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It is well known that the Frechet lower bound on bivariate distributions
with given marginals, F\ and F 2 , given by

cannot be extended for the case of three or more dimensions. To overcome
this difficulty, in order to arrive at a sharp lower bound for multivariate
distributions with preassigned marginals, we introduce the concept of the
moment of inertia of a multivariate distribution about a given line in IRn

and construct the distribution with the maximal moment of inertia about
the line corresponding to the lower Frechet bound. The multinormal case
is discussed in some detail.

l Introduction

In this paper we suggest an n-variate extension to the Frechet lower
bound for bivariate cumulative distribution functions (c.d.f.s). Recall that
for Π(Fi,l<2), the class of bivariate c.d.f.s with marginals F\ and F 2 , the
Frechet lower bound is defined as

H*(x,y) = max{Fx(x) + F2(y) - 1,0}

This does not lend itself to any straight-forward extension to the case of
Π(Fi,F 2 , . . . ,F n ) when n > 2 where H(FUF2,... ,Fn) is the class of all
c.d.f.s whose univariate marginals are the c.d.f.s F\, F 2 , . . . , Fn. However, by
observing that the Frechet upper bound for this class,

concentrates all the density on the curve
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we were led to seek, as a lower bound, a c.d.f. which maximized the moment
of inertia about this curve.

In the sections that follow we define the Frechet bounds and prove that
the lower bound is not extendable to classes of n-variate c.d.f.s for n > 2. We
then define the moment of inertia as a measure of dependence of n-variate
c.d.f.s and use it to present an alternative lower bound for Π(Fi,.. . , F n ) .
We conclude with specific applications to the multinomial distribution.

2. Assumptions and Notation

In this paper, when referring to 11(^1,^2,... ,F n ) we shall assume the
univariate marginals are continuous.

1 ίx _ίl
Φ(x) = —=z / e 2 dt, the univariate standard normal c.d.f.

1 fX (t-μ)2

Φμ)(7(x) = .— / e 2<χ2 dt^ the univariate JV(μ,σ) c.d.f.
v 2τrσ J-oo

3. Motivation

It was discovered by Hoeffding (1940) and later rediscovered by Frechet
(1951) that for any F and G,Π(F,G) contains an upper bound and a lower
bound. The upper bound is min {F(x),G(y)}, denoted by HpG{x,y) while
the lower bound is max{F(a:) + G(y) - 1,0}, denoted by H+FtG(x>y)' That
is, for any H e Π(F,G) and all (a?,y) e H 2 , J5Γ*(a?,y) < H(x9y) < H*(x,y).

For n > 2)H*(xι,...iXn) = min{Fι(x\),. . . ,F n (x n )} is a valid exten-
sion of the bivariate Frechet upper bound. That is, it is an element of
Π(JPi,..., Fn) and an upper bound for this class. However, the corresponding
π-dimensionai extension of if*(a?i,... ,xn) = max{l - ΣΓ=i(l ~ Fi(χi))^}
is not an element of Π(i<i,... ,F n ) for n > 2. This was shown by Feron
(1965) and Dall'Aglio (1960). Moreover, when H* is not an element of
Π(Fi, . . . , F n), then it can be shown that this class contains no lower bound.

In fact, we have the well known

THEOREM 1 Let i*\,..., Fn be continuous. Then Π(Fi,. . . , Fn) contains no
lower bound.

This result led us to seek alternative concepts for defining an extension of
H* for n > 2. We examined other ways in which H* is extreme and sought to
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construct elements of Π(Fi,. . . , Fn) that share these qualities. The following
lemmas are part of this pursuit.

4 Preliminary Results

While accepting that TL(Fι,...,Fn) contains no lower bound, insight
about elements of this class with other extreme characteristics can be gained
by observing properties such a bound would have were one to exist. We will
then seek to construct distributions with such properties to observe whether
they are in any sense extreme elements of Π(Fi, F2,...,Fn).

LEMMA 1 Let F be a uniυariate c.d.f. A lower bound for ΊH(F, F,..., F)
must be (finitely) exchangeable, i.e. invariant under permutations of its ar-
guments.

