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Multivariate majorization orderings are used to compare matrices ac-
cording to their dispersiveness. When applied to matrices whose rows rep-
resent distributions of different resources, the ordering that appears to be
most useful is called majorization by positive linear combinations (PC-
major iz at ion). Two matrices are PC-majorized if all positive linear combi-
nations of the rows are ordered by ordinary vector majorization. Properties
of PC-majorization are derived; an algorithm is given to determine whether
or not one matrix is PC-majorized by another; and elementary operations
that reduce a matrix in the PC-ordering are explained.

1. Introduction

The key idea of majorization is to pre-order vectors according to a uni-
versal standard of dispersiveness. That is, any reasonable measure of dis-
persiveness of the components of a vector should imply an ordering that
is consistent with the pre-ordering of majorization. The universality of the
majorization ordering is well illustrated by the hundreds of applications men-
tioned in Marshall and Olkin (1979), and many other sources.

Several attempts have been made to extend majorization to a pre-ordering
of matrices. However, there appears to be no 'universal' extension, but rather
several different extensions that are useful for different purposes. For exam-
ple, Joe (1985) uses a 'vectorized' generalization to describe association in
contingency tables, and Tong (1989) uses uniform majorization (described
below) to obtain probability inequalities for rectangles. Several other multi-
variate majorization orderings may be found in the books by Marshall and
Olkin (1979) and Arnold (1987).

In this paper, we study multivariate majorization orderings that can be
interpreted as orderings of distribution of wealth of several resources, with
lower in the ordering meaning closer to equal division of the resources. Our
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orderings are o n m x n matrices (m resources and n individuals) of real num-
bers. One potential area of application is to the monitoring and management
of economic and ecological systems, where interest focuses on interventions
that lead to more equitable consumption of resources, especially when some
resources may become scarce. In such a situation the total value of the re-
sources consumed (called wealth) by an individual or species may fluctuate,
depending on current availability of each resource. The essential criterion for
judging if a redistribution of resources leads to something 'universally' more
equitable is that the vector describing the distribution of wealth changes to
something smaller in the majorization pre-ordering, no matter what values
are assigned to each resource. This idea is described in more detail in Arnold
(1987, pp. 60-61).

The formal definition and basic properties of our proposed PC-majoriza-
tion ordering are given in Section 2. Section 3 contains an algorithm to
determine whether two given m X n matrices are ordered or not. The the-
ory behind elementary methods for reducing matrices in this ordering is
developed in Section 4. Section 5 contains a preliminary study of the set of
matrices that are PC-majorized by a given matrix, and suggests how this
leads to a more general method of reduction.

2. Definitions and Basic Properties

We first define vector majorization and give some of its equivalent forms
(see Marshall and Olkin (1979) and Arnold (1987) for details) that we will
use. Then we define multivariate majorization by positive comparisons (PC-
majorization), and relate it to other forms of multivariate majorization.
Through examples and results, we motivate PC-majorization as providing
the most useful interpretion for distributions of several resources. Our no-
tation follows Arnold (1987).

DEFINITION 2.1 Letx = ( x χ , . . . , x n ) a n d y = (yi , . . . ,yn)ben-dimensional

row vectors. Let the ordered X{ and yι be denoted by x^ > > X[n] and

V[i] > * * > V[n]' Then x is majorized by y (written x -< y) if

k k

Σ ^ H - Σ ^ [ Φ k = !>•••»*-1

ι = l ι = l

i

Equivalent definitions of x -< y are: (a) x = yD, where D is a doubly
stochastic n x n matrix (each row and column having nonnegative entries

that sum to 1), and (b) x is in the convex hull of the vectors which are

permutations of y.
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We now go on to matrices. An m x n matrix of reals is interpreted as a
distribution of m resources among n people; the ith row is the distribution
of the ith resource among n individuals and the j t h column is the vector
of amounts of the m resources for the j t h individual. Negative values cor-
respond to debts. Arnold (1987) gives an interpretation of in terms of n
individuals with money in m different currencies.

Throughout this paper, X and Y are real mxn matrices, and IR™ is the
set of m-dimensional row vectors with nonnegative elements. We emphasize
the following pre-ordering of these matrices.

DEFINITION 2.2 X -<pc Y or X is PC-majorized by Y if SLX -< aY for all
a Git!?.

We shall compare PC-majorization with three other kinds of multivariate
majorization, defined as follows.

DEFINITIONS 2.3 X -<UM Y or X is uniformly majorized by Y if X = YD
for a n x n doubly stochastic matrix D.

