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Let V be a given subset of IRn. We are interested in determining the
associated moment space Cr[V]. The latter consists of all points c = (c(i);
|i| < r) which can be realized as c(i) = f xιμ(dx), for all |i| < r, by a
measure μ on V. Here, i = (ι'i,...,in) with ij G Z+ and |i| = i\ H h zn.
Let Cr(V) be the analogous homogeneous moment space C r(F), where one
insists on |i| = r. The calculation of Cr[V] is shown to be equivalent to
that of Cr{W), with W as a suitable affine imbedding of V into H n + 1 . A
central role is played by the dual Cr(V)* of the convex cone Cr(V). One
may interpret Cr(V)* as the set of all homogeneous polynomials f(x) =
/(xi,. . . , xn) on lRn of degree r that are nonnegative on V.

Detailed results are given only for the important case r = 2. Let Qn be
the linear space of all symmetric nx n matrices, supplied with the natural
inner product (A, B) = Ύr(AB). The pair C2(V) and C2(t0* h a s a natural
interpretation as a pair of dual convex cones in Qn. In fact, C2(V)* is the
set of all Q G Qn such that xxQx > 0 for all x £ V. Special attention is
given to the second order moment spaces C2(K) and C2[T] with

K = {xeπn :Ax>Q}i T = {x G Htn : Bx + e > 0}.

Here A and B denote given m x n matrices. Our description of the lat-
ter moment spaces involves the crucial cone Vm = {Q G Qm '- x^Qx >
Ofor alls GR+}.

These results are quite explicit when m < 4, as happens, for instance,
when T is a triangle in H 2 or a simplex in H 3 . This is largely due to the
very simple structure of the cone Vm in the case m < 4, due to Diananda
(1962). The remaining problem, of determining the second order moment
spaces C2(K) or C2P1] for the case m > 5, is essentially equivalent to the
long standing difficult open problem to determine the precise structure of
the cone Vm when m > 5. Concrete applications will be given in subsequent
papers.
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1. Moment Spaces

In the sequel, n and r are fixed positive integers. All sets considered are
assumed to be measurable. All measures are finite-valued and nonnegative.
For V as any subset of H n , let Mo(V) be the set of all measures μ on THn

that are supported by a finite subset of V. The larger set of all measures μ
supported by V and possessing all moments of order < r will be denoted as
M(V). Thus μ G M(V) if μ is a measure on V such that the integral

(1.1) c(i) = cμ(i) = jx'dμ = Jx» • - x^μ(dx)

is absolutely convergent for all i = ( i i , . . . , i n ) G Z+ with |i| = iχ H h i n <
r. Let

c[μ] = ( c μ ( i ) : i G Z ^ ; |i| < r)

be the corresponding moment point (of order r); it has (n* r) components.
Let further

c(μ) = (cμ(ϊ):ieZl; \i\ = r),

be the analogous "homogeneous" moment point (of order r); it has (n+£~~1)
components.

We like to determine the set of all possible moment points c[μ] or c(μ),
keeping V and r fixed. There is a considerable literature, see for instance
Berg (1987), Cassier (1984) and Maserick (1977), on the analogous problem
where r = oo. Here, one is interested in characterizing the set of all infinite
moment sequences {cμ(ϊ) : |i| < oo} associated to the different measures μ
on V. On the other hand, except for the very classical case n = 1, not much
seems to be known about the finite case 2 < r < oo we are considering.

Since only finitely many moments (1.1) are involved, we have for all
μ G λi(V) that there always exists a measure μ' on V of finite support
(μf G M0(V)) such that c[μ'] = c[μ], thus also c(μ') = c(μ). We will be
interested in the two moment spaces

Cr[V] = {c[μ]:μeM(V)} = {c\μ]:μeMo(V)} and

(1.2) Cr(V) = {c(μ):μ

The right hand form (1.2) for Cr(V) essentially says that Cr(V) coincides
with the convex cone spanned by the set of moments points {c(6x) : x G V},
one for each x G V. Here, 6X denotes the probability measure carried by {x}
thus

(1.3) c(ί x) = (c(0 = ϊi 1 < " : i € Z + ; |i| = r).

