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DESIGN OF CONTROL CHARTS
FOR DETECTING THE CHANGE POINT
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The discrete time change-point detecting problem is considered. The main

purpose is to review some accurate approximations for the operating character-

istics (ARLQ and ARL\) for three well-known detecting procedures: CUSUM,

EWMA, and Shiryayev-Roberts procedures, based on the boundary correction

technique. These approximations are shown to be very accurate compared with

simulation and numerical values. The results can be used for the design of these

control charts.

l Introduction. Suppose Xi,..., XΘ-I , XΘ-> ? Xn-> a r e a sequence
of independent random variables, where Xι,..., X$-i are iid with the density
function /o(#), XQ, - 5-Xn? a r e ϋd with the density function /i(#), and θ
is the change-point and assumed to be unknown. The purpose is to find a
detecting procedure in order to raise an alarm as soon as possible after the
change occurs. The change-point problem has many applications in a variety of
areas such as the surveillance of a system, monitoring the quality of production
processes, and alarming for a flood etc..

For the convenience of discussion, we shall use the terminology from qual-
ity control. And for simplicity, we consider the normal case with /o following
N(0,l), and f\ N(μ, 1) with μ > 0 unknown. Denote EQ[.] as the expectation
when the change is at θ. In particular, EOQ and E\ denote the probability
and expectation calculated when the change-point is at infinity and at the
beginning, respectively.

For a stopping rule r as the alarming time associated with a detecting
procedure, two mostly used operating characteristics are the average in-control
run length(AiZio) and the average out-of-control run length(Ai?JLi), defined
by
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ARLQ and ARL\ are used to be evaluated by simulation as drawn by nomo-
grams. Recent approaches are mostly through numerical methods such as the
Markov chain method when the detecting process is Markovian, see Brook and
Evans (1971) for the CUSUM procedure and Lucas and Saccucci (1990) for
the EWMA procedure. The goal of this paper is to provide another simple
method based on the boundary correction technique as discussed in Siegmund
(1985) for the CUSUM procedure. The basic idea is to correct the control
limit by adding the average overshoot at the alarming time. This method has
several advantages. First, it has a clear relationship with the result in the
continuous time case which usually has a simple close form. Second, it gives
very simple formula which is extremely useful for the design purpose. Third, it
has quite satisfactory accuracy for practical use. Three detecting procedures,
i.e. CUSUM, EWMA and Shiryayev-Roberts procedures will be discussed. In
Section 2, we first give the formulas for the approximations for ARUs when
the control limit is large. The emphasis is for ARLo since it is crucial for the
design. Comparisons with numerical values are made to show their accuracies.
The main contribution of this paper is to give a simple design method for the
EWMA procedure. In Section 3, we give some general guidelines on the prac-
tical use of these three procedures. Section 4 gives the technical details for the
proofs of the related results in two subsections. First, we check the accuracy
of the approximations for the ARL's in the CUSUM procedure. Then, we give
the boundary correction results for the EWMA procedure.

2. Approximation for ARVs. In this section, we give the approxi-
mations of ARL's for the three procedures and checking their accuracies by
comparing with the numerical values. We begin with the CUSUM procedure.

2.1. CUSUM Procedure. When μ is unknown, we usually select a refer-
ence value δ to form a simple procedure. The CUSUM process for detecting
the shift δ is defined by

(1)

where YQ is usually taken as 0. An alarm is made at

T = min{n > 1 : Yn > d}.

Siegmund (1985) gives the corrected diffusion approximations of ARL^s
for the CUSUM procedure under the exponential family. In the normal case,

AKLQ «
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as 6 -> 0, d -* oo, and id -+ constant, where /> = 0.583 for relatively small 6.

Theorem 10.16 of Siegmund (1985) shows that the error of approximation
(2) is on the order of o(l/δ). A careful reevaluation shows that the approxi-
mation is accurate in the order of o(l) as δ —• 0, see Section 4.1. The same
conclusion is true for ARL\ where the approximation is given by

ARL1(μ) »

for μ > £/2. A more general discussion for the second order approximation
for the ARVs of the CUSUM procedure can be seen in Pollak and Siegmund
(1986).

