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The paper deals with discrete moment problems where the possible

values of a random vector form a known finite set. First, some earlier results

concerning the one dimensional discrete moment problem are summarized.

Then, restricting the discussion to the two-dimensional case, for the sake of

simplicity, two different discrete moment problems are formulated: (a) the

known moments are those where the exponents of the random variables are

chosen between 0 and some upper bounds; (b) the sum of the exponents is

less than or equal to a given number. The bounds that can be obtained by

our technique include bounds for probabilities and expectation.

1. Introduction

The one-dimensional discrete moment problem can be formulated in the

following manner. Given a random variable f, the possible values of which

are known to be ZQ < z\ < < zn and a function f(z), z G {̂ o? %\ > ? Zn}-

We want to give lower and upper bounds for !?[/(£)], based on the knowl-

edge of the moments μk = E[ξk], k = 1,2, . . . , m , while the probability

distribution of ξ is unknown.

Introducing the notations pi = P{ξ = 2,-}, /,• = /(2« )> i = 0,1, . . . ,n,

μ 0 = 15 we obtain the above mentioned bounds by solving the linear pro-

gramming problems
n

(1.1) min(max) ΣfiPi

subject to
n

Σ kpi = μk, k = 0,1, . . . , m
t=0

Pi > 0 , ί = 1 , 2 , . . . , n ,
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where we assume that m < n. Problems (1.1) are termed as discrete

power moment problems. Replacing z\ by (^) and μk by Sky where Sk =

«B[φ]» fe = 0 , l , . . . , m ί w e obtain the binomial moment problem which plays

an important role in bounding probabilities of logical functions of events

(Prekopa (1988, 1990a)). The discrete binomial moment problem can be

transformed into the discrete power moment problem; hence we restrict

ourselves to problems (1.1). (Note that if instead of the consecutive mo-

ments μi, μ 2 , . . . , μ m , the moments μkl, μk2,..., μkm would be known where

k\ < k2 < -" < km are non-consecutive integers then simple equivalence

between the power and the binomial moment problems no longer exists.)

The duals of the problems (1.1) throw new light to this approach of

bounding £[/(£)]. If (1.1) is a minimization problem, then its dual is

m

(1.2) max ] Γ μkxk

subject to

and if (1.1) is a maximization problem, then its dual is

m

(1.3) mm^2μkyk

subject to

A;=0

The optimum values of these problems are called the sharp lower and upper
bounds for E[f(ξ)]. Since problems (1.1) have feasible solutions and finite
optima, the duality theorem of linear programming ensures that so do prob-
lems (1.2), (1.3) and the optimum values of the primal-dual pairs coincide.
Thus, we have the inequalities

(1.4)
k=o k=o

where xo,xu...yxm satisfy (1.2) and y0? ί/i, ? Vm satisfy (1.3). The bounds
(1.4) axe the best in the case of the optimal solutions x, y.

Among the choices of the function /, prominent are the following:

(1) / has positive divided differences of order m + 1 (for the definition of
the divided differences see the next section).
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( 2 ) / r = 1 and Λ = 0 for i j έ r .

Kό) JO = = /r-l = U, Jr = = / Λ = 1.

In cases (2) and (3) we are bounding P{ξ = zr } and P{ξ > zr }, respec-
tively.

If we did not know the possible values of ξ but we still would know the
moments μχ,μ2> ,Mm then the general moment problem (see, e.g., Krein
and Nudelman (1977)):

rb

(1.5) min(max) / f(z)dσ
Ja

subject to
ή

z dσ = μfc, k = 0 , 1 , . . . , mI
Jawould provide us with bounds for E[f(ξ)], where σ is the unknown proba-

bility distribution function on [α, b]. Assuming a = zo, b = zn, furthermore,
designating by i^, U<ι and i c , Uc the optimum values corresponding to prob-
lems (1.1) and (1.5), respectively, we have the relations

(1.6) Le<Ld<E\f(ξ)]<Ud<Uc.

This means that if the set of possible values of ξ is a known discrete set and
we utilize it in the form of solving problems (1.1) then better bounds can be
obtained than through solving problems (1.5). This is so even though the
optimal solutions of problems (1.5) are discrete distributions. In fact, the
supports of these distributions may not be subsets of {̂ o? ̂ i? ? zn}

Recent discovery by Samuels and Studden (1989) and by Prekopa (1988,
1990a, 1990b) of the fact that the sharp Bonferroni inequalities are essen-
tially solutions of discrete moment problems, stresses the importance of the
discrete case. A variety of applications of the discrete moment problem,
ranging from communication or power system reliability calculations to ap-
proximations in queueing systems, can be mentioned.