Similarly for Cr[V]. By homogeneity, c(δXx) = Xrc(6x) for all a: € Πtn; A > 0.
Consequently, CT(V) will remain unchanged when the subset V of IR" is
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modified by replacing each x G V by any non-empty subset (such as a single
point) of the corresponding half ray {Xx : λ > 0}, and also when one adds
or deletes the element x = 0. The resulting subset W of R n will be said
to be equivalent to V, (since then Cr(W) = Cr(V)). In other words, V
and W are equivalent when { λ x : λ > 0 } n F i s non-empty if and only if
{λx : λ > 0} Π W is non-empty, this for each x G R n with x φ 0. The
convex cone W generated by V is equivalent to V, provided V is convex.

In many applications, the convex cone K = cone(VΓ) in R n generated by
V happens to be a pointed cone. Equivaiently, there are numbers p i , . . . , p n

such that pixi -\ \- ρnxn > 0 for all x G V with x φ 0. In that case, V is
clearly equivalent to

(1.4) W = {x G H n : />izi + + />n^n = 1; λx G V for some λ > 0},

in particular, Cr(W) = C r(V).

Let VF be a subset of a hyperplane H in R n of the form J ^ />jXj = 1 and
consider any measure */ G M(W). We assert that the "non-homogeneous"
moment point c[v\ is then already determined by the corresponding "homo-
geneous" moment point c(u). In fact, any moment c,,(i) of order |i | < r as
in (1.1) can be expressed as an explicit linear combinations of the moments
Cj,(k) of order |k| = r. After all, expanding

xl = χ i .. .x% = a 1 .. xjr[pixi + + PnaϊnΓ"111, (for all x G W C JT),

an integration relative to the measure v yields that

(1.5) C|/(i) = 2 ^ I . 1/^(1 + j) , whenever |i | < r.

UI=r-|i|V J /

In particular, (1.5) sets up a 1:1 correspondence between Cr[W] and Cr{W\
and it only remains to determine the "homogeneous" moment space Cr(W).

For T as an arbitrary subset of R d , one can reduce the study of the (non-
homogeneous) moment space Cr[T] to a study of an associated homogeneous
moment space Cr(W). Namely, take W = σT where σ : ΈLd -> ΈLd+1 is of
the form

(1.6) σy = (2/i,...,2/d,zn) where xn = — ( 1 -piί/i PdVd)-
Pn

Here n = d + 1 and pn φ 0. Thus σ is a 1:1 affine map of R 7 1 " 1 onto the

hyperplane H = {x G IRn : ΣjPj^j = 1} F o Γ example, if # = {x G R n :

x n = 1} then σy = (τ/χ,... ,j/n_i, 1). In all cases, π = σ " 1 : if -• IR71"1 is

given by πx = (x i , . . . ,x n _i) .

For μ as a measure on JRd, one has μ G M{T) if and only if σμ G Λ^W).

Here i/ = σμ is defined by v(B) = μ{σ'λB) = μ(τr5), for all B C H.
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Moreover, one has c μ ( ή , . . . , id) = c,,(ii,..., id,0) for all i = (t"i,...,id) G Z+
with |i| < r, showing that Cr[T] may be regarded as a simple image of Cr[W].
This allows us to reduce the study of Cr[T] to that of Cr[W], and thus, by
(1.5), to a study of Cr(W).

2. Duality: The Case r = 2

A typical "homogeneous" moment point c = (c(i) : |i| = r) will be
regarded as a point c G lRno, where no = O1"* "̂"1)- Here, i runs through all
the no tuples i = ( i i , . . . ,in) G Z+ with |i| = r. The inner product (a,c) in
R n o is given by (α,c) = E|i|=r «(i)c(i).

Let V C H n . Recall that the homogeneous moment space Cr(V) is the
convex cone generated by all points cx = c(δx), one for each x G V, (cx

having components cx(i) = xJ). Thus, the dual of Cr(V) is the closed and
convex cone given by

Cr(V)* = {ae IRno : (α, c) > 0 for all c G C r(F)}

= {α G IRno : (a,cx) > for all x G F} .

