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SOME ASPECTS OF CHANGE-POINT ANALYSIS
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Change-points divide statistical models into homogeneous segments. Infer-

ence about change-points is discussed here in the context of testing the hypothesis

of 'no change', point and interval estimation of a change-point, changes in non-

parametric models, changes in regression, and detection of change in distribution

of sequentially observed data.

1. Introduction. Suppose that in a linear array of independent ob-
servations YΊ,.. .,yn, the distribution is subject to change after Yτ for some
1 < T < n - 1. Detection and estimation of change-points which in this way
divide statistical models into homogeneous segments is a fast-developing area
of research in statistical theory and methods. We shall present here a brief
account of some of the areas of change-point analysis.

The most basic problems are those of testing the hypothesis of "no
change," and of estimating a change-point by a point estimator or a confi-
dence set when the presence of one is suspected. In Sections 2-4, we shall
discuss these problems and some nonparametric methods will be presented
in Section 5. Change-point problems also occur in the context of regression
when the nature of dependence of one variate on another may be different
in two segments of the data, and in situations where the observations are ob-
tained sequentially with the possibility of a change in distribution at any stage.
Methods in these two areas will be discussed in Sections 6 and 7.

In presenting these accounts, our aim is to concentrate on the main issues
rather than provide a comprehensive review of the available literature. There
is an annotated bibliography compiled by Shaban (1980) and a survey article
by Zacks (1983) where references to many of the early works on change-point
analysis may be found. Our references will be mostly limited to the sources
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we draw upon in this article and will be given at the end of the sections to
which they belong.

A common feature of all change-point methodologies is that due to the
very nature of the problem, one must split the data in different ways and
measure the divergence between the two segments by some criterion to look
for heterogeneity. This naturally leads to the consideration of some stochastic
processes, whose extrema form the basis of likelihood methods and whose
integrals with respect to prior distributions form the basis of Bayesian methods
of change-point analysis. This will be made explicit in some of our discussion,
but will be implicit otherwise.

2. Testing the Hypothesis of "No Change". We shall restrict our
discussion to the problem of change in mean of independent normal variables
with common variance. Let Y{ = μ2- + σZt , 1 < i < n, where Zi , . . . , Zn are
iid iV(0,1). The problem is to test

H : μi = ... = μn against A+ : μi = . . . = μτ < μτ+ι = . . . = μn for
some

1 < T < n — 1, or against A:μ\ = ... = μτφ μτ+i = . . . = μn

Let Δ = μτ+i - μτ.

2.1. Bayesian Approach. We discuss the case of known σ with σ = 1. If
the initial mean μ\ is known, then taking μi = 0, we proceed from a prior in
which T is uniformly distributed on{ l , . . . , ra- l } and Δ is independent of r,
having pdf h. The null hypothesis of "no change" is rejected for large values
of the likelihood ratio

For the case of one-sided alternative A+, taking h to be the pdf of folded
normal distribution with variance α 2, we have

n-r 1 φ / Sn_r
Q . o I I r

where S'n_r = Σ"+i γi a n d * is the cdf of JV(0,1). Now let α -> 0, i.e.,
suppose that the change is small. Then S'n_r(n -r + α " 2 ) " 1 -»• 0, so that for
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small a,

This leads to the test statistic

r=l i=2

and the hypothesis H of "no change" is rejected for large values of T+.

When μi is unknown, a prior for μ\ is taken to be N(0,β2) independent
of (r, Δ) distributed as above, and then β is allowed to tend to oo. This leads
to the test statistic

t=2 1

and H is rejected for large values of T+.

For two-sided alternatives, everything is carried out as above, except
that the prior distribution of the amount of change Δ is taken to be 7V(0,α2)
(instead of folded normal) with a —> 0. The test statistics obtained in this
manner are

for known initial mean,
f = 2

t = 2

for unknown initial mean.

More general priors including priors for unknown σ2 have also been considered
in the literature without derivation of concrete test statistics as above.

The statistics T+ and T+ for the one-sided case are linear functions of
the li's, so they are normally distributed. In the two-sided case, the test
statistics are quadratic forms. Under H, the statistics T and T* are distributed
as Σr=ί KZ* and Σr=ί K%h where Zu ..., Zn-i are independent ΛΓ(0,1),
λr - {2nsin(^)}-2 and λr* = g ^
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2.2. Likelihood Ratio Tests. Consider the hypothesis Ar that the mean
changes after τ = r and let

ψ -
r

Ϋf —Ϋ

( n _

where

r+1

Then the likelihood ratio test (LRT) for the hypothesis H of "no change"
against the alternative Ar rejects H for large values of \Tr\ when σ is known
and for large values of

wr = \τr

I 1/2

r+1

when σ is unknown. Now the alternative hypothesis A is the union of Ai,...,
i4n_i. Hence if σ is known, the LRT of H against A is based on the test
statistic U = maxκ r< n_i |Γ r | and if σ is unknown, the LRT is based on the
test statistic W = maxi<r<n_i Wr, or equivalently, on V = maxi<r<n_i \Tr\/S
with S2 = Σΐ(Yi - Ϋn)2 since W2 = F 2 /( l " ^ 2 )

The LRT's are modified for one-sided alternatives, rejecting H in favor
of A+ for large values of maxκ r< r ι_i Tr when σ is known and for large values
of maxκ r< n_i Tr/S when σ is unknown.

In the above discussion, the initial mean μ\ is unknown. If μ\ and σ are
both known, say μi = 0 and σ = 1, then the LRT rejects H in favor of A+
for large values of maxi<r<n_i y/n - rΫ^_r and in favor of A for large values
of maxi<r<n_i y/n- r|Ϋ'n_ r |.

The null distribution of the LRT statistic U = maxκ r< n_i \Tr\ for the
case of σ = 1 is obtained from the fact that 7\,.. .,Tn_χ are jointly normal

with E{Tr) = 0 and Cov(Γr,Γs) = y/j(£E$ for 1 < r < θ < n - 1. It
follows that (Ti,..., Tn_i) is Markovian and reversible. From these properties
of (Γi, , Tn-ι)j the pdf of the null distribution of U is obtained as

n - l

fu(x) =
r=l

where ψ is the pdf of iV(0,1) and

g r ( x , y ) = P[\Ti\ <y,l<i<r-l\Tr = x ] , x , y >
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are given by a recursion formula. The null distribution of
V = maxi<r<n_i |T r |/5 is more complicated.