One may note that if we ignore the correction factor 2/>, (2) and (3) are
the results for the continuous time CUSUM procedure (Taylor (1975)).

Van Dobben de Bruyn (1968) uses several numerical methods to eval-
uate ARUs for the CUSUM procedure. Table 1 gives the comparison of
the approximations (2) and (3) with the numerical values for δ < 1.2 and
d = 2,2.5,3,4,5,6 respectively. We find that the relative error is within 2%.
For large tf, higher order expansions for the mean overshoot will be neces-
sary for a more accurate approximation, see Section 4.1 for the first order
expansion.

2.2. Shiryayev-Roberts Procedure. The discrete time Shiryayev-Roberts
procedure was first given by Roberts (1966). The procedure was formally
discussed by Pollak and Siegmund (1985) in the continuous time case and
shown to have similar behaviors as the CUSUM procedure. The Shiryayev-
Roberts process is defined as

(4)

with RQ = 0 for the chosen reference value δ. An alarm is made at

r = inf{n > 0 : Rn > T}.

The approximation for ARLo is given by Pollak (1987) for the exponentially
family, from which, a simple approximation is given by

ARLo « Tepδ, (5)

where p is given as before.

The accuracy of approximation (5) is even better than that for the CUSUM
procedure. Table 2 gives the comparison with the simulated results for T =
100,300,500 respectively. The simulation is replicated 10,000 times. From the
table, we see that for δ < 2.0, the approximation is very satisfactory.
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For ARLι(μ), the approximation appears slightly complicated which is
given by

ARL1(μ) = JT^-ΓΛ^T + Mn

see PoUak (1987).

2.3. EWMA Procedure. It is not difficult to derive the CUSUM and
Shiryayev-Roberts procedures based on the likelihood principle and Bayesian
approach, respectively. A more intuitive idea is to smooth the previous data
in order to reduce the effect of noises in the sampling procedure. Two com-
mon methods are the moving average and the exponential smoothing (Roberts
(1966)). The EWMA procedure based on the exponential smoothing has sev-
eral quite interesting features. First, it gives the estimation of current mean,
and thus can be used as a detecting process. Second, it is the optimal pre-
dicted value for the IMA(O,1,1) process which has been used for modeling the
quality characteristic process for gradually increasing variation (Box and Jenk-
ins (1963)). Third, it is Markovian and thus one can evaluated its operating
characteristics quite easily (Lucas and Saccucci (1990)).

Define the exponential smoothing of X\,..., Xn by

with ZQ = 0 and 0 < β < 1. The limiting variance of Zn can be easily found

as

To detect a positive shift of mean, the usual EWMA procedure is defined to
make an alarm at

T = mi{n >l:Zn>B = bσ^}.

From the definition of Zn, we see that after the change, the mean of Zn

exponentially increases to the true mean δ. The design of EWMA procedure
is rather complicated. In order to be able to detect the shift efficiently, a^b
should be taken less that ί, and as small as possible in order to have small
average delay time. However, b and β have to be chosen to satisfy the condition
for ARLQ. Thus, there is an optimal design problem of choosing β and b which
minimizes the average delay time for given ARLQ.

In the continuous time case, Srivastava and Wu (1993) have considered
this optimal design problem in terms of the stationary average delay time
(Shiryayev (1963)). The main result shows that as ARL0 = T -> oo, in the
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first order, the optimal smoothing parameter β* and control limit b* satisfies
the following two equations:

β = 2c*δ2/b*2, (6)

4" Γ[Φ(x)Γ1Hx)dx = T = ARL0, (7)
P* Jo

where c* = 0.5117. An approximation for β* can be obtained as

/Γ « 0.511762/ln[0.408362T(21n(0.4083ί2T))1/2] (8)

where obviously, the right hand side is required to be positive. Furthermore,
it follows from (6) that as T —• oo,

B = fcσoo « δ(/?/2)1/2 « 0.7156.

This implies that the optimal control limit for Zn is approximately set at
0.715(5.