2. Dual Feasible Bases and Lagrange Polynomials
Associated with Problems (1.1)

In this section we further restrict ourselves to that special case of the

objective function / where all m + 1st divided differences are positive. The

first order divided differences of / are

(2.1) [Zil, zi2]f = / ( 2 ί 2 ) ~ { ( Z ' l ) , 0 < h < i2 < n.
z%2 -~ z h
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The higher order divided differences are defined recursively by

0 << ii < %2 < < h < <

for fc > 2. It is known (see, e.g., Jordan (1965)) that if all divided differences
of order A;, corresponding to consecutive points, are positive then all divided
differences of order k are positive, and we have the equality

(2.3) ]/ =

1 1

/(*l) fi*h)

1 1
zh zi2

*1 *2

If / is defined for every z in [z0,2n] and /(m + 1)(z) > 0 at every interior
point z of this interval, then all m + 1st divided differences of / are positive
on z0, 2i, , 2n (see Jordan (1965)). The positivity of the first order divided
differences means that / is increasing and the positivity of the second order
divided differences means the convexity of the function /, i.e., the polygon
connecting the points (^,/(^)),i = 0,1,... ,ra in the plane, is convex. This
implies that an equivalent formulation of the positivity of the second order
divided differences is:

0 < *i < »2 < h < n.

We assume that the m + 1st divided differences of / are positive (while there
is no condition on the lower order divided differences). Thus, we handle the
type (1) of the objective function /, mentioned in the Introduction. The
results corresponding to the others are presented in Prekopa (1990b).

Let aj = (1, Zij , zf1), i = 0, , n, and A = (a0, , a n ) . Furthermore
let B be an (rn + 1) X (m + 1) part of the matrix A. Since B is a Vander-
monde matrix, it is non-singular and thus, it represents a basis in the linear
programming (minimization or maximization) problem (1.1). The columns
of B will be called basic vectors.
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Let fβ designate the vector consisting of those fi values as components
which correspond to basic vectors a t . By definition, B is dual feasible if

(2.4) fj — fβ5~1a>7 > 0 for all j , in the minimization problem,

(2.5) fj — fβjB~1aj < 0 for all j , in the maximization problem.

If 8ij is basic then we have equality in the above relations.
Let / be the set of subscripts of the basic vectors and L\(z) the Lagrange

polynomial corresponding to the points Z{, i € / . Then

ΐ=0

where

is the ith fundamental polynomial. Furthermore let bΎ(z) = (1,2,.
Clearly we have b(^ t ) = a t , i = 0 , 1 , . . . , n and

ff(2.6) Λ*>«*»«-ISf I $ f
From (2.6) we first derive

(2.7) ίlB-'biz) = Lτ{z).

In fact, fβJB~1b(,2:) is an mth degree polynomial that is equal to f{z{) if
z — Zi. Another observation is that if z £ {zi,i G /} then the second
determinant on the right hand side in (2.6) is different from 0. This follows
from (2.3) and the assumption that all m + 1st order divided differences of
/ are positive. This implies that if z £ {zi,i E 1} then (2.6) is nonzero,
in other words, no basis is dual-degenerate. Hence, in (2.4) and (2.5) we
have equalities at basic points, otherwise we have strict inequalities. This
means that the basis B is dual feasible in the minimization (maximization)
problem (1.1) if and only if the Lagrange polynomial corresponding to the
basic points {^ , i 6 /} is strictly below (above) the function f(z) at any
nonbasic point z.

Using (2.6) and (2.3), we obtain the equation

(2.8) f(z) - Lτ(z) = H(z - Zj) [z, zu i e I] /,

which is well-known in interpolation theory. We also mention Newton's form
for the interpolating polynomial:

m

= / o + Σ I K 2 - *>) h ' j e / ( f c ) ]
fc()
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where /W is the set of the first k + 1 elements of / and /o is the function
value corresponding to the first element in /.

In order to find necessary and sufficient condition that a basis is dual
feasible in any of the problems (1.1), equation (2.8) can be used. Since
[2, Zi, i G I]f > 0 for every z (£ {zt , i £ /}, we see that the basis is dual
feasible in the minimization problem, if and only if

Y[(z - Zj) > 0 for all non-basic 2,
jei

and is dual feasible in the maximization problem, if and only if

— Zj) < 0 for all non-basic z.

Thus, the basic vectors have to follow each other according to some patterns
that can be best summarized in terms of their subscripts. If the basis B
corresponds to the subscript set J, then sometimes we will write B(I) instead
of B.

