Preface

There is evidence of rapidly increasing interest in the area of change-point analysis among statisticians; this is triggered by an awareness of important applications as well as by newly available theoretical and computational methods. Some of these new methods involve, for instance, progress in the theory of empirical processes, advances in curve estimation methods, and bootstrap methods.

Recent applications of change-point methods in the widest sense include: Statistical image processing and edge detection in noisy images, which can be viewed as a multidimensional change-point respectively boundary detection problem; change-points in economic regression models (split or two-phase regression); detection of discontinuities in astrophysical time series with dependent data; changes in hazard rates as were shown to occur some time after bone-marrow transplantation for leukemia patients; the comparison and matching of DNA sequences; the simultaneous estimation of smoothly varying parts and discontinuities (possibly in a derivative) in curves and surfaces.

The broad applicability of change-point methods in various statistical settings and subject-matter areas as well as the applicability of a large array of mathematical and statistical methods to investigate the various change-point problems makes this an attractive field of research, with still many open and unsettled questions. It was our intention to include articles which reflect this variety, as well as articles which demonstrate the unifying themes in changepoint technology and provide an overview.

Examples of statistical change-point problems that are discussed in this volume include:

- 1. A review article (P. K. Bhattacharya) provides historical perspectives of the classical change-point problem.
- 2. The problem of testing for, detecting and locating a change in the distribution in a sequence of random variables. This problem has been treated under parametric assumptions and more recently with nonparametric methods. (Csörgö & Szyszkowicz; Darkhovski; Dümbgen; Ferger; Horváth & Parzen; Rukhin; Yao, Huang & Davis)
- 3. Sequential versions of the above and of other change-point problems, with applications in industrial quality control. (Beibel; Bell, Gordon & Pollak; Bhattacharya & Zhao; Yaschin)
- Detection and location of a change-point or discontinuity in a regression function with parametric two-phase regression models. (Kim; Siegmund & Zhang)

- 5. The problem of estimating smooth curves which contain smooth parts and discontinuities; adaptation of spline, kernel, locally weighted least squares and semiparametric methods. (Eubank & Speckman)
- Detection and location of a change-point in a hazard function under random censoring, with applications in medicine and epidemiology. (Müller & Wang; Rabinovich)
- 7. Multidimensional extensions. Here change-points in a generalized sense are edges, boundaries or change curves respectively break curves, where the boundary may be assumed to be a smooth or parametrically determined curve. This is a novel area of research, with particularly promising applications in image analysis. (Krishnamoorthy & Carlstein; Müller & Song; Puri and Ruymgaart; Rudemo & Stryhn; Tsybakov)
- 8. Analysis of change-points in time series and regression models with dependent data. (Lombard & Hart; Yakir)
- 9. The use of distributional homogeneity for estimating regression parameters. (Ghoudi & McDonald)

This volume consists of selected invited papers based on talks given at the AMS-IMS-SIAM Summer Research Conference on "Change-point Problems" which took place in Mt. Holyoke College, Massachusetts, July 11-16, 1992. All papers were refereed. The conference was supported by grants from the National Science Foundation and the National Security Agency and brought together researchers from various different subfields, united by the common theme of change-point analysis, which we interpret in the widest possible sense. The final conference program was compiled on-site at Mt. Holyoke. The conference proceeded in a lively workshop atmosphere with numerous discussions taking place after and during talks as well as during breaks and evenings.

We thank in particular the local organizer, Ms. Kohanski of the AMS, without whom the conference would not have been possible, and Judi Davis of Stanford, who did a superb job in organizing the manuscripts and creating the Tex files for this volume. Special thanks are due to Manny Parzen, who not only provided the decisive initiative to get this conference started, but also contributed greatly to the success of the conference. Further thanks are due to the following individuals for valuable refereeing services: M. Csörgö, L. Dümbgen, D. Ferger, L. Horváth, F. Lombard, M. Rudemo, A. Rukhin, F. Ruymgaart, K. Song, P. Speckman, A. Tsybakov.

> The Editors Davis, California, May 1994

List of Participants of the AMS-IMS-SIAM Summer Research Conference on Change-Point Problems, Mt. Holyoke, July 11-17, 1992:

Harold Ascher	Potomoc, MD
David Assaf	Stanford, CA
John Bather	Brighton, UK
Martin Beibel	Freiburg, Germany
P. K. Bhattacharya	Davis, CA
Ben Boukai	Indianapolis, IN
Giovanna Capizzi	Padova, Italy
Ed Carlstein	Chapel Hill, NC
Herman Chernoff	Cambridge, MA
Miklós Csörgö	Ottawa, Canada
Boris Darkhovski	Moscow, Russia
Angela Diblasi	Mendoza, Argentina
Lutz Dümbgen	Heidelberg, Germany
Dietmar Ferger	Giessen, Germany
Cheng-Der Fuh	Taipei, Taiwan
Kilani Ghoudi	Ottawa, Canada
Louis Gordon	Los Angeles, CA
John Hartigan	New Haven, CT
Lajos Horváth	Salt Lake City, UT
Chao Hsiung	Taipei, Taiwan
Krishna Jandhyala	Pullman, WA
Sam Kasala	Wilmington, NC
Hyune-Ju Kim	DeWitt, NY
Charu Krishnamoorthy	Chapel Hill, NC
Ricardo Leiva	Mendoza, Argentina
Zhaoli Li	St. Louis, MO
Young Liu	Kingston, Canada
Fred Lombard	Johannesburg, South Africa
Gary Lorden	Pasadena, CA

David McDonald	Ottawa, Canada
Karen Messer	Fullerton, CA
Hans-Georg Müller	Davis, CA
Neerchal Nagaraj	Baltimore, MD
Emanuel Parzen	College Station, TX
D. Tuan Pham	Grenoble, France
Moshe Pollak	Jerusalem, Israel
Peihua Qiu	Athens, GA
Dan Rabinowitz	Cambridge, MA
Mats E. Rudemo	Copenhagen, Denmark
Andrew L. Rukhin	Baltimore, MD
Jyh-Hen H. Shiau	Princeton, NJ
David Siegmund	Stanford, CA
Kaisheng Song	W. Lafayette, IN
Paul L. Speckman	Columbia, MO
Muni A. Srivastava	Toronto, Canada
Joan Staniswalis	El Paso, TX
Winfried Stute	Giessen, Germany
William Szewczyk	Olney, MD
Hajime Takahashi	Tokyo, Japan
Alexander Tsybakov	Paris, France
Jane-Ling Wang	Davis, CA
Yanhong Wu	Toronto, Canada
Benjamin Yakir	Rochester, NY
Yi-Ching Yao	Fort Collins, CO
Emmanuel Yashchin	Yorktown Heights, NJ
Shelemyahu Zacks	Endwell, NY
Heping Zhang	New Haven, CT
Hong Zhou	Davis, CA