2.3. Comparison of Powers of Bayes and Likelihood Ratio Tests. For the
case of known σ(= 1), the following comparisons based on exact calculations
for the Bayes test and on simulations for the LRT hold in the one-sided case
as well as the two-sided case. The results mainly depend on the location of
the change-point r relative to the length n of the observed sequence.

For the case of known initial mean, both tests have their best powers
when T = 1. In their relative performance, the Bayes test is superior for
τ/n < 0.4, the LRT is superior for τ/n > 0.75 and for 0.4 < τ/n < 0.75, the
Bayes test dominates the LRT for small Δ and vice versa.

For the case of unknown initial mean, both tests work at their respective
best when τ/n = 1/2. In comparison to one another, the Bayes test is superior
for | ^ - | | < 0.1, the LRT is superior for | J - | | > 0.25 and for 0.1 < | £ - § | <
0.25 the Bayes test dominates the LRT for small Δ and vice versa.

2.4. Modifications of the Likelihood Ratio Test for the Case of Known
σ. The LRT statistic U = maxi<r<n_i |T r | , where Tr is given by (1), does not
have an asymptotic distribution under H as n —>• oo. To see this, let Xn(t) =
^[nφ 0 < t < I and note that U = maxo<ί<i -^n(') Now Xn( ) converges
to a Gaussian process X( ), of which the transform ζ(t) — tf1/2^^^), 0 <
t < oo is a standard Brownian motion. The law of iterated logarithm and
the unboundedness of log | log/| as / —• 0 or oo imply that \ζ(t)\ > Ct1/2

in every neighborhood of 0 and oo and equivalently, |X(/)| > C in every
neighborhood of 0 and 1 with probability 1. Thus as n —• oo, U —• oo and
n"1 argmaxr \Tr\ —> 0 or 1 with probability 1 under H.

Since {Tr} becomes unstable at the two ends of the sequence for large n,
the following modifications of U are worth considering:

(1) JJ\ — maxm<κn-m \Tr\ where m/n = α > 0 but small. Such a test statis-
tic has an asymptotic distribution under Jϊ, although it is not available
in closed form.

(2) U2 = maxi<r<n_i n~1l2\Sr-rn~ιSn\ converges in law to maxo<ί<i |#o(/)|
under if, where Bo(t) = B(t) - tB(l) is the Brownian bridge, and the
distribution of maxo<t<i |A)(0l ^s well-known.

2.5. Bibliographic Notes. A Bayesian change-point model for a fixed
sequence of normal means was formulated by Chernoff and Zacks (1964). Al-
though this model included the possibility of any number of changes and the
basic objective was to estimate the mean at the end of the sequence, one-sided
tests for the null hypothesis of "no change" in the model of "at most one
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change" and the posterior distribution of a change-point followed naturally.
The Bayesian point of view was pursued further by Kander and Zacks (1966)
to extend these results to exponential families and by Smith (1975) to multipa-
rameter models with possible constraints. Bayes tests for two-sided change in
normal means were considered by Gardner (1969) who derived the asymptotic
null distribution of the statistics. Exact null distributions of these statistics
were obtained by Sen and Srivastava (1975) who also made a comparative
study of the Bayes and the LRT's as mentioned above. Exact null distribu-
tions of the LRT statistics were expressed in terms of recursion formulas by
Hawkins (1977) for the normal means problem and by Worsley (1986) in the
more general context of an exponential family. An approximation to the tail
probability of the null distribution of the studentized likelihood ratio statistic
was obtained by James, James and Siegmund (1992).

3. Estimation of a Change-Point.

3.1. Bayesian Approach. As in the previous section, suppose that we
observe Y{ = μ; + Z t, 1 < i < n, where Z\,..., Zn are independent N(0,1) and
either there exists 1 < r < n — 1 such that μi = = μτ φ μ τ + 1 = = μn,
or μi = = μn in which case we let r = 0. We now consider the problem
of estimating r (estimating r = 0 corresponds to accepting the hypothesis of
"no change") and the current mean μn.

Put a prior on τ,μn and Δ = μτ — μτ+i (which takes effect if r φ
0), letting r ,μ n ,Δ to be mutually independent with P{τ = j) = p(j),μn

distributed as 7V(O,/32) and Δ distributed as JV(0,α2). Since (Ϋr,Ϋή-r)
 i s

sufficient under r = r, the conditional Bayes estimator of the current mean μn

given T = r is E(μn\τ = r, Ϋr, ϊ ^ . r ) , which is approximated by

n + α2r(n - r)

as β -> oo. Moreover, as both β and α -• oo, the posterior distribution of r
is approximated by

where w(0) = n~ιl2p(Q) and for 1 < r < n - 1,

w(r) = α-λ{r{n - r)}-V2p(r)exp[T?/2]

with Tr given by (1). Averaging the conditional Bayes estimator μn(r) with
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respect to the posterior distribution of r, we are led to the Bayes estimator

n - l τ ι-1

βn =
r=0 r=0

of the current mean.

3.2. Maximum Likelihood Estimator. Assume that there exists 1 < r <
n — 1 such that the joint pdf of (Yί,.. ,Yn) is

1 τ+1

where / is known and ίi / ^

First let #i, θ2 be known. Then the maximum likelihood estimator
(MLE) of T is

τ = arg max
° K r < n - l

L 1 r+1
r

= arg max Y^ Wt

where W, = log [/(Y;,0i)//(!;, #2)] and any nonuniqueness in maximization
is resolved by suitable convention. To think of the distribution of f — r, note
that

τ - τ — arg max 7 W{ = argmax£(j),
3 *τ^ 3

where ξ(0) = 0 and

j > 0

•J5 J < 0?

f J Λ j —— ^ V r ^ * ~~~ ^ y t ^ * —— •

1 1 KlJl WU = S l -

with Wu = -W^τ_i+i for 1 < i < r - 1 and W2i = WT+i for 1 < i < n - r. In
terms of the independent random walks

governed by /(•, θι),/(•, θ2) respectively, and letting Sio = S20 = 0, we can
express t - τ as follows. Let

Λίi = max 5Ίj, Ji = arg max S\j = min{j : 5Ίj = Mi},



M2 = max S2j, J2 =

Then (see Fig 1)
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= min{j : S2j -