THEOREM 2.1 A basis B(I) is dual feasible in the minimization (maximiza-
tion) problem (1.1) if and only if the subscript set I} with elements arranged
in increasing order, has the following structure:

m + 1 even m + 1 odd
Minimization
problem { j , j + 1,..., fc, k + 1} { 0, j , j + 1,..., fc, k + 1}
Maximization
problem {0, j , j + 1,... ,fc, k + 1, n} { j , j + 1, . . . ,fc, k + 1, n}

3. Bounds for E[f(ξ)]

Theorem 2.1 can be used to give bounds for E[f(ξ)]. These can be
obtained in terms of formulas if m is small (m < 4) or by algorithms if m is
large.

Any dual feasible basis B provides us with a bound. If it is dual feasible in
the minimization problem, then the corresponding objective function value
is smaller than or equal to the optimum value. Hence,

(3.1) f£irV = £[£i(0]<£[/(0],

where μ τ = ( l ,μi , . . . ,μ m ) . If, on the other hand, B is dual feasible in the
maximization problem, then

(3.2) §B~ιμ = E[Wt))>E[f{ti)).
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Note that the inequalities in (3.1) and (3.2) hold also for each possible
value of £, if we remove the expectations.

A basis B is said to be primal feasible if B"1μ > 0. A basis that is
both primal and dual feasible, is optimal. Combining these remarks with
Theorem 2.1, we have

THEOREM 3.1 Assume that the function f has all positive divided differences
of order m + 1. The following assertions hold true:

(a) // / has one of the two structures

then

Hz) < f(z),
with strict inequality for all nonbasic z, and

E[Lι(ξ)]<EV(ξ)].

This bound is sharp if B(I) is a primal feasible basis in problem (1.1).

(b) If I has one of the structures

{ j , j + 1, . . . , *, k + 1, n }, { 0, j , j + 1, . . . , *, k + 1, n },

then

Hz) > f(z),

with strict inequality for all nonbasic z, and

E[H0]>E[f(ξ)].

This bound is sharp if B(I) is a primal feasible basis in problem (1.1).

In order to obtain the sharp bound we need to check which one is
that dual feasible basis B(I) for which we also have primal feasibility, i.e.,
[5(/)]~V > 0. If m is small then Theorem 2.1 gives us a key to find this B(I)
by a formula (see Boros and Prekopa (1989), Prekopa (1990b)). However, if
m is large then the sharp bound can be obtained only by an algorithm.

Instead of a general linear programming algorithm, the following very
advantageous dual type algorithm can be used to solve any of the problems
(1.1).

Step 0. Pick any dual feasible basis subscript set /, in accordance with
Theorem 2.1.
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Step 1. Check if [5(/)]~1/x > 0. If yes, then stop; optimal basis and

optimal solution has been reached. Otherwise pick any j for which
1),- < 0, and go to Step 2.

Step 2. Delete the j t h vector from B(I) (which is not necessarily the same
as aj) and include that vector which restores the dual feasible basis
structure. Go to Step 1.

Since no dual degeneracy occurs, the objective function values are strictly
increasing and the algorithm terminates in a finite number of steps.

The above algorithm is of dual type but it is not exactly a special case of
the dual algorithm of Lemke (1954). The difference is that here the incoming
vector can be found very easily through a logical analysis of the subscript set
/, rather than a costly procedure involving reduced prices. For more details
of the algorithm see Prekopa (1990a).

NUMERICAL EXAMPLE We present sharp lower and upper bounds for the

moment generating function E ί e*M at the point t = 0.1. We assume that

the possible values of ξ are known to be Z{ = i, i = 0,1,•••,20 and we

know the first three moments of ξ: μι = 9.73086229944, μ2 = 129.5641151,

μ3 = 1903.250122.

The function f(z) = e0Λz has positive derivative of any order at any z,
hence the condition for / (that its fourth order divided differences, on the
set of possible values of £, are positive) is fulfilled.

Using the algorithm described in this section, both the minimization and
maximization problems (1.1) have been solved instantly on a 33MHz/486
PC. The code was written in APL language which is very suitable to these
problems. Below we present the subscript sets of the bases encountered in
the subsequent iterations, together with the optimal solutions.

Minimization problem

Initial basis 6 7 8 9

7 8 9 10
8 9 10 11
7 8 10 11
7 8 11 12
6 7 11 12
5 6 11 12
5 6 12 13
4 5 12 13
4 5 13 14
3 4 13 14
3 4 14 15

Optimal basis 3 4 15 16
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The optimal solution is:

Pz = 0.3170498444, p4 = 0.1397544435, p15 = 0.4704357076,

pie = 0.0727600045, pi = 0, for any other i.

