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Let X = {X^\ , X ( d ) ) , Xi = (X?\ , X} d )), = 1,2,.. , be indepen-

dent random vectors in IRd, d > 1. When testing for the possibility of having a

change in the distribution of a sequence of chronologically ordered d-dimensional

observations Xi = (X t , , X\ ), t = 1, , Λ, at an unknown time 1 < k < rc,

it is natural to compare the empirical distributions "before" to those "after", via

studying the asymptotic distribution of the sequence of statistics

sup sup
i

= sup sup
I

t = l

These statistics however converge in distribution to oo, as n —• oo, even if the

null assumption of no change in distribution were true. This is due to the weight

function ((k/n)(l — k/n)) converging too fast to zero as k/n —• 0 and k/n —• 1.

This remains true even if we were to replace this function by ((k/n)(l — fc/ra))1/2,

1 < k < n. Thus we are led to considering multi-time parameter empirical pro-

cesses with weights which would continue emphasizing the possibility of having

a change in distribution, but in a non-degenerate way. Proofs of our results and

further details will be given in a paper which is in preparation by the authors for

publication elsewhere. This is an extended abstract of this forthcoming work.

1. Introduction. For an arbitrary, right continuously defined distribu-
tion function H on IR1 we define the inverse (quantile function) of H by

H~\y) = mΐ{x G IR1 : H(x) > y}, 0 < y < 1, JΓ" 1 ^) = J3r~1(0+).

Let Fίj\(xj)jj 1 < j ' < d, be the jth marginal of F{x) = -F(#i, •,#</),

x = (xij-'jXd) € IRd, d > 1, and let FΓ}(UJ), 1 < j < d, u = (uα, - -,ud) G
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Id := [0, l ] d , d > 1, be the inverses (quantile functions) of these marginals of
F on IRA

Define the map L"1 : Id -> Etrf by

Then the map X : Md -> Id, defined by

L(x) = L(xu..-,xd):=(F(1)(x1),...,Fw(xd)), x = (a?i, • -,xd) e © Λ

is an inverse to X" 1 in that, for x 6 IRd and u G (0, l) r f, we have the component
wise inequalities X(x) > u if and only if x > X~1(u), and X(X~ 1(u)-) <
u < i(jL~ 1(u)). Consequently, if the components of L are continuous, then

We define the (d+ l)-time parameter empirical process βn(x,t) by

nt

< x ) " F ( x ) ) > x € H d , 0 < t < 1.
t = l

A Kiefer process {A>(x,/), 0 < £(x) < l , ί > 0} on IRd x [0,oo) asso-
ciated with a distribution function F on IRrf, d > 1, is a separable (d + 1)-
parameter real valued Gaussian process with ϋjr(x:?θ) — 0, EKpfat) — 0
and

(xy s)KF{y, t) = (ίΛ ί)(F(x Λ y) -

From now on we assume that F on IR^ is continuous and summarize some
of our results in this case. Analogous results hold true when F is not assumed
to be continuous. For similar studies when d — 1, we refer to Deshayes and
Picard (1986) and Szyszkowicz (1991).

We will write

{ α n ( u , t ) , u 6 Id, 0 < t < 1} : = {βn(L-\u),t) u e l d , θ < t < l } .

By letting G(u) = J F ^ - ^ U ) ) , with x = i ^ u ) , u € Id, d > 1, we have

{ΛΓF(x,t), 0 < X(x) < 1, ί > 0} = {KG(u9t)9 ueld,t> 0}.

By THEOREM of Csδrgδ and Horvath (1988), associated with an F on IRrf,
there is a Kiefer process {/^(u,/), u 6 / ^ < > 0} such that, as (n/) -» oo,
0 < ί < 1, we have

sup | n χ / 2 α n ( u , ί ) - Λrσ(u,n<)| =S O((nί) 1 / 2 " 1 / ( 4 < < ) ( log(nί)) 3 / 3 ) .
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With U{ = L(X{) then, in the continuous case we define the "tied down
in /" multi-time parameter empirical bridge άn(s,t) by

ί
( ^

o, ' t = i,βeid,

and the Gaussian process {TG(s,t), s £ Id, 0 <t < 1} by

TG(s,t) = KG(s,t)-tKG(s,l), s£ld, 0 < < < 1. (1)

Consequently, ΓG( , •) is a mean zero Gaussian process with covariance function

, ί i ) Γ σ ( s 2 , h ) = Γ σ ( s i Λ s 2 ) - G(s1)G(s2))(tι Λt2-
\ S l A s2)) - F(L-1(s1))F(L-1(s2)))(h Λ t2 - tλt2). {

THEOREM 1. Assume that X\,X2, are independent with continuous
distribution function F on IRA Then, there exists a Kiefer process {Kα(s,t), s £
Id, t > 0} such that with