- Ji if Mi > M2

J2 if Mi < M2

A/ί
1 \ι 1

J * = — \ /

of

Figure 1: Representation of f - r in terms of two random walks

For unknown θι, #2>the MLE (^1, θ2, f) of (#i, Θ2? ^) is the maximizer

r n

Ln(<Pu Ψ2, r) = J^ log/( i ; , φx)
r+l

If the conditional MLE (0ir, <?2r) of (^1, θ2) given r = r is available in closed
form, then the MLE f of r is the maximizer of Ln(θ\r, θ2r, r). In many
situations,

θlr = Ϋr = θ2r = Ϋ'n_r = (n-

r+l

Specifically, for change in mean of a normal distribution with known variance

2σ2Ln(θlr, θ2r, r) = -rcσ2 log(2π) - ^ ( Y ; - Ϋn)
2 + T?,
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where Tr is given by (1). For convenience, let Qnr = —TV, i.e.,

Ϋ —Ϋ'
<3nr = 7-=T + (n - r)"1}1/2

(n - r) \ ^ ^Ό V l

r
c* -.—1 \ Λ/"y. F'VΛ A /9 θ

l

{ -m^Vl - rn""1), r < r

-(1 - m" 1 )™ , r > r.

For Δ > 0, |Qnr| is maximized with a negative value of Qnr with prob-
ability tending to 1 as n -* oo, because maxr |5* — rn"1S^\ = Op(n1^2) and
maxr |n</n(r)| = O(n). Thus asymptotically,

f = argmax|(5n r | = argmin(9nr = argmin(Qnr - Qnτ).

For large n and small | r - r | , {Qnr-Qnr? t < r} and {Qnr-Qnn r > r}
behave approximately as independent random walks of which each step is
iV(0,1) with a drift of Δ/(2σ).

Getting back to general parametric families, we consider the change-point
problem in an asymptotic set up in which the length of the observed sequence
n —* oo and the amount of change in the parameter is Δ = #2 ~ #i = δv*1,
where ι/n —> oo slower than n1/2. Then under regularity conditions, the follow-
ing weak convergence holds for the log likelihood ratio with respect to uniform
convergence on compact sets:

£n(tt,M) = Ln(θi + tin"1/2, θ2 + vn-1'2, r + v2

nt) - Ln(θuθ2,τ)

_ Z 2 \_ I λ / L __ Jh\2 _ i ( 1 _
2 V VλϊJ 2V

where Zi, Z2 are independent iV(0,l), {i?(ΐ),-oo < t < 00} is a two-sided
standard B.M. independent of (Zi, Z2), / = /(^i) is the Fisher-information
in the parametric family described by / and λ = rjn.
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To examine the asymptotics of the MLE (#i, 02 > f) of (#i, #2? τ)9 note
that

(n^2(θ\ - θ1), n^(θ2 - θ2), u-\f - r))

= (Un, Vn, Tn) = argmax£n(ω, v, t).

Now the sequence v~2{τ — r) can be shown to be 0P(1). Prom (2) and (3), it
therefore follows that

where

Tμ = argmin[£(*) + -μ|t |], μ > 0.

These results extend in a natural manner to change-points in multipa-
rameter families.

3.3. Asymptotically Equivalent Estimator to the MLE. For arbitrary φy

let Wi = Wi(φ) = dlo&Ap>v) and define f as the maximizer of | ί r | , where fr

is obtained by replacing Ϋr and ϊ ^ - r in (1) by Wr = r""1 ̂ ^ Wi and W^_r =
(n - r ) " 1 Σr+i ^ " respectively.

If / belongs to an exponential family, then v~2(τ - r) has the same
asymptotic distribution as ^ 2 ( r — r). For non-exponential family, f is used
as an initial estimator of r to obtain a consistent estimator θ\ of θ\ and the
procedure is repeated with φ = θ\. This leads to an estimator r* which has
the same asymptotic distribution as that of the MLE.

For example, to estimate the change-point in the parameter θ of Bernoulli
trials, let Yί,..., Yn be the original observations,

dlog f(Yi,φ) Yj-φ

dθ φ(l-φY
Ϋ - Ϋ'

w - w' - n~r

Wr W » - - y(l - Ψ) '

where Sr = Σiγi τ h u s

r = arg max

In simulation studies, a comparison of f and a simpler estimator

f = arg max \Sr - m~1Sn\
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with the MLE

f = argmax[ί;iogyr + (1 - ϊ;)log(l - Ϋr)]

showed that

(i) f has practically the same performance as f (actually, f and τ were
identical in 86% to 100% of the cases);

(ii) f is definitely inferior to t unless λ = τ/n ~ 1/2.

The reason for (ii) is that v~2{τ - τ) and ^ 2 ( r - r) converge in law to

f = axgmin[5(ί) + {1(< < 0)(l - λ) + 1(< > 0)λ}

and

] = argminl(i)
θ) *

T = argminLB(t) +
* 2

' '
-θ)

] = argminX(/)

respectively, of which the former is stochastically larger for λ φ 1/2 as can be
seen from a comparison of the drift terms in Figure 2.

\\t\

- A)

Figure 2: Comparison of drift terms of X(t) and X(t) for λ > ^

0)λ}|

The term y/r(n - r) in the denominator of the statistic \fr\ to be max-
imized to obtain f is quite important as can be seen from the above discus-
sion. However, for values of r near the two ends of the sequence, this term
makes the statistic fr unstable. For this reason, \fr\ should be maximized
over m < r < n — m for suitably chosen small m. Actually the asymptotic
distribution referred to above holds when maximization is carried out over
nιl2vn < r < n — r\}^2vn to obtain f and f. This restriction is asymptotically
negligible and yet enough to avoid instability.

3.4. Bibliographic Notes. Bayes estimator of the change-point in a se-
quence of normal means was obtained by Chernoff and Zacks (1964). Ibrag-
imov and Has'minskii (1981) have studied the change-point problem in con-
tinuous time, considering the onset of a drift in a standard Brownian motion.
MLE of a change-point was first studied by Hinkley (1970, 1972) who rec-
ognized the key role of the extremum of a two-sided random walk in this



P. K. BHATTACHARYA 39

context. Asymptotic distribution of the MLE of a change-point was derived

by Bhattacharya and Brockwell (1976) in the normal means problem and by

Bhattacharya (1987) in general multiparameter families. The comparison be-

tween MLE and two competing estimators in the Bernoulli case mentioned

above was made by Pettit (1980). Cobb (1978) showed that the conditional

distribution of the MLE given the ancillary data adjacent to the MLE is ap-

proximately the same as the Bayesian posterior corresponding to the uniform

prior. In one of the very few papers on inference about multiple change-points,

Yao (1988) has obtained a consistent estimator of the number of change-points

using the Schwarz information criterion.