Under this optimal design, for μ > 0.7156, we have

V V(l - 0.7156/μ)2 1) + °U* 2 J J '

see Section 4.2 for the exact results in the discrete time case. One can see that
comparing to the CUSUM and Shiryayev-Roberts procedures, the approxima-
tion for the EWMA procedure is less accurate as the error is on the order
of 1/lnT rather than lnT/Γ for the other two. Also when μ = ί, it is not
difficult to check that the EWMA procedure is not as efficient as the other
two procedures as the same ARLQ —> oo (Srivastava and Wu (1993)).

The approximation (7) is too crude to be acceptable in the discrete time
case. In Section 4.2, a more accurate approximation is obtained by adding the
mean overshoot ER = E(ZT — δσoo) to feσoo, which is roughly estimated as

ER « β*p9 (9)

where p w 0.583 as before. By this correction, ARLo is about

ARLo « e° 8 3 4*Γ,

in the first order, where T is given by (7), see Section 4.2.

In order to detect a shift value 6 with ARL0 = Γ, the design for an
EWMA procedure can be done in the following way. First, select a β based on
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(8) with T replaced by Γe" 0 * 8 3 4 *. Then, let B = 0.715£ - 0.583/3. Although
this does not give the ideal optimal design, it is quite good enough for practical
use.

An interesting method based on the Edgeworth expansion of the crossing

probability is given by Robins and Ho (1978) by calculating the first four

moments recursively. Table 3 gives some comparisons between the corrected

diffusion approximation, the numerical values given in Robins and Ho (1978)

, and the lower bound given by (16) of Section 4.2 which is the approximation

by ignoring the overshoot. We see that the corrected boundary approximation

gives much improved values than the lower bound. Ironically, the corrected

diffusion approximation achieves its best accuracies around the region of {0.1 <

β < 0.25}, which, according to Montgomery (1991), is the most desirable

region for the value of β in practice.

Table 1: Comparison of ARL0 and ARLX for CUSUM

d δ ARL0 ARLt

2.0

2.5

3.0

4.0

5.0

6.0

0.0
0.4
0.8
1.2
0.0
0.4
0.8
1.2
0.0
0.4
0.8
1.2
0.0
0.4
0.8
1.2
0.0
0.4
0.8
0.0
0.4
0.8

Num

10.0
15.9
28.0
54
13.4
23.3
46.1

104
17.3
32.8
73.6

195
26.6
60.3

178
660

38.1
104
414

51.6
171
940

Approx

10.2
16.02
28.30
55.37
13.44
23.34
46.40

105.54
17.36
32.83
74.01

197.63
26.69
60.37

178.81
673.81

38.02
103.92
415.11

51.35
171.34
944.06

Num

10.0
6.86
5.06
3.96

13.4
8.73
6.24
4.79

17.3
10.7
7.44
5.62

26.6
14.9
9.88
7.28

38.1
19.4
12.4
51.6
24.0
14.9

Approx

10.2
6.85
5.04
3.92

13.44
8.71
6.21
4.74

17.36
10.69

7.40
5.56

26.69
14.91
9.84
7.22

38.02
19.39
12.31
51.35
24.04
14.80

*Numerical values are taken from Van Dobben de Bruyn (1968)
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Table 2: Comparison of

T = 100

ARLQ for the Shiryayev-Roberts Procedure

T = 300 T = 500

0.1
0.2
0.5
1.0
1.5
2.0

Approx
106.00
112.37
133.84
179.14
239.77
320.91

Sim
106.58
113.43
136.12
181.18
238.14
314.08

(0.49)
(0.77)
(1.23)
(1.75)
(2.39)
(3.17)

Approx
318.01
337.10
401.53
537.42
719.30
962.74

Sim
316.31
333.94
400.63
532.72
724.18
950.90

(1.99)
(2.74)
(3.83)
(5.12)
(7.16)
(9.46)

Approx
530.02
561.84
669.84
895.70

1198.84
1604.57

Sim
532.48
562.86
682.72
905.27
1194.40
1559.69

(3.74)
(4.87)
(6.46)
(8.97)
(12.0)
(15.62)