PROOF Let HL(X) be a lower bound for U(F,... ,F). Let η(x) be a per-
mutation of the components of x, i.e. 7 : Πt n ~^Et n by 7(21,.. . ,xn) =
(z z i , . . . , xin) where { 1,2,..., n } = {it , . . . , in }. If HL(x) is not exchange-
able, 3 7 and Xi such that HL(*I) φ iΓχ/(7(xi)). Without loss of gener-
ality, let J5ΓL(xi) < JΓL(7(XI)) ψb™ # L ( X ) = ^ ( T ^ M ) - ,

 S i n c e t h e

marginals of HL are all equal, H'L G U(F,F,..., F). Also H'L(Ί(X.I)) =
HL { 7 ~ 1 ( 7 ( X I ) ) } = HL(*I) < HrJ(

/y(xι)) which contradicts the assump-
tion that HL is a lower bound for Π(F,. . . , F). Π

5. The Moment of Inertia

We consider H*F,G as the distribution of extreme negative dependence.
Intuitively, it is the distribution in Π(F,G) giving the most probability to
points, (#,ϊ/), for which x and y are far apart; i.e. points away from the
diagonal {(#, y)\F(x) = G(y)}. Let d((α,6);F,G) denote the distance of a
point (α,6) from the curve {(x,y)\F(x) = G(y)}; i.e.

inf a - z)2 + (b - w)2\ .

Let (AyB) be a random vector distributed according to H £ Π(F,6r).
Then, d((i4,2?); F,G) is a random variable whose distribution is determined
by H. The expected value, E(d2) which we shall label μ(#), can then be
considered as a measure of (negative) dependence of H. Then, any HL G
Π(F, G) for which μ is maximized could be considered a distribution of ex-
treme negative dependence.
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EXAMPLE Let (X,Y) be uniformly distributed on (0,1)2, i.e., HXtV(x,y)
has p.d.f.

, , . J lίoτ(x,y) G (0,l)2

jχ>y\ lyj i 0 o t h e r w i s e

Since Fx = Fy, we may consider the moment of inertia about the line
defined by x = y. Then, by definition

12

More generally,

DEFINITION For any H G Π(Fi,. . . , 1^), the moment of inertia of H
about the curve {κ\Fχ(xι) = . . . = Fn(xn)} is the expected value, according
to H, of d2, where d is the distance between points x in IRn and this curve.

As an example application of these concepts we shall deal with
Π(Φ,Φ,... ,Φ), the class of standard multinormal distributions. A lower
bound of Π(Φ,.. ., Φ) must be exhangeable, and its variance/covariance ma-
trix must be of the form (aij) where an = 1, V i = 1,... ,n and aij =
a V i,j such that i φ j . The upper bound for Π(Φ,Φ,... ,Φ) is Π*(x) =
min(Φ(xi),..., Φ(#n)) with density concentrated on the curve

{ x|Φ(xi) = .. . = Φ(xn)} = { x\xι = . . . = xn }

because Φ is continuous and strictly increasing. A further requirement for
our lower bound should be that it maximize the moment of inertia about
this line. Straightforward calculations show that this moment of inertia is:

- 2 cov (xi,Xj)

With the covariance matrix (α j), this moment becomes:

1 1 <n (vt 1

n ~( n 2
ι<3

To maximize it, we must thus minimize α.

REMARK 1 If UTL(X) is a lower bound for Π(Φ,...,Φ), then it can be
shown that its moment of inertia about the line {x|#i = X2 = . = #n },
denoted by μ(HL)9 satisfies μ(HL) > μ(H) V H G Π(Φ,..., Φ). So if we find
HM € Π(Φ,..., Φ) such that μ(UM) > μ{H) V H and there actually were
an HL G Π(Φ,..., Φ) such that # L (x) < HM(x) V x, then μ(HL) > μ(HM),
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and hence μ{Hι) = μ{HM)* Namely, we may not have an actual lower
bound of Π(Φ,...,Φ) using this procedure of maximization, but we will
have a correct upper bound for μ(H).

LEMMA 2 The determinant of the n x n matrix, A, (n > 2) whose diagonal
elements are 1 's and other elements are equal to some real number a is

(„ _ i)(β + 71 J.
_ a)n - l

PROOF See, for example, Graybill (1969). •

REMARK 2 Since the covariance matrix for a multinomial distribution
must have a positive determinant, and since here \ a \ < 1 in order that A
be a legitimate variance-covariance matrix, we must have a > — J Z J . Hence,

— ̂ 3γ is the lower bound for a which yields:

sup μ(H) = (n - 1) ( l - ( ^—) J = n
#GΠ(Φ,...,Φ) V n - l /

The question arises, what multivariate distribution results in setting a =
— jzΐ in the covariance matrix of the form depicted above?