4. Confidence Set for a Change-Point. Even when the initial pdf /o

and the changed pdf f\ are completely specified, a confidence set (CS) for a

change-point r based on the distribution of the MLE f using τ — τ as a pivot is

inefficient. This is because f is not sufficient and CS's based on the conditional

distribution of f - r given the ancillary statistics {ΣJ=i ^ i ~ Σj=i Wj> * =

±1, ±2,.. .} where Wj = log[/i(Yj)//0(lj)], perform better than those based

on the distribution of f — r.

We shall discuss here CS's for r within the framework of single-parameter

exponential families, obtained by inverting the acceptance regions of the LRT's

for T = k against τ φ k. The confidence coefficient is 1 — α throughout.

Let Y\, , Yn be independent observations whose pdf changes from /(•, ΘQ)

to /(•, θι) after the r-th observation, where /(y, θ) = exp[θy — /φ(θ)]h(y). Then

the LRT for r = k against τ φ k has acceptance region of the form

, c) = {y : maxΛr(y) - Ak(y) < c2} (4)

where

(5)

+ (n - r) sup

° r+1

If we could find c = c(α,fc) for each k such that Pτ=^[A(fc,c)] = α, then

{k : y e A(k,c(a,k ))} would be a CS for r. Unfortunately, P[A(k,c)] d<

pends not only on r but also on 0O, θ\- However, under τ = fc, (Sk,Sn) =

( Σ ί % Σ ? γi\ i s sufficient for (0O, θx), so that PT=k[A(k,c)\SkjSn] is com-

pletely determined. This allows for the construction of a CS for r by inverting

the LRT's which are of size α, conditionally given (S^, Sn).
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Define c(a,k, £1,̂ 2) such that

= (6,6)] = 1 - α. (6)

On the conditioning set, using (5), (4) can be rewritten as

A{k,c) = {y_: maxΛr(y) < c2 + Λjt(6,6)}

Thus with c*(α,fc,fi,f2) = c2(α, *,&,&) + Λ*(fi,f2), we rewrite (6) as

Pτ=fc[maxΛr(Y) < c*(α,*,&,6)|(S*,5n) = (6,6)] = 1 - α. (7)

This provides an "in principle" construction of a CS for r, viz.,

C(y) = l k : maxΛr(y) < c* ( < * , * , £ y ; , f > J 1, (8)

where c* = c*(α, A;, 52j yt , ̂ ^ yι) is the 100(1 - α)-percentile of the conditional

cdf F*(-| Σ f W, Σ ? W) o f m a χ r Ar(Jl) given (5Λ, Sn) = ( Σ ? W, Σ ? w) u n d e r

The actual evaluation of c* as a solution of (7) can be avoided by observing
that maxr Ar(y) < c* is equivalent to

/ k » \

p(k, y) = Fk I maxΛr(y)| χ^ Vi, Z^Vi) < 1 - «•
V 1 1 /

Moreover, note that under r = fc, T\ — maxi<r<A;Λr(y) and T2 =
maxfc+i<r<n~i Λ r(y) are conditionally independent given (Sk,Sn). Hence
p{k,y) = Pi(kJy)p2{k,y), where

Pi(kjy) = Pτ=k 2;<maxΛΓ(y)|(5ib,5n)= ( V y

L \ i i .

The confidence set C(y) given by (8) can now be written as

C(y) = {k : Pi(k,y)p2(k,y) < 1 - α}.

The main task in constructing this CS is to calculate Pi(k, y), i = 1,2 for each
k and for the observed y. The boundary-crossing probabilities involved here
are calculated by numerical integration and an asymptotic approximation is
available for the case of change in mean of a normal distribution with known
variance.
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To avoid irregularities in Λr(Y) at the very early and very late parts of
the sequence, replacing maxi<r<n_i Ar(Y_) by maxm< r<n_m Λr(Y) is recom-
mended, especially for large n, as in hypothesis testing and point estimation.

The CS's constructed above do not consist of consecutive integers in
general, because Λfc(Y) does not decrease monotonically as \k — τ\ increases.
Of course, one can construct confidence intervals C*(j/) = [^i(y),^2(ί/]? where
kl(y) and fc$(y) are the smallest and the largest integers in the confidence set
C(y). This will satisfy the coverage probability condition conservatively.

4.1. Bibliographic Notes. Worsley (1986) constructed a confidence set
of a change-point in exponential families. Asymptotic approximation of the
boundary crossing probability needed in the case of normal means is due to
Siegmund (1986). Some other approaches to confidence sets for change-points
have been discussed by Siegmund (1988).

5. Nonparametric Inference. Let Yί,..., Yn be independent observa-
tions whose cdf changes from F to G after Yτ, where r = n means "no change".
So far we have only considered changes within a prescribed parametric family.
In this section, we allow for more general types of changes from F to G.

5.1. Nonparametric Tests for the Hypothesis of "No Change". Suppose
that any possible change in distribution is a location shift. As in the parametric
case, we consider the problem with known or unknown initial location. In the
one-sided location shift alternative, the cdf changes from F( ) to F( —Δ), Δ >
0, after YT for some 1 < r < n — 1, where F is unknown. When the initial
location is known, we take it to be 0 and assume F to be the cdf of a continuous
distribution which is symmetric about 0. For unknown initial location, F is an
unknown continuous cdf. In each of these formulations, the problem of testing
the null hypothesis of "no change" is invariant under certain transformations
of the data.