Table 3: Comparison of Approximations of ARLQ for EWMA procedure

0.05 0.10 0.25

2.0

2.25

2.50

2.75

3.0

3.5

4.0

LB
Num.
Approx
LB
Num.
Approx.
LB
Num.
Approx
LB
Num.
Approx
LB
Num.
Approx
LB
Num.
Approx
LB
Num.
Approx

203.31
244.99
268.77
319.86
391.62
432.19
526.66
660.84
730.20
915.99

1183.63
1307.16
1694.79
2242.04
2493.02
7103.38
9136.09

11090.78
39349.64
45821.86
64773.33

98.98
149.15
142.85
155.72
244.62
230.10
256.40
424.14
450.25
445.94
778.81
833.96
825.09

1504.96
1651.16
3458.18
6582.11
6017.31

19156.82
37821.50
34875.90

36.25
80.51
74.28
57.03

137.32
125.86
93.90

248.42
226.21
163.32
477.26
433.75
302.18
974.68
890.44

1266.52
4936.30
4627.41
7015.98

33197.59
31729.11

*LB: Lower bound; Num: Robins and Ho (1978); Approx: corrected boundary
approx.
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3. General Discussion. (l)In the above section, we emphasized the ap-
proximations for ARLo since it is critical for the design of these control charts.
The traditional approximation by ignoring the overshoot significantly under-
estimates the true value as we can see from Tables 1-3. The approximation of
ARLi is also important if we want to compare these three procedures and to
consider the economic design. The comparisons among the three procedures
have been done by many authors by a variety of methods. Roberts (1966)
compared several charts by simulation. The currently most used method in
quality control literature is the Markov chain method, see Lucas and Saccucci
(1990) for the comparison between the CUSUM procedure and the EWMA
procedure. This method is obviously very space-consuming. The theoretical
comparisons have been done by Pollak and Siegmund (1985) and Srivastava
and Wu (1993) under the continuous time model. A more recent study by
Pollak and Siegmund (1991) also considered the case when the initial level is
unknown.

(2) Only comparing ARL\ may be misleading as it considers only the
case when the change occurs at the beginning. A typical example is the FIR
(fast initial response ) technique, and also see Srivastava and Wu (1993) for
an example in the one-sided EWMA procedure. Thus, more reasonable mea-
sures for the average delay time should be chosen. Three interesting ones
are the conditional stationary average delay time, the unconditional station-
ary average delay time and the maximum conditional delay time (Pollak and
Siegmund (1985), Shiryayev (1963), and Lorden (1971)). The CUSUM pro-
cedure is optimal in the worst case and the Shiryayev-Roberts procedure is
optimal in the stationary case. The asymptotic behaviors of the conditional
and the unconditional stationary delay time are almost same as ARLo is large.
The comparisons among these three procedures can be seen in the literature
mentioned above.

(4) In this note, we only considered the one-sided shift case. The two-
sided shift case can be similarly discussed (Siegmund (1985), Pollak and Sieg-
mund (1991), Lucas and Saccucci (1990)). A theoretical treatment for the
two-sided as well as the multivariate EWMA procedures will be discussed in
another communication.

4. Technical Results. In this section, we give some technical details
for the results given in Section 2. The readers are assumed to be familiar with
Wald's likelihood identity and Stone's strong renewal theorem. We refer to
Siegmund (1985) for a more detailed discussion. We have two objectives. One
is to show that the approximations given in (2) and (3) are accurate in the
second order of δ under appropriate conditions. The other is to give a heuristic
argument for the approximation of ARLQ for the EWMA procedures by using
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the boundary correction technique.

4.1. Error Checking for the Approximations (2) and (3). We only give
the details for ARLQ. For ARL\ as well as the stationary average delay time,
Pollak and Siegmund (1986) have given a more general discussion in the ex-
ponential family.

Define

N = inf{n > 0 : Sn < 0 or > d},

and

τd = inf{n > 0 : Sn > d}, and r_ ( + ) = inf{n > 0 : Sn < (>)0}.