Equivalently,

(2.1) Cr(V)* = {ae R n o : /«(«) > 0 for all x G V}.

Here, /α(a:) denotes the homogeneous rth degree polynomial

(2.2) fa(x) = ^ a(ϊ)x\ (x G JRn; α G Hn°).

As is well known, the second dual (Cr(V)*)* is precisely the closure of the
original convex cone Cr(V). Thus

(2.3) d(Cr(y)) = {ce ΈLno : (a,c) > 0 for aU a G C r (F)*}.

In many applications, Cr(V) is already closed. This is true for instance when
V is compact and, hence, also when V is equivalent (as defined in Section
1) to a compact subset W of R n . Formula (2.3) remains true when Cr(V)*
is replaced by a subset £ of Cr(V)*, provided the convex cone generated by
E is dense in Cr(V)*. Often the latter property holds for the set Sr(V) of all
extreme members a of Cr(V)* and then (2.3) implies that

(2.4) cl(Cr(TO) = {ce Mno : (ayc) > 0 for all a G Sr(V)}.

Formula (2.3) is our starting point. It reduces the problem of determining
the moment space Cr(V) (or rather its closure) to the problem of determining
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all polynomials fQ as in (2.2) that are nonnegative on V. In this connection,
see especially the interesting recent work of Micchelli and Pinkus (1989),
which at least in spirit is close to the present paper.

Often (2.4) holds and then it suffices to determine all the extreme mem-
bers of the collection of polynomials fQ as in (2.2) that are nonnegative on V.
These problems tend to be very difficult. In a separate paper, we will apply
the above ideas to the cubic case r = 3, in particular to the determination
of Cz[T] when T is a planar triangle.

From now on in the present paper, we assume that r = 2. In that case
no = n(π + l)/2. Let Qn denote the linear space of all real and symmetric
nxn matrices Q = (qij). Note that Qn has dimension no. A second degree
homogeneous polynomial /«(#), as in (2.2) with r = 2, can be written as
fa{x) = xιQx with Q = {qij) G Q n . Namely, let α(i) = qn if i = (2,0, . . . ,0);
α(i) = 2(jfi2 = 2g2i if i = (1,1,0,... ,0), and so on.

As to the moment point c = (c(i) : |i | = 2) G IRn°, we prefer to represent
it in the form of a matrix C = (cij) G Qn- Namely, let c(i) = en if i =
(2,0, . . . , 0 ) ; c(i) = Ci2 = c2i if i = (1,1,0,... ,0) and so on. The original
inner product (α,c) in I t n o now takes the form

(α,c) = £ "(*Mi) = Σ«••«
|i |=2 t=l

which indeed is the natural inner product in the linear space Qn. The dual
of a subset T of Qn is defined as the closed convex cone T* = {A G Qn '•
Ύτ(AB) > 0 for aU B G T}.

In the present case r = 2, the moment space C2(V) can be identified with
the convex cone in Qn defined by

(2.5) C2(V) = {C(μ) : μ G M(V)} = {C{μ) : μ G M0(V)}.

Here, C(μ) = C = (c ϋ ) G Qn is given by

(2.6) Cij = y XiXjμ{dx\ (ij = 1,..., n).

Note that C E 5 where S = Sn will denote the closed and convex cone of all

Q G Q n that are nonnegative definite, (also written as Q > 0).

PROPOSITION 1 Let C G Q n . ΓΛen C G C 2 (ΐ0 «f « ^ only if C can be
written as C = UιU with U = (^ίj) as an s x n matrix, such that

(2.7) (t*ibi,. . .,tt J b n )e{λa::ίceV; λ > 0}, (fc = l , . . . , β ) .

.ίΓere, s may depend onC. In the special case V = R!j: ίΛis requires precisely

that C = C/̂ ί/ /or some 17 > 0.
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PROOF From (2.5), C G C2(V) if and only if C = C(μ) for some measure

μ having a finite support {a;WΓ..,χW} C V. That is, cy = ΣkPkxi xj

for all i, j = l , . . . , π , where p^ = μ({χ^}) > 0 (& = 1, . . . , s ) . Letting

f̂cj = y/Pkχj °ne obtains the stated assertion.