The optimum value is:

e(o.i)3p3 + e(o.i)4p4 + e(o.i)iδΛ 5 + c(o.i)iβ f t β = 3.105190886.

Maximization problem

Initial basis 0 1 2 20

0 2 3 20
0 3 4 20

0 4 5 20
0 5 6 20
0 6 7 20
0 7 8 20
0 8 9 20
0 9 10 20

Optimal basis 0 10 11 20

The optimal solution is:

po = 0.20523691, pw = 0.2755241346, pn = 0.3787952662,

P2o = 0.140443686, pi = 0, for any other i.

The optimum value is:

^(O.l)^ I Λ(0.1)10 I (0.1)11^ i _(0.1)20~ Q lOQQQQQn^
c Pθ i e PlO ~t~ & Jrll ι ^ P20 — O.lZc/Ot/l/OUO.

Thus, we have the sharp bounds:

3.105190886 < E (e° ^ ) < 3.129899305.

4. Multivariate Discrete Moment Problems

For the sake of simplicity we restrict ourselves to the discussion of the

bivariate case. The results generalize to the multivariate case in a straight-

forward manner.

Let f i and £2 be two discrete random variables with known finite supports

which are zι<? , j = 0 , 1 , . . . ,n t , i = 1,2, and assume that some of the bivariate

moments

(4.1) μaβ = E
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are known, where a and β are nonnegative integers, while the probabilities

are unknown. Note that the support of the random vector (£1, £2) is part
of the set {zio, , z\ni} x {220, , ̂ 2n2} but we do not assume any further
knowledge about it. Let furthermore /(^i, z<ι) be a function on the set
{210, , z\nλ} x {220, , 22n2} We intend to give lower and upper bounds
for 2?[/(£i, 62)] under some conditions regarding the moments (4.1) and the
function /.

As regards the moments μα/?, we consider two cases:

(a) there exist positive integers mi, and m<ι such that μaβ are known for
all a and β satisfying 0 < α < m i , 0 < / ? < 7712;

(b) there exists a positive integer m such that μaβ are known for all a > 0,
β> 0, a + β < m.

The corresponding linear programming problems providing us with the
sharp lower and upper bounds for E[f(ξχ, £2)]? are the following (let fy =

(4.2)

subject to

and

(4.3)

0

Pij > 0

min (max)

ni ri2

ι=0 j=0

< a < mi,

0 < i <

min (max)

71l 712

i=0 j=0

o<
n i ,

n\ 712

• -j / -j

fijPij

β <m2

0 < j < n2

i=o j=o

subject to

i=o j=o

Regarding the function /, the technique developed in Prekopa (1990b) for
the univariate discrete moment problem and partly outlined in the previous
sections, allows for handling problem (4.2) in three different cases which are
analogous with the cases (1), (2) and (3) mentioned in Section 1. In this
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paper, however, we restrict ourselves to the two-dimensional version of case

(i).
Our condition on / is formulated for the case of problem (4.2). Later, we

will use the results concerning problem (4.2), to obtain results for problem
(4.3). First we introduce some notations. Let I\ C {0,1,... ,ni }, I2 C
{0,1,...,712 }, |/i| = mi + 1, I/2I = rri2 + 1 be some subscript sets and

j€/2

z2) = Σ Σ

where

= Π
We use the order (mχ+1, m2+l) divided differences of / over { 210, . . . , z\ni }x
{̂ 20? 5^2n2 } which are defined in a natural way through the subsequent
applications of the divided difference operations. This property of / is en-
sured if it is defined on [210, z\nι\ x [̂ 20? ^2n2]

for every interior point of the rectangle (see Popoviciu (1945)).

Conditions on f in problems (4*

Let /1,12 be a pair of dual feasible subscript sets, both in the minimiza-
tion (maximization) problem (1.1), using mi, and m2, respectively, instead
of m. We assume that at least one of the conditions (i), (π), (in), (iυ),
presented below, is satisfied.

(i a) For any fixed z2 € { 2209 - ? Z2n2 }> ^he function of the variable z\ :
f(zu Z2), has all positive divided differences of order m\ + 1.

(i b) For any fixed z\ G { ̂ io? -. •, z\ni }, the function of the variable z2 :
i, ^2), has all positive divided differences of order rrt2 + 1.
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(ii a) For any fixed z\ G { 210, - - , ̂ lm }> the function of the variable z2 :
/0*i» ^2), has all positive divided differences of order m2 + 1.