X -<LC Y or X is majorized by Y through linear combinations if a.X -<
SLY for all a G R m .

X -«<MM Y or X is marginally majorized by Y if x t -< y t , i = 1,..., m,
where x t,y t are the ith rows of X and Y respectively.

Arnold refers to our Definition 2.2 as -<M 0 for Marshall-Olkin, but Mar-
shall and Olkin (1979) have a G H m , which is a stronger condition. To avoid
confusion, we refer to the Marshall-Olkin ordering by -<LC.

The following simple example illustrates PC-majorization and indicates
why it is more appropriate for ordering distributions of resources than are
the other three forms of multivariate majorization.

E X A M P L E 2.4 Let X = ί* ^ l a n d l e t Y ^ ί *

First we verify that X ^<PC Y. To do this we must show that for any

(αi + 4α2,3αχ + 2α2) -< (αx + 2a2,3a1 + 4α2);

but this follows immediately, since 3αi + 4α2 > max{αi + 4α2,3αi + 2α2}.
On the other hand, X is not uniformly majorized by Y, because the

only doubly stochastic matrix that would leave the first row of Y unaltered
is the identity matrix. Neither is X LC-majorized by Y, as can be seen
by taking a = (1,-1). Most people would consider X to represent a more
equitable distribution of resources than Y, since the second individual in Y is
clearly the richer. Uniform and LC-majorization do not make such desirable
distinctions.
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It should also be clear that X and Y are equivalent with respect to
marginal majorization; that is, X -<MM Y and Y -<MM X. The fact that Y
can be considered as 'smaller' than X, in the sense of marginal majorization,
makes marginal majorization unsuitable as a pre-ordering for joint distribu-
tions of resources. •

The point of this example is that uniform and LC-majorization are too re-
strictive in determining which matrices should be ordered, and that marginal
majorization is not restrictive enough. This is made clear in the next theo-
rem, which formally relates these four types of multivariate majorization.

THEOREM 2.5 PC-majorization possesses the following properties:

Invariance by permutations. If X -<FC Y, then PXQi -<FC PYQ21 for
any choice of permutation matrices P,Qi, and Q<ι.

Invariance by addition. If X -<FC Y, then X + (cu... , c m ) τ e -<FC Y +
( c i , . . . , cm)τe for real constants C{, where T stands for transpose and e is a
1 X n vector of ones.

Marginal Majorization. If X - < p c Y, then X -<MM Y.
Uniform Reduction. If X -<U M Y, then X <LC Y, which in turn implies

X ^ p c Y.

P R O O F Invariance with respect to P follows from the invariance of the

domain IR,™ of the weighting vector a. Invariance with respect to Q\ and

Q2 follows from the permutation invariance of ordinary vector majorization.

Also, vector majorization is invariant under addition of the same constant to

all components, which makes PC-majorization invariant under the addition

of constant rows.

Suppose X <FC Y. Let a G IR+ be a vector with a 1 in the ith position
and 0 elsewhere. Then SLX -< aY is equivalent to x; -< y t . By letting i go
from 1 to m, X ^ M M Y.

Finally, suppose X -<υM Y. Then there exists a doubly stochastic matrix
D such that X = YD, and SLX = (μY)D or aX -< aY for all a G lRm. Hence
X -<LC Y. Restricting a to 1R% gives X -<pc Y. •

We note also that the -^MM and -^U M pre-orderings possess the same
invariance properties as -<pc . Further relationships among these these mul-
tivariate majorization pre-orderings are developed in Section 4, in the con-
text of finding elementary operations that reduce a matrix Y to something
smaller in the PC-majorization ordering. In particular, we will give condi-
tions under which the orderings -< M M and -<FC become equivalent, in which
case a reduction can be obtained by reducing one row of Y in the usual
vector majorization ordering. First, however, it is useful to know how each
of the three multivariate majorization relations is verified.
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3 Determining Whether Two given Matrices are Ordered

In this section we show for given matrices X,Y how to check whether
one or more of the multivariate majorization orderings in Section 2 holds.
Marginal majorization is easily checked since it is rowwise majorization. If
X -<MM Y, it is logical next to check if X -<p c Y. PC-majorization would
seem to require checking vector majorization for an infinite number of a but
we show that a finite number of a's will do. Finally, if X -<pc Y, the check
for uniform majorization also requires some work because there could be
zero, one, or more doubly stochastic matrices D such that X = YD.

The main difficulty in checking for PC-majorization is that the ordering
of the components of aX and aY change as a varies over ΈL™. The follow-
ing example illustrates the difficulty, offers some geometric intuition, and
suggests the general solution.