{Γσ,n(s,ί), s G Id, 0 < t < 1} := {n-^2(KG(s,nt) - tKG(s,n)),

s € / d , 0 < ί < 1}

I {ΓG(s,ί), s € / d , 0 < t < 1} for each n > 1,

and a weight function #, which is positive on (0,1) (i.e., inf$<ί<i-δ q(t) > 0
for all 0 < δ < 1/2), we have:

then, as n —> oo

sup sup\άn(s,t)-TG<n(s,t)\/q(t) = oP(l), (3)
0<ί<ls€/d

/ I \ 1/2
(b) if Urn sup ( ί(l - ί) log log — /q(t) < <x>

*lo,*τi V t{l-t)J '

then, as n —• oo,

sup sup |άn(s,t)|/tf(ί) -^* sup sup |Γσ(s,ί)|/ί(<), (4)
0«<ls€id 0,ί<lse/d
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(c) if / ——γ^~—dt < oo, 0 < p < oo, then, as n —> oo

/ / — Z T f \ — G ( d s ) d t — > / / —Z7T\—G{ds)dt. (5)
Jo hd <lv>) Jo Jid ?(*)

5. Contiguous Alternatives. Consider now testing

HQ : Xijl < i < n, have the same distribution function JP(X),X =
d

versus
Hi : X{j 1 < i < n, have the respective distribution functions ^ ( x ) ,
x £ IRd, all assumed to be absolutely continuous with respect to F(x),
x G IRΛ d > 1, where we assume (with d = 1, cf. Khmaladze and
Parjanadze (1986))

and that there exists a function h £ £2[0, l ] d + 1 such that

Λ(ί, i - ^ u ) ) ^ ^ - ^ ^ ) ) = / Λ(ί, i" 1(u))G(du) = 0 (7)

for almost all tf £ [0,1], and, asn-> oo, we have

jd+i \ \ n J J

The sequence F\n x x -Fnn, n = 1,2, , thus parametrized is contiguous
to the sequence F X X F, via LeCam's first lemma.

The change-point alternative is accommodated by taking

for some h £ Z2[0, l]d with respect to the measure G(u) = iΓ '(i~1(u)), namely
we consider

H^: There is an η £ (0,1) such that Xχ9 , X[nη] have the same distribu-
tion function F(x), and X[nr?]+i, , Xn have distributions .F([n7?]+1)n(x), ,
Fnn(x) respectively.

Let

c(s,ί)== / / Λ(r,χ-1(u))G(rfu)rfr= / / S h(τ,x)F(dx)dτ
Jo Jo Jo 7L- 1 (O+)
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and e/(s, t) = c(s, t) - tc(s, 1). Then, by Theorem 1 and LeCam's third lemma,
we have

THEOREM 2. Assume Hi. Then, if q is as in (a) of Theorem 1, asn -+ oo,

άn(s, t)/q(t) -2+ (ΓG(s, t) + d(s, t))/q(t) in D[0, l]d+\

Under H\, d(s,ί) becomes

dη(s,t) := (-t(l - η)l(t <η)-(l- t)ηl(t > η)) Γ / ^ ^ ( u ^ d u ) .
Jo

3. Testing for Independence. We note that if F is continuous and
*Xx) = Πj=i FU)(XJ) for aU x G Md, then G(u) = i ^ " 1 ^ ) ) = Π?=i *j =
λ(u), the Lebesgue measure (uniform distribution) on J d, d > 1. In this case
TQ = ΓΛ := Γ does not depend on G = F(L~λ), and covariance function in
(2) reduces to

/ d

Consider now testing

HQ : X{, 1 < i < n, have the same continuous distribution function

F(x) = Π?-=i -^(ijί^i)? f°Γ a ^ x ^n ^ ' d>2,

versus

H^1: There is an 771 G (0,1) such that Xi, ,X[nryi] have a continu-
ous distribution function F(x) = Π?=i ^(j)(^j) f°r 2JI x G IRd, and Xt ,
i = [wr?i] + l, ,n, have a continuous distribution function i^x) Φ
Π = 1 î /ĵ ajj) for some x G IR , d>2.

In this set-up then, tests based on (3), (4) and (5) will be consistent, dis-
tribution free nonparametric tests for HQ versus the change-point alternative
of H^1 that we change from random sampling with independent components
to random sampling with nonindependent components.

For another approach to testing for independence in terms of empiricals,
we refer to HoefFding (1948), Blum, Kiefer and Rosenblatt (1961), Csόrgδ
(1979), and Cotterill and Csδrgδ (1985). In our paper we will also study the
empirical processes of these papers in weighted metrics and along the lines of
Theorems 1 and 2. The question of determining critical values is, of course,
crucial for applications of our results. A useful reference in this context is
Romano (1989). In particular, his Example 5 is of special importance in this
regard.
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