(ii 6) For any fixed 22 G { 220, - ? ^2n2 }? the function of the variable 21 :

Xj2^(^i, 22), has all positive divided differences of order πi\ + 1.

(ttt) The function /(^i, Z2) has all positive divided differences of order
(mi + l,m 2 + 1) and both (ib) and (iib) hold.

(iυ) Let /}*' and Jj designate the sets of the first i + 1 and j + 1 elements
in /1 and J2, respectively and [zi^, h G /} , 2̂fc? ^ £ ^ ]/ ^ e divided
difference of order (i, j) of the function /, corresponding to the points
zih-> h ^ ί 22*5 & ̂  2̂ ^ e a s s u m e that the inequality (let /o be
the function value corresponding to the first elements in Ji and I2):

m\ τn.2

t=0 j=0

X π
holds for every (21, z2) £ { zu, i G h } X { z2jy j G -Γ2 }, if Ji, 2̂ corre-
spond to minimization problems. If/1, /2 correspond to maximization
problems then the opposite inequality is assumed to hold. Note that
the sum has the same value for any ordering of the points in the sets
{z\i, i G /} and {z2j, j G h}, and is obtained so that we write up
the Newton's form of the polynomial Lιλ /2(^i, z2) subsequently for z\
and #2

Introducing the notations (let μoo = 1)

1 \ 1 . . . 1 \

ZiQ Z%\ * * * Zini

\ Zi0

A = AΛ ® An =

mi
Z *•»; /

b T =

P T =
fτ =

(Pij, 0 < i < tii, 0 < j < n 2),
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we can rewrite problems (4.2) in the concise form:

(4.4)

subject to

min(max)f τp

Ap = b,
p > 0.

5. Bounds for E[f(ξu &)]

Let /i, I2 be basis subscript sets from {0,1,..., n\ } and { 0,1, . . . , n2 },
respectively. The set / = I\ X I2 represents a basis subscript set for problem
(4.4) and B(I) = Bχ(Iι) ® B2(I2) is a basis from A. Bases of this type will
be called rectangular. The vector fβ = fβiB2 designates that part of / which
corresponds to the basis vectors in B. We prove

THEOREM 5.1 /// satisfies one of the conditions (i), (ii), (Hi), (iv) and
I\, I2 correspond to minimization (maximization) problem, then we have the
relations
(5.1) f(zi, z2) = LiΛ(zu z2)

for (zι, z2) e { z\i, % £ h } X { z2j, j £ I2 }, and

(5.2) /(*i, z2)>(<) LιΛ(zu z2),

otherwise. Furthermore, I\ x I2 is a dual feasible basis subscript set in the
minimization (maximization) problem.

PROOF Let 5i(ί i) and B2(I2) designate that (mi + 1) x (mi + 1) and
(m2 + 1) x (m2 + 1) parts of A\ and A2 which correspond to the columns
with subscript sets I\ and J2, respectively. Then, as it is easy to show, we
have the relations:

\Bι(h)®B2(I2)\

z2) - /o

Bι(h)®B2(I2)

Σ W> h G Ji S

(5.3) Π



322 Andrάs Prekopa

Now the expression in the first line of (5.3) is the reduced price (tradi-
tionally designated by c - z in linear programming theory) corresponding to
the basis with subscript set Iχ x I2 in problem (4.2) and the point (zi, z2).
The dual feasibility in the minimization (maximization) problem means that
these values are nonnegative (nonpositive) for every nonbasic (21, z2). We
will prove positivity (negativity), i.e., also the dual non-degeneracy of the
basis. Note that (5.1) holds trivially.

To prove (5.2) under (%) and (it) is simple. We only have to repeat the
reasoning, applied to the one-dimensional case.

The assertion under (iv) is a consequence of the equality between the
first and third lines in (5.3).

The assertion under (in) is a consequence of the equality (see Popoviciu
(1945)):

, z2) - { Lξ\zu z2) + L<ξ\zu z2) - Lllh(zly z2)

-LIlh(zuz2) $

(5.4) = JJ (*i " *iθ Π (*2 -

and the equality between the first and the second lines in (5.3). We only

have to apply (2.8) and the rest of the proof is simple. D

THEOREM 5.2 Suppose that f satisfies one of the conditions (i), (ύ*), (iiϊ),

and (iv). Then the following assertions hold true:

(a) If Iχ and I2 both have one of the structures:

U j + 1, . . . , * , * + l } , {0, j , j + l, . . . , * , * + l } ,

then

with strict inequality for all nonbasic (zi, z2), and

(5.5) E[Lllh(ξuξ2)]<E[f(ξuξ2)].