REMARK AS is clear from the proof, the different ways of writing C as C =
U*!! with U satisfying (2.7) correspond precisely to the different measures μ
on V of finite support such that C = C(μ). The stated property is equivalent
to xtCx being representable as a finite sum xιCx = ΣJUi Lk(χ)2 with the
Lk(x) as linear forms Lk(x) = UkiXi + f- Ukn

χn (k = 1? - ? s) satisfying
condition (2.7). In the special case V = R+, such matrices C are also said
to be completely positive, see Hall (1986, p. 350).

Presently, (2.1) and (2.3) take the form

(2.8) d{C2{V)) = {C eQn: Tτ(QC) > 0 for all Q e

DEFINITION By cop(VΓ) we mean the closed and convex cone defined by

(2.9) cop(y) = C2(VY = {QeQn: xιQx > 0 for all x G V}.

The matrices Q G cop(V) are said to be V-copositive.
Note that (2.8) remains valid when cop(y) is replaced by a subset € of

cop(F) such that the convex cone generated by ί is dense in cop(F). Our
main task would be the explicit determination of such a set ί or if possible
of the set cop(V) itself.

NOTATION Let S = Sn denote the class of nonnegative definite Q G Qn

Let further N = Nn denote the closed and convex cone consisting of all
nonnegative Q G Qn, (written as Q > 0). Let further N + S denote the set
of all sums Qι + Q2 with Q\ G N and Q2 G S. Note that N + S is precisely
the convex cone generated by TV U 5.

It is evident that S C cop(F) for every V CW1. If V C R+, then also
N C cop(F) and thus N + S C cop(V). The set N + 5 can easily be much
smaller than cop(y). For instance, let 1 < d < n and suppose each x E V
satisfies Xj = 0 for c? < j < n, while a?j > 0 otherwise, (so that V C 1R+).
In this case, the condition Q = (qij) G cop(V) clearly depends only on the
elements qij with 1 < i,j < d and thus there is no need at all that Q G N + S.

Of central importance is the case V = IR!j:. We will write V = Vn =
cop(IR!|i). Thus V is the closed and convex cone consisting of all Q G Qn

such that
(2.10) x*Qx > 0 for all x > 0.

Such matrices Q are said to be copositiυe. Note that N + S C V.
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Observe that V = R+ is equivalent to the compact simplex

(2.11) S(n) = {x = (χu. . . , z n ) : x{ > 0(i = 1,...,n);X l + - - + xn = 1}.

This implies that C2(IR+) = C2(S(n)) is closed, hence, (2.8) presently takes
the form

(2.12) C2(S(n)) = V* = {CeQn: Tr(QC) > 0 for all Q G V}.

Thus, if we would precisely know the class V then we would also know what
C G Qn can be realized as C = C(μ) by a measure on S(n) and, as a
consequence, also what sets of first and second moments can be realized by
a measure on the simplex T(n - 1) in Rn~ 1. Here,

{y = (y1,...,yd)eMd:yi>0 (i = 1 , . . . ,<f);ifi + • '+Vd < 1}
(2.13)
For arbitrary n, one has that N + S C V thus

(2.14) C2(5(n)) = V*C(N + S)* = NnS.

After all (JV + 5)* = (ΛΓ U 5)* = N* Π 5* = N Π 5, since N* = N and
5* = 5 as is easily seen, (see also Hall (1986, p. 353)). Here, S* = S says
that Ae Qn belongs to 5 if and only if Tτ(AB) > 0 for all B G 5.

Unfortunately, a precise description of the class V = cop(Et!}:) is only
available when n < 4. In fact, Diananda (1962) showed that V = N + S
when n < 4. Therefore,

(2.15) C2(S(n)) = V* = (N + S)* = NΠS if n<4.