EXAMPLE 3.1 Suppose that

4 3 31 Γ5 4 1

3 3 4 J ' Y ~ L2 3 5

For any a = (αi,α2) £ lR+> we must check if

(4αi + 3α2,3αχ + 3α2,3αi + 4α2) -< (haλ + 2α2,4αi + 3α2,αi + 5α2).

Let A, B, and C denote the columns of Y, so that A = ,B = ,

and C = correspond to individuals A, 2?, and C. As the first resource,

whose worth is measured by αi, decreases in value relative to the second
resource, the ranking of individuals in decreasing order of total wealth goes
from (ABC) to (BAC) to (BCA) to (CBA). Assuming that we have already
checked for marginal majorization, we claim that we need to check SLX -< aY
only for 3 values of a corresponding to the three transitions in the rankings
of the relative wealth of individuals A,j?, and C.

Some geometric intuition can be obtained by visualizing the column vec-
tors A, B, and C as points in the euclidean plane, and a as determining
a ray from the origin through the point a. For any given a, the wealth of
individuals A, By and C is proportional to the orthogonal projection of the
points A, B, and C onto the ray determined by a. A transition in rankings
occurs when the ray is orthogonal to a line connecting some pair of points
among A, B, and C.

The transition from (ABC) to (BAC) occurs at a = (1,1); from (BAC)
to (BCA) at a = (3,4); and from (BCA) to (CBA) at a = (2,3). In par-
ticular, for a = (3,4),aX = (24,21,25) and aY = (23,24,23). Therefore Y
does not PC-majorize X.
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The argument why attention can be restricted to the above three values
of a is best given in the general setting that we now develop.

THEOREM 3.2 Suppose that X χ M M Y, where the columns of Y are denoted
by Yi, . . . , Yn. For each (i, j) with 1 < i < j < n, let

Ή; = {a € K£ : £ > * = 1 and a(Yf - Y;) = 0}
k

and
T = U^jTij.

Then X -<FC Y if and only if aX -< aY for every a 6 Γ.

PROOF First note that aX -< aY if and only if ca.X -< caY for every c > 0.
Thus it is enough to check the definition of PC-majorization for all a such
that Σjdj = 1.

For each k = 1,..., m, define

Λ(a) = Σ( a y)[«]
t = l

to be the sum of the k largest components of aY. We may also express /fc(a)
as

^ 1 = 1

where the maximum is taken over all n x n permutation matrices. Expressed
as a maximum of linear functions, it is clear that /fc(a) is convex and piece-
wise linear. Transitions from one linear section to another can occur only
when at least two of the components aY t and aYj are equal. A similar
argument shows that

k

9k(&) = Σ ( a X ) [ t ],
t = l

which is the sum of the k largest components of aX, is also convex.
To establish the PC-majorization X -< p c Y, it is enough to show that

Λ(a) > gkiμ) for each a G H = {a G IR+ : £ j <*j = 1}. The assump-
tion that X ^ M M Y implies that fk(&) > 9k(&) at the extreme points
( l , . . . , 0 ) , . . . ,(0,. ..,1) of 7ί. Now suppose that 5fc(a) > Λ(a) at some
point a E W . We may assume that the components of aY are distinct, since
otherwise a G Γ. Let 7ΐa denote the subset of 7ί that contains a and over
which fk( ) is linear. This is a convex set, defined by

/t a = | b G /t . b ^ ) > bπ( t + 1 ) , t = 1, . . . , m - 1),
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where π is the permutation that puts the components of aY in decreasing
order; that is, (aY)φ) = (aY)^i — 1,... ,m. Since gk(-) is a convex func-
tion, if it exceeds /&(•) anywhere in the region 7ίΆy it must also exceed /&(•)
at one of the extreme points of 7ΐa. Each of these extreme points is contained
either in T or in the set {(1,..., 0) , . . . , (0, . . . , 1)} of extreme points of 7ί. It
thus follows that if fifjt( ) exceeds /*(•) anywhere in W, it must exceed fk(-)
on Γ. Hence, majorization needs to be checked only for a G T. •

In the case when ra = 2,T is finite, and Theorem 3.2 is all that is needed
to check for PC-majorization. For m > 2, the sets Tij are either empty or are
convex polytopes. In this case, it suffices to check the extreme points of each
nonempty Tij. Hence overall only a finite number of a's need to be checked.
A precise algorithm that checks for both marginal and PC-majorization in
a finite number of steps is now described.

