, under which the (μ^)
have independent Student distributions, μι ~ τtv. It can then be shown
(Dawid, 1973) that \y* - x*\ —> 0 as x* —• oo, so that, asymptotically, this
Bayesian method makes no correction at all for selection bias.

3.3. The effects of prior assumptions. What is the nature of the
seemingly paradoxical behaviour, under selection, of the Bayesian inferences
discussed above? Do they point to a flaw in the Bayesian approach? We shall
argue that this is not the case, but rather that they highlight the importance
of using a prior distribution carefully chosen to represent and incorporate
understanding of the problem, rather than pulled off a convenient shelf.

Consider, for Example 1, under what conditions on μ the sampling bias
in X* is likely to be small. Clearly this will be when, for some io, P(/* = io) is
close to 1, which will happen when μι0 exceeds max{μi : i φ io} by a quantity
large compared with σ. Conversely, the bias will be greatest when the μ's are
all equal. If the prior distribution gives very high probability to the former
state of affairs, that is as much as to say that we do not expect the bias in X*
to be important, and should therefore not need to make much correction for
it.

For the prior μι ~ 7V(0,r2) independently, the above condition on μ
will hold with high probability when the prior variance τ 2 is large com-
pared with the data variance σ2, and this is just the circumstance when
Y* = {τ2/(τ2 + σ2)}X* is close to X*. Conversely, if r 2 is not so large,
the non-ignorable shrinkage factor τ2 /(τ2 + σ2) can be regarded as introduc-
ing a suitable correction for bias, in this case expected to be non-negligible.

For the prior μ2- ~ τtu, when r 2 > σ2 essentially the above discussion
again applies. But, even for small r, the long tail of the f„ distribution means
that (particularly for large p) there is a reasonable probability that the largest
of the (μι) is much larger than the others, so that it is not surprising to find Y*
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close to X* — especially when X* is large, a situation which goes to confirm
this structure for the (μ;). In contrast, smaller values of X* may require (and
will get) stronger "debiasing".

The message of the above discussion is that the Bayesian solution is per-
fectly sensible so long as the prior is taken seriously. If a formal Bayesian
analysis leads to results which appear unreasonable, the implication is that
the prior distribution itself was unreasonable. All this goes to stress the im-
portance of thinking very carefully about the prior distribution, and ensuring
that one is happy with its properties and implications.

In the remainder of this paper we consider the behaviour of Bayesian in-
ferences based on conjugate prior distributions in some multivariate problems.
To the extent that this behaviour is counter-intuitive, we argue that this is
because the priors used themselves embody a world-view at odds with the of-
fended intuition. If that intuition is considered valid, such prior distributions
should not, therefore, be used.

4. Discrete prediction and discrimination. Let Xχ, •• ,Xp be
random 0-1 predictor variables, and Y a 0-1 response variable. We have a
random sample D of cases {(xi^yi) : i = 1, , n}, from which we wish to
construct a rule for classifying Y as 0 or 1 on the basis of observation of X
alone, and estimate the associated error rate.

Let PΘ be the joint distribution of X and Y, with θ(x,y) = PΘ(X =
x, Y = y). Let 1Z — {Rχ} be the set of all possible classification rules. R\
classifies x as y\(x). Its correct classification rate is then φ\ — ]Γ)χ θ(x, y\(x)).
If θ is known, the optimal classification rule is: classify x as y**, where y** =
y**(x) maximizes 0(#, y) over y = 0,1. The optimal correct classification rate
is thus φ** = Σθ(x,y**(x)). Of course, if θ is unknown, so is the rule ?/**,
so that 0** is not achievable in practice.

Let n(cc,y) be the frequency, in JD, of (X = x,Y = y). The naϊve data-
based classification rule classifies x as y*(x) = ?/*, where y* maximizes n(x,y)
over y (ties, including the case n(x,0) = n(x, 1) = 0, being broken arbitrarily:
for definiteness we take y* = 1 if there is a tie). If this rule is applied to future
cases, its error rate will be φ* = ^ χ θ (xyy*(x)). This is a data-dependent
parameter, because the rule y* is based on D.

The naive estimate of θ(x,y) is θ(x,y) = n(x,y)/n, which, for any fixed
(a?,?/), is unbiased. However, as discussed in Section 2, the implied estimate
φ = Σas ^ (XJ y*(x)) will t>e biased upwards, whether considered as an estimate
of 0**, or of φ*. Note that φ is just the proportion of correct classifications in
2?, when using the rule y* which maximizes that proportion. Clearly this can
give a very rosily optimistic view of the expected proportion φ* arising when
y* is used on new cases. Indeed if, as can hold in many applications, n, though
possibly large, is small compared with 2P, we may, with high probability, have
n(x) — 0 or 1 for all cε, in which case φ = 1.
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A standard Bayesian analysis (Teather, 1974) uses the conjugate Dirich-
let prior for θ = (θ(x,y)). If the prior parameters are ct = (a(x,y)) then
the posterior is again Dirichlet, with parameters <x + n (n = (n(cc,?/))). The
optimal Bayes classification rule is y^ (cc), chosen to maximize α(cc, y) + n{x, y)
over y. In particular, if the prior parameters are all equal we can take y^ = y*.