This bound is sharp if B(I\ X I2) is a primal feasible basis in problem (4.2).

(b) If Iι and I2 both have one of the structures:

{j, j + 1, . . . , fc, fc+1, n } , {0, j , j + 1, . . . , *, * + l, n } ,

i 22) >

siricί inequality for all nonbasic
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(5.6) E[Lllh(ζuξ2)]>E[f(ξuζ2)].

This bound is sharp if B(I\ x J2) is a primal feasible basis in problem (4.2).

PROOF The theorem is a consequence of Theorem 4.1 and the fact that a
both primal and dual feasible basis is optimal. •

REMARK It is not sure that among the bases of the form i?i(/i) ® i?2(/2)
there is one which is primal feasible. This is ensured if ξι and f2 are in-
dependent because in this case μaβ = 25[£"].E[f^] and the constraints in
problem (4.2) split into two separate sets of constraints, where there are
primal feasible bases i?i(/i) and i?2(/2). If £1 and £2 are dependent random
variables then the sharp inequalities may not be among those in (5.5) and
(5.6). Still, we can obtain the sharp inequalities if we use i?i(/i) ® #2(^2)
as an initial dual feasible basis and apply the dual method for the solution
of the problem.

For the case of problem (4.3) the bounds obtained for problem (4.2) can
be used in the following manner. First we observe that if both Iχ and / 2 are
dual feasible basis subscript sets in the minimization problem, | i i | + |/ 2 | =
m + 2, and / satisfies one of the conditions (z), (ii), (m), and (iv), with
mi = |/i |, 7722 = I/2I, then

(5.7) Lilh(zu z2) < f(zu z2),

for any (21, z2). Similarly, if /1, J2 are dual feasible basis subscript sets in

the maximization problem, | J i | + IJ2I = m + 2, and / satisfies one of the

conditions (i), (π), (m), and (iv), with m\ = | J i | , πi2 = |J2|>then

(5.8) LJlh(zu z2) > f(zu z2)

for any (z1? z2). Then we replace (zu z2) by (^1, ^ 2 ) 9 take expectations

in (5.7) and (5.8), and let 7χ, / 2, Ji, J 2 vary so that the best bounds for

E[f(ξι, £2)] are obtained. This result is summarized in

THEOREM 5.3 We have the inequalities

i j^i, £2)] |/i,/ 2 dual feasible for the min problem,

< max{J5[ij1j2(ίi, £2)] \JijJ2 dual feasible for the max problem,

where we assume that the function f satisfies the condition mentioned in

Section 4, for all Iι, / 2 and JΊ, J 2 ; respectively, that are allowed in the above

inequalities.
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REMARK When constructing the bounds presented in Theorem 5.3 we may
restrict ourselves to some of the rectangular bases with |/i| + I/2I = m + 2
(I J i | + IJ2I = TO + 2). In this case the bounds become weaker but we impose
less condition on /.

We illustrate the above bounds in the case of m = 2. Problem (4.2) is
now the following

(5.9)

subject to

(5.9α)

Minimize
n\

i=oj=o

i=0 j=0

(5.96)
n 2

Σ Σ

(5.9c)
t=0 j=0

712

»=o i=o

(5.9e) ΣΣ;
i=0 j=0

(5.9/)
t=o j=o

For a given pair /1, /2, with |/i| + I/2I = m + 2 = 4 we pick a subset
of the set of constraints of problem (4.3) so that the matrix of the new
constraints is a tensor product of two matrices with sizes |/i| X [n\ + 1) and
|/21 X (712 + I), respectively. There are three possibilities to do this concerning
problem (5.9).

The first one is to pick the constraints (5.9a), (5.9b), (5.9d). In this case
\h\ = 3, \I2\ = 1.
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The second one is to pick the constraints (5.9a), (5.9c), (5.9e). In this
case \IX\ = 1, |/2 | = 3.

The third one is to pick the constraints (5.9a), (5.9b), (5.9c), (5.9f). In
this case |/i| = 2, |/2 | = 2.

In order to simplify the formulation of the next theorem we introduce
the notation:

Z\ = {ziOj ^ l n J , Z2 = {220, ,22n2}, Z = Z1 X Z2, Z = (zUZ2).