Then
ΔΏT EoN E0SN

Po(SN>d) -δ/2P0(SN>dy

The key to guarantee the accuracy of the following approximations is the
strong renewal theorem which states that as d —• oo, uniformly for δ > 0 and

y > o ,

\Pi(STd -d>y)~ P1(R > y)\ - o ( e " ^ ) ,

for a positive constant r, where Pι(R G dy) = P\(ST+ > y)/EιSr+dy, see
Siegmund (1979) and some refined result by Lotov (1991).

LEMMA 1.

Pχ(SN

The proof can be obtained similar to Lemma 4.

LEMMA 2.

P^r. = oo)/Eo(Sτ_) = -δEie-
SR.

LEMMA 3.

-rd
E0SN = EO(ST_) + ErfPoiSN > d)(l + o(e-rd)) + E0(SN; SN > d).

PROOF. Note that

E0SN = E0(SN; SN < 0) + E0(SN; SN > d).
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On the other hand,

EO(ST_) = EO(ST_;SN < 0) + EO(ST_;SN > d)

= E0(SN SN < 0) + Eo[Eo[Sτ_ \SN]\SN>d]

; 5 N < 0) + E1RP0(SN > d)(l + o(e" r < ί)).

Based on Lemmas 1-3, we get

^)-iPa(r_ = oo)

E0(SN\SN > d)](l + o(e-rd))

•o(e-rd)).

The only remaining thing is to evaluate EQ(SN\SN > d). This is given by

LEMMA 4.

Ji/QyoN\oN > d) = α H———_^p (̂ 1 + oye )).

PROOF. By noting that

E0(STd -d;τd<oo) = E0(SN -d;SN>d) + E0(STd -d;τd< oo, SN < 0),

we have

EQ{SN — d\ SN > d) =• 1

- d)e-ss^\SN}; SN < 0]

* - e-δdEQ[ExRe-δReSSN;SN < 0])(l + o(e~rd))

= e-SdE1Re-δRP1(SN

 d

where Lemma 1 is used in the last step.

Finally, we have

THEOREM 1. As d —• oo,

d
e >
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By using Holder inequality and the fact that (Eλe-δR)-χ EλRe~δR > EXR,

we get

^""'-•-'^^M.-') do)
As δ is small, we may replace E\R by p when the drift is taken as zero,

which gives us (2). Thus, (2) slightly overestimates the true ARLo, which

is also confirmed from Table 1. A similar argument shows that (3) slightly

underestimates the true ARL\. In the following, we shall show that (2) is

actually accurate in the order of o(l) as δ —» 0 and d —> oo such that δd

remains bounded. By taking Taylor series expansion, it follows that

Eλe-δR = 1 - δExR + ̂ EτR
2 + o(δ2). (11)

A result from Problem 10.2 of Siegmund (1985) gives that

EιR = p+δ-(p2-p2) + o(δ), (12)

where p2 = E\R2. Substituting (12) into (11) and simplifying it, we get

Eλe-SR = e-sp(l + o(δ2)). (13)

On the other hand,

(Ihe-MyiEiRe-*11 = EΎR - δ{ErR
2 - (E^R)2) + o{6)

= P- \{P2 - P2) + o(δ).

Combining with (12), we get

EtR + (Exe-s^ExRe-811 = 2p + o(δ). (14)

Substituting (13) and (14) into (10), we see that the approximation (2) is

actually accurate up to order o(l), which slightly improves Theorem 10.16 of

Siegmund (1985) and also confirms accuracy of the approximation.

The above argument can be easily adapted to the exponential family case.

In the nonsymmetric case, the second order approximations involve the third

moment of i2, see Pollak and Siegmund (1986) for some specific results. When

6 is too large, even this second order approximation may not be satisfactory.

In this case, we should use the result of Theorem 1 and take more terms in

the expansion for E\R in δ.

4.2. Boundary Correction for EWMA Procedure. In this subsection, we

discuss in detail the approximations for the EWMA procedure. The key is to

form a martingale for the EWMA process Zn which only involves Zn and the
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time n. We write B = δσoo as the control limit for the EWMA process. The
following lemma is the key for our discussion.