When the initial distribution is continuous and symmetric about 0, the
problem is invariant under all transformations

9h{yι,.-.,yn) = (%i),...,/ι(2/n)), (9)

where h is continuous, odd and strictly increasing. In this case, a maximal
invariant is (2£+,£), where the i-th coordinates of R+ and 5 are Rf = rank of
\Yi\ and Si = sign(Yi). All tests which are invariant under the above transfor-
mations are based on (JK+, 5) and among these, we now find the test Φ which
at a given level maximizes the average power /?(Φ;Δ) = ΣSΓi" Qiβi^'Ί Δ,i)
weighted by a prescribed set of weights ql9..., qn_ι > 0 with X^" 1 9i = 1 f°Γ

all Δ G (0,c), where e is sufficiently small and /?(Φ; Δ,i) is the power of the
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test Φ against the alternative if (Δ, i) of a location shift of the amount Δ after

^k and Po denote respectively the probability distributions of (R+,S_)
under ίf(Δ,fc) and the null hypothesis. Under regularity conditions on F
(which includes the existence of an absolutely continuous pdf / ) , if Δ is suf-
ficiently small, then the weighted likelihood ratios Σ£=i qkPA,k(L, $) / PO(L, $.)
for the 2n n\ points in the sample space of (iΓ1", S_) are in the same ascending
order as

n—1

k=\ i=k+l 2=2

where Un:i is the i-th order statistic in a random sample of size n from uniform
(0,1), φ+(u) = -ffi jCi( | + 2*0 a n d Q< = ϊi + - - - + ?<-i- Hence the average
power against local shift alternatives is maximized in the class of invariant
tests by the test which rejects the null hypothesis for large values of T(s,r).

When the initial distribution is an arbitrary continuous cdf, the problem
is invariant under all transformations gh of the form (9) where h is continuous
and strictly increasing. Now the vector R whose i-th coordinate R{ is the rank
of Yi is a maximal invariant and following the same line of argument as above,
the average power against local shift alternatives is maximized in the class of
tests based on R by rejecting the null hypothesis for large values of

t = 2

where Qi and Un:i are as in the statistic Γ(i,r) and φ(u) = — f°F-i (̂ )»

The tests based on T(s, r) and T*(r) are obtained by a Bayesian approach
analogous to the derivation of the tests based on T+ and T!£ discussed in
Section 2.1.

Nonparametric tests to detect changes other than location shift can be
derived in the same manner.

5.2. Estimation of Change-Point in a Nonparametric Model We now look
at the problem of estimating r after which the distribution of the sequence
Yi,...,Yn changes from F to G. Since we are going to be concerned with
the asymptotics as n —* oo, let r = τn = [nθ], 0 < θ < 1, and consider
the equivalent problem of estimating θ. The main idea in all the methods in
this area is to construct a measure of discrepancy between (Y1?..., Yrnίi) and
(Y[nt]+i> ->Yn) which estimates a function of t on (0,1) which has θ as its
unique maximizer or minimizer. Notice the similarity between this and the



P. K. BHATTACHARYA 43

minimization of the function Qnr in Section 3.2 and the role of gn(r) in that
connection. In this section, we discuss methods of this nature at several levels
of generality.

First suppose that F, G are unknown continuous cdf 's with J G dF -
1/2 = λ φ 0. Let

k n

Vn(k) = {k(n - k)}-1 £ 2 sign^ - Yfr
i=l j=k+l

rescale Vn( ) by defining

fn(ί) = K ( N ) , ί = 1/n,..., (n - l)/n,

and then extending fn( ) to [1/ra, (n - l)/ra] by linear interpolation. Consider
the stochastic process {fn(*)> « < / < 1 - α} for some 0 < α < 1/2. Then

E[Vn(k)] = l(jfe < r) - 2(n - r)(n - k)~r + l(k > τ)

so that

lim E[ζn(t)] = l(ί < β) 2λ(l - ff)(l - t)"1 + l(t > 0) - 2 λ 0 r \ (10)
n—> c o

which attains its unique maximum (minimum) at θ if λ > 0(λ < 0). It
therefore seems reasonable to estimate θ by θn which is a maximizer or a
minimizer of fn(t) on the set a < t < 1 - α, depending on whether λ is known
to be positive or negative. The following result shows that θn is consistent and
provides a rate of convergence.

Let An and Bn denote respectively the set of all minimizers and the set
of all maximizers of ξn(t) on a < t < 1 - a. Then asymptotically, for every
β > 0, PΘ[m*xteBn \t-θ\> e] = O(n-λ) if λ > 0 and Pθ[ma,xteAn \t - θ\ > e] =

O ί n " 1 ) if λ < 0 :

Generalizing the above scheme, let

nt n

*K{y) = (nt)-1 Σ HYi < V) and hi(y) = (n - nt)-1 ^ l φ < y) (11)
1 nt-fl

denote the pre-t and post-t empirical cdf's respectively. In the construction of

the above estimator, £n(/) is a particular measure of discrepancy between thn

and hι

n. A general class of measures of discrepancy can be defined by suitably

combining the quantities dι

ni - |*Λn(^) - K,{Yi)\i l<i<n to obtain

Dn(t) = {t(l - m^Snid^..., <n), (12)
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where Sn : TZn —• TZ satisfies Sn(cyι,..., cyn) = cSn(yι, , yn) for c > 0 and
yt > 0. The factor {t(l -t)}1/2 is introduced to control the variability of 5n( ),
especially near t = 0 and 1. Note that

= i(ί < θ)F(y) + i(ί

Λ*(y) = l(ί < *)(1 - ty^iθ - t)F(y) (13)

+ (1 - θ)G(y)} + l(ί >

and d?ni estimates 6^ - |*/ι(Yί) - ^ ( ^ ) | = p(*)^, , where

p(t) = 1(< < 0)(1 - β)(l - ί ) " 1 + 1(* > Θ)ΘΓ1. (14)

This pit) is the same as (2λ) - 1 limn-̂ oo .E[£n(ΐ)] given by (10) and attains its
unique maximum at θ. Thus Z>n(ί) given by (12) estimates

and {/(I - t)γl2p{i) also attains its unique maximum at θ. This motivates
the estimator θn = argmaxDn(£) over the set {1/n,..., (n - l)/n}.

For functions Sn(y) such as n" 1 Σι J/ή n~α Σ i ^? m a χi<;<ny2 and in
general, for a class of functions which are called "mean-dominant", the esti-
mator θn has the following properties provided that either F oτ G has positive
probability on the set {y : F(y) φ G(y)}:

(1) for arbitrary δ e [0,1/2), nδ\θn - θ\ -• 0 a.s.;

(2) there exist CΊ,C2 > 0 such that for € > 0 and n > n(e),

P[\θn - θ\ > e] < Cinexp[~C2€
2n].