If n > 5 then JV+5 is a proper subset of P. This follows from an unpublished
counterexample due to A. Horn, which is discussed in Hall (1986, p. 357).
Specifically, Horn gave an explicit example with n = 5 of a member H £
V/(N + S). It is given below, see (4.13). It does not seem to be known
whether or not N + S is closed. Anyway, assuming n > 5, we can show (see
the last remark of the paper) that even the closure of N + S is a proper
subset of V, equivalently V* is a proper subset of N Π S. In this way, we
arrive at the following result.

THEOREM 1 In order that an n x n symmetric matrix C = (cij) admits a
representation as in (2.6) with μ as a measure on the simplex S(n) defined by
(2.11), it is necessary that C G N Γ\S. Equivalently, C must be nonnegative
definite and such that

(2.16) Cij > 0 for all l<i<j< n.

This necessary condition C G N Π S is also sufficient when n < 4, but not

when n > 5.
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3. The Polyhedral Case

Here, we assume that the subset V of Etn is a polyhedral cone of the
form
(3.1) K = {x G R n : Ax > 0}.

Here, A is a given m x n real valued matrix. Recall that each C = C(μ) is
necessarily nonnegative definite. A central result is as follows.

THEOREM 2 Let C £ Qn be nonnegative definite. Then in order that
C G c\(C2(K)) it is necessary and sufficient that

(3.2) Ύτ^PAC) > 0 for all P G Vm.

A necessary condition is that

(3.3) AC A1 > 0

Conversely, if m <A then (3.3) is also sufficient for C G cl(C2(K)).

REMARK Let P G Vm, that is, P G Qm and y*Py > 0 for all y G IR+.
Hence, xtAtPAx > 0 for all x G K. Integrating the latter inequality relative
to a measure on μ on K such that C(μ) = C, this confirms that (3.2) is a
necessary condition for C G C2(K) and thus for C G cl(C2(ϋQ). In practice,
we are yet unable to verify the necessary and sufficient condition (3.2) when
m > 5, simply because then the class Vm is still largely unknown. The
necessary condition (3.3) is equivalent to

(3.4) Σ Σ a9iahjcij > 0 for all 1 < 5 < /i < m,

altogether (^) conditions. The necessity of (3.4) for C G C2(K) is obvious
from an integration of the quadratic function f(x) = (Ax)g(Ax)h relative to
a measure μ on K such that C(μ) = C. From (3.1), f(x) > 0 for all x G K.

PROOF Suppose P eVm thus yιPy > 0 when y G IRm, y > 0. Substituting
y == Ax, we see that xtAtPAx > 0 for all x G ί , that is, A1 PA G cop(ϋΓ) as
defined by (2.9). It follows from (2.8) that (3.2) is a necessary condition.

Sufficiency. Suppose (3.2) holds. Let Q = A^mA + S be the subset
of cop(A') which consists of all Q G Qn of the form Q = A1 PA + B with
P G Vm and B G 5. We see from (3.2) and C G S that Tr(QC) > 0 for all
Q G {/. In view of (2.8), this would imply C G cl(C2(iίQ), provided £ can be
shown to be dense in cop(ϋf).
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In fact, let Q G cop(K) be given and consider Q(δ) = Q + 61, with / as
the n X n identity matrix and δ > 0. It suffices to show that Q(δ) G Q for
all δ > 0. In fact, merely using the fact that xtQ(δ)x > 0 whenever Ax > 0
and x φ 0, this result Q(£) G ί/ is an immediate consequence of Theorem
4.2 due to Martin and Jacobson (1981).

By the way, Martin, Powell and Jacobson (1981, p. 53) showed by exam-
ple that Q can be a proper subset of cop(iΓ). See also Martin and Jacobson
(1981, p. 246).

We already saw that condition (3.3) is necessary for C G C2{K) and thus
for C G d(C2(K)). Also observe that (3.3) is equivalent to Tτ(AtBAC) > 0
for all B G Nmj that is, for all nonnegative B G Qm. As to the sufficiency
of (3.3), assuming m < 4, it suffices to show that (3.3) implies (3.2). In
fact, Diananda (1962) showed, for m < 4, that each P G Vm is of the form
P = B + Q where B G Nm and Q G 5 m , Therefore

Tr(A*PAC) = T r ^ B A C ) + Ύτ(AιQAC) > 0.