The implied posterior for φ* is β{θi[ + rϊi&Q + ΓQ), where
αo = ΣΦ^*W)^o = Σ^^^Wl^ί = α+-«o 0+ = Σα(a5
r^ = Π — TQ. In particular, the posterior expectation of φ* is (αo + ro)/(α_|
which, if the α's are small, will be close to the (biased) face-value estimate
φ. Moreover, for large n the posterior variance will be very small. Once
again this Bayesian inference appears highly misleading. Brown (1976, 1980)
discusses the above difficulty and relates it to properties of the Dirichlet prior
distribution. Another property of this prior, which gives some insight into
the above behaviour, is studied by Fang and Dawid (1993). We consider
the effect of adding further X-variables, all the time ensuring a (consistent)
Dirichlet structure for the prior. We show that, under weak conditions, this
implies prior probability 1 for the event that the distributions of X given Y
would be such as to allow asymptotically perfect discrimination between the
populations labelled by Y, as the number of X-variables is increased. In other
words, if we take the Dirichlet structure seriously, we must believe that Y is a
deterministic function of the Jf's. Of course, we are a priori uncertain of the
form of this function. However, on observing data (Y and some of the X's)
we shall essentially be observing some of its values (with little uncertainty),
and hence shall be able to reconstruct it, in part. Further, this prior implies
that, given a sample of size rc, the total probability of all the sc-configurations
not yet observed is of order n~λ (Brown, 1976), so that we can safely ignore
such x-values.

Now if the above beliefs are accepted, it is very reasonable to estimate
φ* by something close to φ. When we believe in deterministic discrimination,
the dangers of following random noise in the data are almost eliminated, and
consequently we can ignore its biasing effects. There is thus nothing unsat-
isfactory about the implications of the Dirichlet prior in those situations for
which it is a good description. The seeming conflict with frequentist analysis is,
rather, a conflict of world views: that behind the frequentist approach taking
seriously just the possibility of high residual uncertainty in Y after observing
X which is essentially ruled out by the Dirichlet prior. Which world view is
more appropriate must be a matter of context. Statisticians tend to work with
applied problems, such as medical diagnosis and (more especially) prognosis,
where it would not be reasonable to suppose that classification could be done
almost perfectly, were only enough variables to be observed. But there are
certainly problems (e.g. botanical classification) where the opposite is true —
indeed, much of the work on pattern recognition undertaken within the arti-
ficial intelligence community seems based on archetypal applications in which
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perfect classification is possible. The Dirichlet prior appears well suited to
such problems, but inappropriate to express the more "statistical" problems
in which residual uncertainty can never be eliminated. Other priors expressing
this idea need to be developed and explored.

5. Continuous discrimination and regression. A very similar
story can be told for some other common multivariate problems. Consider
first the problem of discrimination between two multivariate normal distri-
butions with common dispersion. As soon as the number of variables p con-
sidered exceeds the within-group degrees of freedom z/, it is possible to find
a sample-based discriminant function yielding zero within-group sample vari-
ance, infinite sample Mahalanobis distance, and perfect sample classification.
Of course, no-one would infer that this discriminant would work perfectly on
future cases - the effect of bias is obvious.

When we conduct a Bayesian analysis with the usual conjugate normal-
inverted Wishart prior, we can consider, for example, the discriminant function
maximizing the corresponding posterior expected population Mahalanobis dis-
tance. For p > v this will not generally separate the samples perfectly, but
will tend to do so more closely for larger p: this is because, under the as-
sumed prior distribution, the Mahalanobis distance between the populations
tends almost surely to infinity as p —• oo (Dawid and Fang, 1992); and hence
the same holds for its posterior expectation. This Bayesian discriminant is
thus, in a sense, very close to being a naϊve sample-based discriminant, and
once again the conjugate Bayes approach appears to neglect the problem of
bias. And, once again, this behaviour appears less unreasonable if one truly
takes the conjugate prior seriously, since it implies that, with probability 1,
it is possible to classify an observation perfectly on the basis of sufficiently
many predictor variables. However, in many contexts this assumption will be
clearly unreasonable. In that case, use of a conjugate prior can lead to highly
misleading inferences.

Finally, consider the prediction of a continuous variable Y using con-
tinuous predictors Xi,X2, ' ?-̂ p> the joint distribution being multivariate
normal. Again, for large enough p, it will be possible to find a sample-based
linear predictor which exactly fits the sample data, with zero residual varia-
tion. Again, a Bayesian analogue, using a conjugate prior, will be very close
to this. And yet again, this neglect of sampling bias is justifiable if the prior
is taken seriously, since it implies (Dawid, 1988) that, with probability 1, the
true residual uncertainty in Y decreases to 0 as p —» oo: yet another instance
of asymptotic determinism.

6. Discussion. We have seen that use of a conjugate prior, in a variety
of multivariate problems, leads to inferences about selected parameters close
to face-value sampling-theory inferences, but, worryingly, with no scope for
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bias correction. We have also seen that this does not undermine the self-
consistency often trumpeted as the main virtue of Bayesian inference, but is,
rather, explicable in terms of an "asymptotic determinism" property implicit
in the conjugate prior, under which - if it is truly believed - selection bias
ceases to be a problem. The moral is that self-consistency is not enough:
choice of prior distribution for Bayesian analysis is a delicate matter, which
must be carefully considered in terms of the realism of its implications in the
context for which it is intended.
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