The next level of generalization deals with observations taking values in
an arbitrary space (}>, B) on which the probability changes from Pn to Qn in a
sequence of independent Yί,.. .,yn after r = n0. We are actually considering
a triangular array consisting of {Yni} in which the change-point is τn = nθn.
The pre-t and post-t empirical measures are now defined by

*Pn(B) = (nΐ)-1 Σ ^ ( 5 ) , Jfta) = (n - nί)"1 £ SYiiB),
1 nί+1

ίoτ B £ B where <5y is the degenerate measure with unit mass at y, and their
expected values are given by

l ( ί < θ)Pn(B) + l ( ί > θ^iθPniB) + (t- θ)Qn(B)},
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(1 - θ)Qn(B)} + l(ί > θ)Qn{B)

respectively. Note that these formulas are obtained by substituting δy^B),
Pn(B) and Qn(B) for 1(1; < y), F(y) and G(y) respectively in (11) and (13).
Continuing this analogy, we see that d^B) = {ί(l - ί)}1/2[P*(5) - *Pn(#)]
estimates ί* (5) = {/(I - *)}1/2p(*)Wn(5) - Pn(B)] where p(ί) is as in (14),
so that θ is the unique maximizer of {t(l - t)γl2p{i). This leads to the
consideration of θn = argmaxS'n(^) over the set {I/ft, , (ft - l)/n} as an
estimator of 0, where Sn is a (possibly random) norm.

Suppose that Qn and Pn are not too close to one another in the sense that
P[Sn(Qn-Pn) > Cv~x\ -+ 1 for a sequence {un} satisfying vn{n~λ log log nfl2

—• 0. Then θn - θ = Ov{v^n"1) under a regularity condition on 5 n . Results
on limiting distribution of $n for fixed change and contiguous change are also
available. Notice the similarity of the rate of convergence of θn with that of
the MLE in the parametric model.

Another class of estimators in a similar spirit is based on

n nt

rn(t) = n-1 ^ Σκ(Yi,Yj), 0<t<l
i=nt+l j=l

where if is a bounded, measurable, antisymmetric kernel with

λ = J J K(x,y)dP(y)dQ{x)φO.

Then for 0 < t < l ,r n(t) -> λr(ί) a.s., where

r(t) = l(ί < θ)(l - θ)t + l(ί > θ)θ(l - t).

Like p(t), r(t) also has its unique maximizer at 0, which leads to the consider-
ation of the maximizer (minimizer) of r(t) over the set {I/ft, , (ft — l)/ft}
when λ is suspected to be > 0 (< 0). This estimator has an almost sure
convergence rate of ft"1 log ft.

5.3. Bibliographic Notes. The nonparametric tests for distributional
change described above are due to Bhattacharyya and Johnson (1968). The
estimator which maximizes the Mann-Whitney discrepancy between two parts
of a series was proposed by Darkovskiy (1976). Carlstein (1988) generalized
this estimator by maximizing other measures of discrepancy between pre-t and
post-t empirical cdf's and Dumbgen (1991) extended this approach further by
comparing pre-t and post-t empirical measures in an arbitrary space. Methods
based on a U-statistic type comparison between pre-t and post-t empiricals
have been proposed by Ferger (1991). An account of some nonparametric
methods of change-point analysis can be found in Csδrgδ and Horvath (1988).
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6. Change-Points in a Regression Model. There are two types of
problems here, which we shall call Time-Varying Regression and Two-Phase
Regression. Let (Xi, Yi), , (Xn,Yn) be independent random vectors. In the
Time-Varying Regression model, we have

i<τ
(15)

i>τ + l

where {Xi},{Z{} are mutually independent iid sequences with E{Z{) = 0,
E(Zf) = 1 and (Δ 0 ,Δi) φ (0,0). If 1 < r < n - 1, then r is a change-point
and as before, r = n means "no change". One can also consider the problem
in its fixed design version where the regressors #χ,..., xn are non-stochastic.

In a Two-Phase Regression model, the change in regression coefficients
takes place not from the earlier to the later part of the observed sequence,
but from the smaller to the larger values of the regressor (or more generally,
according to the vector of regressors lying on one side or the other of a hyper-
plane). The change-point r here is a point (or hyperplane) in the support of
the X-distribution and in (15), the coefficient vector is (βo,β\) for X{ < r and
(βo + Δo,/?i + Δi) for X{ > r. In the Two-Phase Regression model with fixed
design, a?i,..., XUQ < r < XUQ+\ < < xn are non-stochastic and in (15), the
coefficient vector changes after i = nθ, so that either r or θ can be regarded
as the change-point.

We assume Zi , . . . , Zn to be independent iV(0,1), although much of the
asymptotics of the procedures discussed here remain valid more generally.

6.1. Time-Varying Regression. For the most part, we shall consider this
model for a fixed design (or argue conditionally if the regressors are stochastic).
Suppose that there are k regressors and let

so that we have
Yi = x!iβ_+σZi for 1 < i < r (16)

if and only if r < r.

In the method of recursive residuals, we calculate the least squares esti-
mate β_r_λ from (^ , Yί), 1 < i < r - 1, on the basis of (16) and then substitute

this estimate for β_ in (16) for i = r to calculate the residual Yr - ^!rβ_r_v Note
that for r < r, such a residual will behave like the true residual σZr plus an
additional noise due to error in β_r_λ which is independent of Zr.

For a more formal description of the method, let

X'r = fel, -XAilLr = (YU . , * ; ) , £ = (Zl9. . ., Zr)
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and rewrite (16) as

Yr = Xrβr + Zr. (17)

Assume that the r X (k+ 1) design matrix in (17) is of full rank for r > k + 1.

Then for k + 2 < r < r, the residuals Yr — x^rβ are easily seen to be

independent normal variables with mean 0 and

Var[rr - ^ ^ _ J = σ2Vr,Vr = 1 + x[rC;\xτ,Cτ.x = X'r_xXr-ι.

The recursive residuals defined as

thus have the property of being independent iV(0, σ2), as long as r < r.

In calculating the recursive residuals, the main difficulty is in inverting

the matrix Cτ-\ — X[_xXT-\ and calculating β_r_λ at each stage; but this is

carried out by the recursion formulas:

c-1 = cr-_\ - c ^xXc ljii + χ!rc;l1χr],

Moreover, the successive residual sums of squares

RSS(r) = (Yr - XrjTfQLr - Xrβr), T>k

are also obtained recursively as

Under the hypothesis Ho of "no change", σ2 = RSS{n)/{n — k — 1) is a

consistent estimator of σ2, and the sequence {Wt = σ~λ Σ*-^.. 2 ^j? k + 2 <

t < n} behaves approximately as a standard B.M. starting from 0 at time

ί = fc + 1. Motivated by this fact, a test for Ho has been proposed in which

Ho is rejected if {Wt} crosses a suitably constructed pair of linear boundaries.