THEOREM 5.4 Suppose that f has positive divided differences of orders (1,0),
(0,1), (2,0), (0,2), (3,0), (0,3), (2,1), (1,2). Then we have the following
bounds on f(z\,z2):

(5.10) Σ /(*io,*2j)i£)(s) <

for any I2 = {0,/,/ + 1}, 1 < / < n2 - 1, with strict inequality for z
{zio} X {z2jj e I2);

(5.11) Σ /(*iή*2θ)j£](*i) < f{zuz2\ z e Z,

for any I\ = {0,k,k + 1}, 1 < k < n\ - 1, with strict inequality for z
{zu,i e h} X {z20};

(5.12) £ ί ^ L

for any Kι = {r,r + 1}, 0 < r < nλ - 1, K2 = {θ,5 + 1}, 0 < s < n2 - 1,
with strict inequality for z ̂  {zu,i G h} X {z2j,j G I2};

(5.13) Σ M n ^ j i i f iW > /(*i>*2), ^ € Z,

/or any /2 = {/,/ + l ,n2}, 0 < / < n2 - 2, wϊΛ strict inequality for z

{zini} X {z2jj eh};

(5.14) 4 ! k

for any h of the form h = {k,k + l,n x}, 0 < k < nx - 1, with strict
inequality for z £ {zu,i E h} X {̂ 2n2}/

(5.15) 53 Mή^OiSi(^i)^Si(^) > M,*2), ^ e ^,
ί€Ki,jGK2

/or /^i = {0,ni}, /ί2 = {0,n2}, with strict inequality for z^Kχ X K2.
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PROOF Inequalities (5.10), (5.11), (5.13) and (5.14) are consequences of
Theorem 3.1 and the assumption that for any zu the function f(zu,z2)
is strictly increasing in z2 and for any z2j the function f(zι,z2j) is strictly
increasing in z\. We have utilized the assumption that all divided differences
of orders (0,1), (1,0), (0,3) and (3,0) are positive.

Inequality (5.15) is a simple consequence of the positivity of the (2,0),
(0,2) order divided differences.

To prove (5.12) assume first that z\ £ {^ir?^ir+i}5 z2 ^ {z2s,z2s+i}.
Since all (1, 2) and (2, 1) order divided differences are positive, we derive

f{zuz2) + f(zlr,z2s) - f(zlr,z2) - f(zuz2s)
(z\ - zlr)(z2 - z2s)

2) + f(zlr,z2s) - f(zlr,z2) -

(5.16) >

- zlr)(z2 - z2s)

f(z\r,Z2s) —

- Z2s)

On the other hand, the positivity of the (0, 2), (2, 0) order divided differences
imply that

(5.17) f(zlr,Z2) > f(Zlr,Z,s)
Z2s+l — Z2s

(5.18) MH ( I i )

Z\r+l — Z\r

Picking the inequality that exists between the first and third lines in (5.16)

and utilizing (5.17) and (5.18), we obtain:

f(zlr,Z2s)
Z2s+1 ~ Z2s

f(zιr+ι,Z2s) - f(zlr,Z2s) _ ^

Z Z

/(Zlr+l,*2s+l) + f(zιr,Z2s) -

~ Z2s)

(5.19) ί{Zl;\):Z2s)

 χ Λzi - zlr)(z2 -
\Z\r+l - Zir){Z2s+ι - Z2s)

Inequality (5.19) is the same as (5.12).
Considering the case where either z\ € {-Zio^ir+i} or z2 G {̂ 2

holds, we can easily check the validity of (5.19) in all possible cases. Since
(5.19) is the same as (5.12), the proof of the theorem is complete. •

Theorem 5.4 provides us with a tool to establish lower and upper bounds
for E[f(ξι,ξ2)]. We only have to plug ξι and £2 in the place of z\ and z2,
respectively, in all inequalities and pick the best lower and upper bounds.
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Each expectation inequality that we obtain from (5.10), (5.11), (5.13),
(5.14) can be optimized by the use of the algorithm presented in Section 3.
The expectation inequality that we obtain from (5.15) is already optimal.
There is no easy algorithm, however, to find the best pair Kι, K2 to optimize
the expectation inequality that we obtain from (5.12). We may try out each
pair JKΊ, K2 and pick that one which provides us with the largest lower
bound. Instead of doing this, the following may be suggested.