Here, it is also used that A*QA G Sn and C € Sn.

COMMENTS Suppose K is a direct product K = Kx x Rn~d with #1 as a
polyhedral cone in BA Equivalently, aij = 0 when j > d. It is interesting
to note that then the necessary and sufficient condition (3.2) depends only
on the Cij with 1 < i, j < d. This feature also follows from (2.8) and the
following Proposition 2, (which is related to Lemma 9 in Diananda (1962)).
Here, span(V) denotes the linear span of V.

PROPOSITION 2 Let the subset V ofW1 be a direct product V = W x WLn~d,
with W as a subset of TR,d, (1 < d < n). Assume that span(F) = ]Rn,
equivalently, span(W) = W1. Then a matrix P G Qn belongs to cop(V) if
and only if there exist matrices Q G cop(ΐy) and B G Sn such that x*Px =
y*Qy + xtBx, for all x G !Rn. Here, we write x G H n as x = (y,z) with
yeMd and ze TR,n~d. Thus Q G Qm and y%Qy > 0 if y G R+.

PROOF Using an induction with respect to k = n - d, it suffices to consider
the case d = n - 1. The stated condition is clearly sufficient. Conversely,
assume that P G cop(V), that is, x*Px > 0 whenever x G V, that is,
whenever y E W. Let G be the upper principal d x d submatrix of P and
let L(y) = anly1 + + αn,n-i2/π-i. Then y eW implies that

(3.5) x*Px = annz
2 + 2L(y)z + yιGy > 0 for all z G EL

If ann = 0, it follows that L(y) — 0 for all y G W, hence, L(y) = 0 (since
span(W) = IRrf) and the stated assertion holds with Q — G and B = 0.
In the case ann > 0 one may as well assume that ann = 1. Let Q G Qn-ι
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be defined by yιQy = yιGy - L(y)2. It follows from (3.5) that yιQy > 0,
for all y G W, hence, Q G cop(W). We further have for all x G Etn that
xιPx = 2/*(3ί/ + z'tfz, where z ^ z = (L(y) + z)2 > 0 thus J9 G ιSn.

4. Applications

Detailed applications of the preceding theory will be given in a separate
paper. Here we will sketch just one application. Let T be a polyhedral
convex subset of R d of the form

(4.1) T={yeMd:By + e>0}.

Here, B is an m x d matrix and e an m x 1 column vector. One may as well
assume that 0 G T, hence, e > 0 and further that T has at least two points.
For convenience, we will further assume that T is compact thus m > d + 1;
(the non-compact case can be handled equally well but is somewhat more
delicate). Note that e / 0 , (otherwise, T would be unbounded).

We like to determine the moment space ^ [ T ] . Equivalently, we are
interested in the necessary and sufficient conditions on the numbers co,£t'
and Cij (i,j = 1, . . . , d) in order that μ G Λ4(T) can be found such that

c0 = j μ(dy); & = J yi

(4.2) c^ = j y i y ά μ ( d y ) , (i,j = l , . . . , d ) .

If Co = 1 then & = EY{ and c t J = EY{Yj when (Y 1 ? . . ., Y )̂ takes its values in

Γ and has distribution μ. In terms of X = (Xi , . . . ,X n ) = (Yi,..., Yn-ii 1)

one also has Co = EX2 and ξi = EX{Xn (1 < i < n).

Let n = d + 1. Points x G lRn will be written as x = (y,xn) where

y G ΊRJ1"1 and x n G JR. It will be convenient to identify T with the compact

set

V = {x = (y,xn)eMn :yeT; xn = 1}

(4.3) = {xeUn :Ax>0; xn = 1}.

Here, A denotes the m x n matrix A = (i?,e). Further let

Cnn =ξn = C0 and Cin = Cni = & (1 < ί < Tl).