Another proposal is to construct a test of Ho based on the cumulative

sum of squares of {Wt}. Let

Qt= Σ Z}l Σ Z] = RSS(t)/RSS(n), k + 2<t<n.
j=k+2 j=k+2

For simplicity, let n - k - 1 = 2(JV + 1) be even and note that Tj = (Z%+2j +

Z 2

+ 2 j + 1 ) / 2 , 1 < j < N + 1 are independent Exp(l) under Ho. Hence under
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N+l

are jointly distributed as the order statistics (ί/jv:i,..., t/jV:Λr) i n a random
sample from uniform (0,1). Thus

DN= max'
l<t<N

can be used to test UΓQ, using the distribution of the empirical process as in
the Kolmogorov-Smirnov test.

We now briefly discuss the MLE of r in the time-varying regression model
with stochastic regressors. For simplicity, we consider the case of k = 1 and
assume that in (15), {Xi} is a sequence of independent iV(0, σ^) which is
independent of {Z{}. Suppose that the change in the regression parameters is
contiguous. Specifically, let (Δo, Δi) = (SQV"1 , δiu^1)^ where vn —> oo at a
slower rate than n1/2. Then from the general results for MLE of change-points
in multi-parameter families, the asymptotic distribution of the MLE f of r is
obtained as

where Tμ = argmin[i?(tf) + \μ\t\] as in Section 3.2. Note that (/30, βi) chang-
ing under a linear constraint (in particular, βo changing with β\ remaining
unchanged) is included in this result.

6.2. Two-Phase Regression. We shall discuss the estimation problem
under this model with fixed design involving one regressor. There are two
cases to consider, depending on whether or not the regression lines in the two
phases are required to meet at the change-point. We shall refer to these as
the restricted case and the unrestricted case. Most of the literature in this
area is devoted to the restricted case in which the MLE of the change-point
is asymptotically normally distributed. However, the MLE of change-point
behaves differently in the unrestricted case.

We first introduce some conditions on the limiting configuration of the
design points. Let Fn(x) = n" 1 Σ ^ l(χi ^ x) a n d suppose that there is a
function F with F(τ) = θ G (0, 1) and f(τ) = F'(τ) > 0 such that as
n -> oo, Fn(τ) -* F(τ) and Fn(x)-Fn(τ) = [F(x)-F(τ)] [l + o(l)] uniformly
in a neighborhood of r. Suppose further that as n -» oo,

1 μi

χ% x % J μι μ\ + σ\
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A 1 Xi\ \ l ^2

(n-nθy1 22 ~U = A'2A2, (18)

where σ\ and σ | are positive, and that maxχ<κ n \x{\ = (^(ra1/2). In this limiting

scheme, xnθ+i — Xnθ = {nf(τ)}"1[^ + °(1)]> s o w e c a n t a k e #n0 = f without

affecting the asymptotics.

The MLE of the regression parameters (/?o, βι), (70? 7i) = (βo4-Δo, βι +
Δi) and n0 are obtained as the minimizer of the loglikelihood ratio process

k

,φi,Φo,Φi,k) = σ ΣM-Vo-Ψiti) ( i g )

n

k+1

We now examine ξn(φoiφi,ΦθiΦi,k) near the true parameter values, i.e., at

ψo = βo 4" wô "~ ? Vi = jSi + ^ 1 ^ " ' , ^0 = 7o 4" ̂ o^~ ? Ψi = 7i 4"
v\n~χl2 and k = nθ + j n . The difference between the restricted case and the
unrestricted case lies in the role of j n in this minimization.

In the restricted case, the parameters /?o?/^i?7o?7i?^ must satisfy r =

(70 - βo)l{β\ - 7i) = -Δ0/Δ1 with Δi φ 0. Hence the parameter space

near the true parameters consists of (wn"1/2, im"""1/2, τn(u,v)) where v! =

(Ϊ^O? ^1)? ^ == (^o?^i) and

Tn{u, v) = {r + (n 1/ 2Δi)~ 1(tio - Vo)}/{1 - (n1/2Δi)~1(wχ - vι)}.

In the minimization of £n( ) given by (19), we therefore take k = nθ +

jn{u, v), where jn(u, υ) is defined by xne+jn(u,v) = rn( t t? v ) I* n o w follows that

jn(u>iv) = 0{nχl2) and |x t - r | = O(n" α / 2 ) for |i - n(9| < J Λ ( ^ J v).

We now consider the loglikelihood ratio process

Due to the order of magnitude of jn(u, υ), the asymptotics of f*(w, v) becomes

simplified and with respect to uniform convergence on compact sets:

11(1 - θ)^A W\\\ ( j

where Wi and VF2 are independent bivariate normal vectors with mean vector

0 and covariance matrix I, and A\ and A2 are as in (18).
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In the unrestricted case, the loglikelihood ratio has another term which is
a two-sided random walk with drifts as in Section 3.2. For contiguous change
in the regression parameters with (Δ 0,Δi) = (b^v'1 ,διv~λ), vn -> oo slower
than n1/2, and with k = nθ + v%t in (19), the loglikelihood ratio has the
following weak limit with respect to uniform convergence on compact sets:

£(tι, v, t) = ξn(β0 + uon~1/2,βι + um-1'2,7o + von^\ 7 l + t^n" 1 / 2 , nθ + u2

nt)

- -dl^ill2 + ll^ll2) + Hβ^σ-1 Am - Wλ\\2 + 11(1 - θf^σ-'A.v - W2\\2

+ σ " % + <52r| - \β(t) + ̂ " Ί ^ i + hτ\ • |ί|l ,

where Wi,W2,Ai,A2 are as in (20) and B( ) is a standard two-sided B.M.
which is independent of W\,W2

These weak convergence results indicate that in the restricted case,
n1/2(/9o - βo<>βι - βi) and n1/2(/yo - 7o?7i - 7i) are asymptotically indepen-
dently distributed as ί"1/2σA]"1Wi and (l-^)-1/2σA^1W2 respectively. Con-
sequently,

n i/2 ( f _ r ) = ni/2

ήrι-βi 7 i - P i /

where the asymptotic variance α 2 is obtained by the delta method.