Starting from any rectangular basis B\(Kχ)®B2(K2) as initial dual feasi-
ble basis of the 4x [(ni + I)(τi2 + 1)] size linear programming (where we min-
imize the objective function of problem (5.9) subject to (5.9a), (5.9b), (5.9c),
(5.9f) and the nonnegativity restrictions), we carry out the dual method and
obtain a (not necessarily rectangular) optimal basis. The corresponding op-
timum value is the best lower bound on E[f(ξι,ξ2)], using μi0, μoi, μn

NUMERICAL EXAMPLE Assume that the possible values of any of the ran-
dom variables fi, £2 are known to be 0, , 9. Assume furthermore that

μ10 = 4.8, μ2o = 31.5

μoi = 4.1, μ02 = 27.5, μn = 19.95

and let

Considering one subproblem of problem (5.9), let (i, j) represent the column
vector consisting of the coefficients of z^zζj, as components, for the allowed
α, β values. Thus, any basis of any subproblem is a collection of subscript
pairs (ij).

The results are summarized in the following tables:
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Lower bound
based on
μio, μ20
Upper bound
based on

μio, μ2o
Lower bound
based on

μoi, μo2
Upper bound
based on
μoi, μo2

Optimal basis of
the reduced problem

(0,0), (6,0), (7,0)

(2,9), (3,9), (9,9)

(0,0), (0,6), (0,7)

(1,9), (2,9), (9,9)

Nonzero elements
of the optimal
probability distribution

poo = 0.2642857143
P60 = 0.35
P7o = 0.3857142857
Pag = 0.1285714286
P39 = 0.55
p9 9 = 0.3214285714
poo = 0.3857142857
P06 = 0.2
POT = 0.4142857143
pig = 0.05
P29 = 0.6428571429
P99 = 0.3071428571

Optimum value:
Bound

1.176108584

2.285735942

1.154458017

2.189880833

Table 1. Optimal lower and upper bounds on E[f(ξι,ξ2)]
using only univariate first and second order moments.

Lower bound
based on
μio, μoi, μn

Optimal lower
bound using
μio, μoi, μn

Optimal upper
bound using
μio, μoi,μn

Best rectangular basis
(4,4), (4,5)
(5,4), (5,5)

Optimal basis
(0,0), (4,4)
(5,4), (5,5)

Optimal basis
(0,0), (0,9)
(9,0), (9,9)

Nonzero elements
of the corresponding
probability distribution
Poo = 0.45
P45 = -0.25
P54 = 0.45
P55 = 0.35
poo = 0.0125
P44 = 0.1375
P54 = 0.7
P55 = 0.15
poo = 0.2574074074
Peg = 0.2092592593
P90 = 0.287037037
P99 = 0.2462962963

Bound

1.352634113

1.355182972

1.831596631

Table 2. Lower and upper bounds on ^ [ / ( ξ i , ^ ) ] using first order moments
and the expectation of the product of the random variables. Observe
that the best rectangular basis is not primal feasible because p^ < 0.
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Using the largest lower bound and smallest upper bound, we obtain the
inequalities:

1.355182972 < E[f(ξuξ2)] < 1.831596631.

Figures 1, 2, 3 and 4 serve to illustrate the structures of the dual feasible
bases that appear in Tables 1 and 2.

9 o o D D o o o o o D

8 o o o o o o o o o o

7 o o o o o o o o o o

6 o o o o o o o o o o

5 o o o o o o o o o o

4 o o o o o o o o o o

3 o o o o o o o o o o

2 o o o o o o o o o o

l o o o o o o o o o o

O o o o o o o o

0 1 2 3 4 5 6 7 8 9

Figure 1. (•) means: optimal basis producing
lower (upper) bound using μio, μ20

9 o o o o o o o o o D

8 0 0 0 0 0 0 0 0 0 o

7 o o o o o o o o o

δ o o o o o o o o o

δ o o o o o o o o o o

4 o o o o o o o o o o

3 o o o o o o o o o o

2 o o o o o o o o o D

I 0 0 0 0 0 0 0 0 0 D

O o o o o o o o o o

0 1 2 3 4 5 6 7 8 9

Figure 2. (•) means: optimal basis producing
lower (upper) bound using μoi?
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9 Π o o o o o o o o D

8 0 0 0 0 0 0 0 0 0 0

7 0 0 0 0 0 0 0 0 0 0

6 0 0 0 0 0 0 0 0 0 o

δ o o o o o o o o

4 o o o o o o o o

3 o o o o o o o o o o

2 o o o o o o o o o o

O Π o o o o o o o o D

0 1 2 3 4 5 6 7 8 9

Figure 3. means: best rectangular basis producing

lower bound using μio, μoi? μn
• means: optimal basis producing upper bound using μio, μoi>
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Figure 4. Δ means: optimal basis producing lower bound using
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