The above question now reduces to the problem of determining the homo-

geneous moment space C2(V) of all C = (ct j) G Q n which can be realized

as C{j = f XiXjv(dx) (1 < i,j < n) by a finite measure v on V. Since V is

compact, the convex cone C2(V) is closed.
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Next consider the closed and convex cone

(4.4) K = (x e Mn : Ax > 0).

We claim that K is precisely the convex cone generated by V. Since V is
convex this implies that K and V are equivalent, thus C2(K) = ̂ ( F ) .

By V C K one has cone(V) C K. As to the converse, assume that
x = (y,xn) φ 0 belongs to K thus Ax > 0. It suffices to show that Xx G V
for some λ > 0, equivalently, that xn > 0. On the contrary, suppose that
xn < 0. Since Ax = By + bxn > 0 one has that By > (—xn)e > 0 (since
e > 0). Hence, y = 0 since, otherwise, T would be unbounded, (in view of
T + βy C T for all β > 0). Next x = (0,a?n) # 0, thus, xn < 0. But now
0 = By > (—xn)e > 0 implies that e = 0 and we have a contradiction.

We can now apply Theorem 2. The condition that the n X n matrix
C = (c{j) be nonnegative definite is easily checked. One may as well assume
that Co > 0. It is natural to introduce the quantities

(4.5) i,j = 1,..., n).

Especially note that σ tn = σn; = 0 for all i. If Co = 1 then the σ^ can be
regarded as covariances σ, j = Cov(Yi, Yj) (ij = 1,..., n), where Yn = 1. As
is easily seen, the n x n matrix C = (ct j) is nonnegative definite if and only
if Σ = (σij; i,j = 1,..., d) is nonnegative definite.

It remains to check the necessary and sufficient condition (3.2) of The-
orem 2. Also in view of the remark following Theorem 2, that condition
amounts to requiring that, for each P = (prs) G Vm, the left hand side of
the obvious inequality

(4-6)
r=l s=l

> 0 for all y eT,

must integrate to a nonnegative number relative to any measure μ on T that
satisfies (4.2). In particular, for each choice of 1 < r < s < m, the same
must be true for the inequality

(4.7) > 0 for all y G T.

Naturally, (4.7) is merely a special case of (4.6) since N C Vm.
For convenience we take CQ = 1. Using (4.5), it is easily seen that (4.7)

leads to the necessary condition, that for all 1 < r < s < m.

(4.8)
ι=l j=l 3=1
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this also holds for r = s because Σ >> 0. Theorem 2 further implies that
(4.8) is also sufficient (for μ to exist) provided m < 4. In particular, Σ > 0
together with (4.8) must imply that ξ = (&,...,&) £ Γ, at least when
m < 4 .

The following Theorem 3 summarizes some of the above results and con-
tains Theorem 1 as a special case. Here, the £t and σtj = σji (i, j = 1,..., d)
are given numbers.

THEOREM 3 Let T be the form (4.1). In order that there exist random
variables Yu...,Yd satisfying Pr((Yi,... ,Yd) e T) = 1; EYi = & and
Cov(YijYj) = σt j (ijj = 1 , . . . , ^ it is necessary that Σ = (σij) be nonneg-
ative definite and satisfies (4.8). If m < 4 then these necessary conditions
are also sufficient

COUNTER EXAMPLE The following example shows that the above (rather
obvious) necessary conditions on the ξj and C{j are not sufficient anymore
with ra > 5. Choose CQ = 1, d = 4 and T as the four-dimensional simplex
T = Γ(4), as in (2.13), consisting of all y = (yu... y4) G 1R4 satisfying yt > 0
(i = 1,..., 5). Here and below,

2/5 = 1 - (yi + 2/2 + 2/3 + 2/4).

Thus, T is of the form (4.1) with m = 5. Namely, 6t j = δ{ if i = 1,... ,4;
65J = - 1 and ej = £j, (j = 1,... ,4). The special system (4.7) (of functions
nonnegative on T) now consists of the 10 functions yrys (1 < r,θ < 5; r < s).
Hence, the necessary conditions (4.8) take the form

4

(4.9) crs > 0; c r 5 > 0 (1 < r < s < 4), where c r 5 = c5 r = fr - ^ crj.