In the unrestricted case, the estimators of the regression parameters be-
have in the same way as in the restricted case, but t is asymptotically inde-
pendent of /30, βι, 7o, 7i and

nv-\r - T) Λ Γ*//(r)

where T* = argmin[J3(ί) + \σ~x\δQ + διτ\ |* |]. Thus the limiting distribution
of f is governed by the limiting density f(τ) of the design points at r, the
jump Δo + Δi r = v~ 1(δ0 + διτ) in the regression at r, and the residual s.d.
σ.

Similar results hold for the case of random designs.

6.3. Bibliographic Notes. Change-point analysis in a time-varying regres-
sion model was initiated by Quandt (1958, 1960). The method of recursive
residuals to test for change in this model was developed by Brown, Durbin and
Evans (1975). Estimation in segmented or multi-phase linear regression with
unknown change-points and under continuity constraint was considered by
Hudson (1966) and the asymptotic distribution of the estimated change-point
was derived by Hinkley (1969). The problem was also treated in fairly general
terms by Feder (1975). Distinction between the asymptotic properties of the
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estimated change-point with or without the continuity constraint was recog-
nized by van de Geer (1988) in the random-design case and by Bhattacharya
(1991) in the fixed-design case. Approximation to the tail probability of the
LRT statistic for a change in only the intercept or in both slope and intercept
was obtained by Kim and Siegmund (1989), who also constructed confidence
sets for the parameters.

7. Detecting Change in the Distribution of Sequentially Ob-
served Data. This is the on-line quality control problem in which manufac-
tured items are sampled at regular intervals from a production process and an
observation X (possibly binary) is taken on each sampled item. This gives rise
to independent random variables {X;}, observed sequentially, whose distribu-
tion may change at any time τ (including τ = 1) and the production process
"goes out of control" when that happens. The problem is to stop as soon after
τ as possible without too many false alarms.

The earliest techniques in this area are the Shewhart control charts: X-
chart to detect change in mean, R-chart or s2-chart to detect change in vari-
ability and control chart for fraction detectives. In these charts, the mean X,
the range R, etc., of the samples are monitored and the process is stopped if
and when some action limits are violated. These charts use only the current
sample and fail to use accumulated evidence of change, thereby missing the se-
quential aspect of the problem. In an attempt to remedy this, one can replace
the X-chart by a moving average chart, using simple moving averages of sev-
eral past observations or exponentially weighted (geometric) moving averages
of all of the past observations. Average run lengths of moving average charts
have been studied theoretically to derive bounds, and by simulation studies.

A method for detecting change in distribution of sequentially observed
data {X{} is a stopping time. We shall discuss here a popular method known
as Page-CUSUM procedure and its Bayesian counterpart known as Shiryaev-
Roberts procedure.

The aim of the Page-CUSUM procedure is to detect change from a known
pdf /o to another known pdf f\. For this, at each stage of sampling, the
null hypothesis of "no change yet" is tested against the alternative of change
having occurred at 'some point in the past'. Specifically, at the k-ih stage, the
likelihood ratio test statistic for this purpose is:

= max { maxfc £ Z;, 0 \, Z, = log[Λ(X, )//o(*. )]>
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which can be calculated by the recursion formula:

T* = (T*_1 + Z*)+, To = 0. (21)

The Page-CUSUM procedure stops at JV> = min{fc : Tk > 7}, where 7 is a
prescribed boundary.

Note that this procedure can be thought of as the Wald SPRT(A, B) for
/o against /1 with log B = 0 and log A = 7 which stops if the SPRT terminates
with acceptance of /1 but repeats from scratch if the SPRT terminates with
acceptance of /0. In particular, if /t is the pdf of N(μi,σ2), i = 0,1 with
μi > Mo? then the Page-CUSUM procedure calculates

Sk = max < Sk-ι + Xk - ^(^o + A*i), 0 > , So = 0,

at each stage of sampling and stops at the first k for which Sk exceeds a
prescribed boundary.

Let Eτ denote expectation under the hypothesis of "change from /o to
/1 after time r" and let EQ denote expectation under the hypothesis of "no
change from /o". Then for a stopping time JV, it would be desirable to have a
large value of EQ(N) SO that false alarms are raised only at long intervals and
to have

to be small in order to reduce the delay (N - r + 1)+ in detecting changes in
a minimax sense. The Page-CUSUM stopping time Np = min{& : Tk > 7}
with Tk given by (21) is minimax in the sense of minimizing Eι(N) subject to
Eo(N) > c for a preassigned c > 1.

In a Bayesian formulation of the problem, suppose that the prior distri-
bution of T is Geometric (p) and the loss in stopping at time t is 1 if t < r
(penalty for false alarm) and is c(t — r) if t > r (penalty for delay), then the
Bayes rule is to stop as soon as the posterior probability of a change having
occurred exceeds a threshold. In the limit as p -+ 0, the Bayes stopping rule
takes the form:

Such a procedure is called a Shiryaev-Roberts procedure.

7.1. Bibliographic Notes. After the introduction of the original control
charts by Shewhart (1931), various modifications were introduced such as the
use of warning lines (a succession of less serious departures from the norm
calling for action) and moving averages to use past evidence together with
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current information. The sequential nature of the problem was recognized
by Girshick and Rubin (1952) in a Bayesian formulation and in the CUSUM
chart of Page (1954) motivated by the likelihood approach. The Bayesian
procedure described here is due to Shiryaev (1963). This procedure was in-
dependently proposed by Roberts (1966) in a comparative study of various
methods. Shiryaev (1963, 1978) showed that the Bayes rule stops as soon
as the posterior probability of a change having already occurred exceeds a
threshold. The minimax property of the Page-CUSUM procedure was first
established in an asymptotic sense by Lorden (1971) and later, the exact min-
imax property was proved by Moustakides (1986). The asymptotic property
of the Shiryaev-Roberts procedure mentioned above is due to Pollak (1985).
Pollak and Siegmund (1985) compared the Page-CUSUM and the Shiryaev-
Roberts procedures in the continuous time analogue of the problem, and found
that neither of the two procedures is decidedly better than the other when the
change had occurred before observations started or when the change occurs
very late.
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