Denote φ(u) = Σ£° c((l — β)n~1βu) as the cumulant generating function
for ZQO, where c(u) is the cumulant generating function for Xχm

From Novikov (1990), it is known that

LEMMA 5.

Yn = Γ i(e u Z» - l)e-+Mdu + nln(l - β)

is a martingale.

In the normal case,

when the mean is μ after the change. By changing the order of integrals, we
have

i fZrn&rt*
ARLo = _ln(1_β)E Jo [<Kx)]-1Φ(x)dx, (15)

and

If we ignore the overshoot, an obvious lower bound is given by

ARL0 > _Hl_β) j\φ(χ)ΓιΦ(x)dχ, (16)

which is similar to (7) in the continuous time case by simply changing -ln(l -
β) to β.

As we showed in Table 3, this lower bound is too crude for practical use.
We thus consider the effect of the overshoot. Similar to the random walk case,
we define the following ladder variables based on the EWMA process Zn\

TW = inf{n > 0 : Zn > 0},

τ& = inf{n > 0 : Z n + τ ( 1 ) > Z τ ( 1 )},

generally,

τW = inf{n > 0 :
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Thus, r = rW + + r W with

N = i

By writing

^n =

we see that Zn and Zn are distributionally equivalent. If we approximate
Zτ(i)+...+r(N-i) by B, then the mean overshoot can be approximated by

E[Zr-B]&E[Zv-(l-(l-βγ)B],

where

v = min{n > 0 : Zn > (1 - (1 - β)n)B}.

Thus, the calculation of the mean overshoot is transformed into another bound-
ary crossing problem with a curved boundary.

In the following, we look at the mean overshoot behavior as β -+ 0 as
required under the optimal design. As β —> 0, Zn/β behaves like a random
walk with drift 0, and on the other hand,

(1 - ( 1 -β)n)/β - n .

Locally speaking, the ladder variables for the EWMA process can be approx-
imated as a sequence of boundary crossing times for a random walk with
randomly increasing drift parameters. Thus, a better approximation can be
obtained as

ER « βρ(-B)

as β -> 0, where ρ(-B) = ES*+/2EST+ is evaluated with mean -B. As δ -> 0,
p(-J5) -* p = 0.583. The numerical comparison with the numerical values
given in Table 3 shows that this approximation is generally good. For example,
for β = 0.10 and b = 2.0, the corrected diffusion approximation gives 149 which
is very close to the numerical value 143 given by Robins and Ho (1978).

To see how much effect of this overshoot on ARLQ, we consider the first
order approximation as 6 -> oo. Under the optimal design, recall that b(β/(2-

/ • 0.715£. Based on this, the following rough approximation can be



Y. WU 343

obtained.

1
A R L o = -\n(l-β)E

- β)E /
Jo

[φ(x)]-1Φ(x)dx

as £ is small. Therefore, in the first order, the correction factor for the EWMA
procedure lies between the correction factors of CUSUM and Shiryayev-Roberts
procedures.

Similar to the other two procedures, this correction may become less
satisfactory when B = bσoo becomes larger. A more accurate approximation
can be obtained by taking the second order expansion for p(μ) in μ. Partial
results have been given by Chang (1989). For example,

EμSτ+ = -±=(l + μp+£p2 + o(μ>)).

Finally, we point out that the above argument is only heuristic, a formal
treatment can be done similar to the method used by Pollak (1987) by consid-
ering the behaviour of Zn in the region (B(l — β),5) with a properly chosen
small 6. More specifically, let

rB-t = inf{n >0;Zn> B(l - e)}.

Consider the process {^τBn_c)+n} f°Γ n > 1. Then it will either cross the
boundary B soon, or "not at all" in a near future. If it does, then locally, it
behaves like a random walk; if it doesn't, wait until next time it crosses B — e
again. Details will be presented somewhere else.

A different approach may be to use the method of Siegmund (1985, Chap.
4) based on the time-scale transformation.
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