Note that cr$ corresponds to the integral of t/r2/5 Let us choose

(4.10) Co = 1; ξi = - and cy = </,-_,• (i, j = 1,... ,4),

with dj = d_j = dj_5. Put cίo = #; ^±1 = /?; ^±2 = 7 For instance,
d4 = ds = d-2 = : 2̂ = 7 We will further assume that

(4.11) α > β > 7 > 0 and α + 2/J + 27 = -,
o

(thus 7 < 1/25 < α). This implies that cr5 = d 5_ r > 0 (1 < r < 4), such
as C15 = d4 = d_! = /? and C45 = /?. The necessary conditions (4.9) are
now automatically satisfied. We will further assume that the 4 x 4 matrix
Σ = (σij) is strictly positive definite. It is easily seen that this is true if and
only if
(4.12) α(α - β - 7) > β2 - 2 2
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The necessary conditions of Theorem 3 are now all satisfied. Recall that
these conditions essentially derive, as in (3.2), from the different members
P G N + S C TV However, there is no guarantee that the moment problem
on hand does have a solution, precisely because V$ happens to be strictly
larger than N + 5. One must also insist that the ξj and Cij satisfy all
the moment conditions associated, as in (3.2), to the different members
H G V&/(N + S). One such matrix H is defined by the so-called Horn form

y*Hy = (ί/i + 2/2 + 2/3 + 2/4 + 2/s)2

(4.13) -4(ι/i2/2 + 2/22/3 + 2/32/4 + 2/42/5 + 2/52/i),

(already mentioned at the end of Section 2). Since

yxEy = (ί/i - 2/2 + 2/3 + 2/4 ~ 2/δ)2 + 4y22/4 + 42/3(2/5 - Jte)

= (2/1 - 2/2 + 2/3 - 2/4 + 2/δ)2 + 42/22/5 + 4j/i(y4 - y5),

from Hall (1986, p. 357), one has yιEy > 0 for all y G IR+ thus # G TV
Integrating 2/*#2/ relative to a probability measure μ on T(4) satisfying (4.2)
(with Co = 1), this special matrix H leads to the new necessary condition

(4.14) c 1 2 + c 2 3 + c 3 4 + c 4 5 + c 5 1 < -

(permuting indices leads to a set of 120/5 = 24 different necessary conditions
of type (4.14)). In the present example, (4.14) is equivalent to 5/3 < 1/4.
Thus we have the desired counter example as soon as β > 1/20. In fact,
choose 0 < 6 < δ0 = 2/(11 + Λ/Ϊ25) = .09017. Then the parameters

(4.15) 7 = 1/(80 + 10$); α = 67; β = (4 + δ)Ί

do satisfy α > β > 7 > 0, further (4.11), (4.12) as well as β > 1/20.

REMARK By the way, substituting (4.15), the first inequality (4.12) is
equivalent to 1 — 11£ — δ2 > 0 and becomes an equality when δ = δo,
showing that Σ is singular in this case. In the limiting case δ = 0, there
actually does exist a probability measure μ on Γ(4) that satisfies (4.2) with
the Cij and £t as above. Since the C{j then satisfy (4.14) with the equality
sign, that measure μ must be carried by Z(H) = {y G Γ(4) : ytHy = 0}.
In fact, μ assigns mass 1/5 to each of five points y^ G Z(H) (1 < r < 5).
Here, y = y(r) has coordinates yr = 1/2; yr±\ = 1/4; yr±2 = 0? where the
indices are to be interpreted modulo 5.

Recall that N + S is a proper subset of V$ since H G V5/(N + S), where
if is defined by (4.13). The above construction implies that N + S is not
even dense in TV Namely, consider the 5 x 5 matrix C = C(^) = (cij)>
defined as in (4.10) and (4.15) with 0 < δ < δ0 and Co = 1. The above proof
essentially shows that C(δ) G (N + S)*/V£. Hence, V% is a proper subset of
(N + S)* = N Π 5, equivalently, N + S cannot be dense in TV
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