Since the determinant of:

1 1
"n-l n - l

n^ϊ

is zero, the p.d.f. does not exist. We shall therefore write the p.d.f. in terms
of a and observe the limiting distribution as a —• — jzp

LEMMA 3 Let A be the matrix described in Lemma 2. Then A~ι = (bij)

where bu = - T T ^ T ^ T W ^ Γ Ϊ ) V i = 1,2,..., n, and bij = ( ( n _ 1 ) α | 1 ) ( α _ 1 ) for

PROOF See, for example, Graybill (1969). •
Applying Lemmas 2 and 3 and straightforward calculations yield the

following expression for the p.d.f. in terms of a:

x

2(n - 1)(1 - o)
((n - 2)α ] ~ 2a
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C =
As a -* ~^zγ, the limit of the p.d.f. becomes

lim
(2π):

•I
0 for all x such that Σ£=; «i # 0
oo for all x such that έ?-<x* = 0

This result should have been expected. The "density" is concentrated
totally on the hyperplane (x| Y%=1 Xi = 0) perpendicular to the line (x|x t =
. . . = χ n ) containing (0,. . . ,0) = (2?(xi),. ,.,E(xn)).

Via direct computation, we can show that this concentration of density
corresponds to a legitimate n-dimensional c.d.f. Labeling this c.d.f. H i_,

n—1

we see that #_^__(t) , is the value of the (n — l)-dimensional mass (density)

contained in the (n — l)-dimensional simplex

x | x i < / i , . . . ,x n < tn).

Integrating the p.d.f. (1), over this simplex, and taking the limit as a

(2) i exp(-i(xa,...,swμ-1(»2. »n)/}
(2i)—v1ϊ[ I 2 J

where A is now the (n — 1) x (n — 1) matrix whose elements

nn-2
and whose determinant is (cf Lemma 2) , ^xn-i -

The result (2) was intuitively expected. The limiting density does exist

and is obtained by placing an (n - l)-dimensional normal density in the

(n — l)-dimensional hyperplane {x| X ^ j X{ = 0 }.

An alternative approach to this analysis involves the application of mul-

tivariate characteristic functions and the Levy-Cramer continuity theorem.

EXAMPLES

Case n = 2. In this case the hyperplane becomes {(x, y) \ x + y = 0 } or
2

the line y = —x. The value of this density at (x, —x) by (2) is -i-e™"2", and
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the corresponding HL(X,V) is derived by noting that for all (x,y) such that
x + V < 0, HL(X, y) = 0, and for (x, y) such that x + y > 0, we must calculate
the mass contained on the line segment between (-j/, y) and (x, -x). In other

words, here HL(x,y) = -fe.f*ye-τdt = Φ(x) - Φ(-y) = Φ(x) + Φ(y) - 1.
Thus, in this case ϋf£,(x,y) = max{Φ(x) + Φ(y) - 1,0} which is the lower
Frechet bound for Π(Φ,Φ).

Case n = 3. Note that here HL(x,y,z) is concentrated on the plane
{(x,y,z)|£ + y + 2 = 0}. Analogous but somewhat more involved calcula-
tions yield "the lower bound" of the form

The calculation of HL(U,V,W) involves computation of the probability
mass in the set

{(x, y, z) I x < u, y < v, z < w } f] {(x, y, ̂ ) | x + y + z = 0 } .

(Details are available from the authors upon request.)

Finally, we note that if HL(X) is a lower bound for all n-dimensional stan-

dard multinomial c.d.f.s, then # £ ( x ) = HL { Έλ^±-> , ̂ f̂2" } is a lower

bound for all multinomial n-dimentional c.d.f.s in Π(Φ μ i ) ί T l , . . . , Φμn,σn)
It is also straightforward to calculate that the corresponding upper bound

on moment of inertia μ(H) in this case, denoted by M//L/, is

2 2

which coincides for σ\ = 1, i = 1,..., n with

sup μ(H) = n

CONCLUDING REMARK The approach suggested in this paper could be ex-
tended rather straightforwardly to other families of distributions. Of special
interest may be the multivariate extensions of the Gumbel bivariate dis-
tribution (Gumbel (I960)) as well as other multivariate distributions with
exponential or, more generally, Weibull marginals.
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