ALGORITHM 3.3. CHECK FOR PC-MAJORIZATION. Consider the hyper-
planes

{a : Σ αk(Vki - Vkj) = 0,} i < j .
k

The intersection of these hyperplanes with 7ί = {a E IR+ : Σj αj = 1}
are the convex polytopes Tij, but notice that these hyperplanes need not
intersect 7ί at all, as happens, for example, when the two column vectors
Yt and Yj are similarly ordered. In general, the above hyperplanes divide
A into at most n\ convex polytopes (with faces T t J) such that for each a in
a particular polytope, a y always has a certain ordering. The vertices of the
convex polytopes may be found by taking m — 1 of the hyperplane equations
at a time and solving for a root a in Ή (if any). Since all these vertices are
similarly ordered, the following lemma (with ]jζj \j = 1) proves that it is
enough to check a.X -< aY for a's being one of these vertices. •

The next lemma is equivalent to result 5.A.6 on page 121 of Marshall
and Olkin (1979).

LEMMA 3.4 Suppose that the vectors z ^ = (z[j\.. ,,z^), j = l , . . . , i ,

are similarly ordered and that there are corresponding vectors x^ such that

x(i) ^ z(i). Then Σj λjX(i) -< Σj *j*{j) if λj > 0, j = 1,..., L.

In the next section, we discuss some elementary ways to transform a

matrix Y into something smaller with respect to PC-majorization. The

simplest way is to post multiply Y by a doubly stochastic matrix Z), which

leads to something smaller in uniform majorization. For a certain class of

matrices y , which we have not yet been able to specify completely, this is

the only way to obtain something that is PC-majorized by Y.
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Also, in our study of elementary operations that PC-reduce Y, we are
interested in how a targeted X, which is known to be PC-majorized, might be
obtained through a series of elementary operations. That is, given X - < p c Y,
we would like to construct a sequence Y —> Y\ —» . . . —• Yk —• X such that
each step Yj-i —• Yj is an elementary operation.

A valuable tool for studying each of these problems is the following check

for uniform majorization.

ALGORITHM 3.5. CHECK FOR UNIFORM MAJORIZATION ( ^ ( U M ) . First note
that if X = YD for a doubly stochastic matrix D, and if certain rows of Y
are linearly dependent, say hY = 0 for a b G Et m , then bX = 0. However
X = YD and bX = 0 need not imply bY = 0 unless D is invertible.

Given X,Y a procedure to use is the following. First check whether
X -<MM Y. If not, then X, Y are not ordered by -< U M . Assuming X -< M M Y,
there are a few cases to consider.

(a) If Y has at least n linearly independent rows, let YQ be a n x n
submatrix of Y with n linearly independent rows, say rows i\ < < in of
Y. Let XQ be a n x n submatrix of X consisting of rows i i , . . . , i n of X. Yo
is invertible. Let JD = YQ^XO and Z = YD. If D is doubly stochastic and
Z = X, then X <VM Y. Otherwise X and Y are not ordered by -< U M .

(b) If the number of linearly independent rows of Y is less than n, check
whether each linear dependency in rows of Y implies the same linear depen-
dency in rows of X. If not, then X and Y are not ordered by -< U M .

(c) Suppose the number of linearly independent rows of Y is exactly n— 1.
Let YQ be a (sub)matrix of Y consisting of n— 1 independent rows, and let XQ
be the corresponding (sub)matrix of X. Then X ^ M M Y implies that the row
sum vectors corresponding to X and Y are the same. Therefore Xo = YQD
reduces to solving for (n - I ) 2 linear equations in ( n - I ) 2 unknowns djk, j =
l , . . . , n — 1, k = l , . . . , n — 1. Note that the doubly stochastic requirement
means that dnk and djn can be substituted for. If D = (djjt)i<j,fc<n is
nonnegative and X = YD, then X -<υM Y.

(d) If the number of linearly independent rows of Y is less than n — 1,
then potentially more than one D exists. Using X = YZ) and D doubly
stochastic as linear constraints on the dt j , the simplex method of linear
programming, for example, can be used to see if a feasible solution exists
(any linear function of the d{j can be used as an objective function). If a
feasible solution exists, then X -^U M Y.

4. PC-Reduction of Matrices

The preceding results enable us to recognize when two matrices are
related by any of the ^ M M

? χ P C

 O r -^U M pre-orderings for dispersiveness.
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We now consider interventions that reduce dispersiveness according to PC-
majorization. These interventions take the mathematical form of special
types of linear operations on an initial matrix Y. We describe three different
types of operations.

DEFINITION 4.1 Type (A) (Uniform reduction) operations.
A type (A) operation is defined as a linear transformation Y —• YD

where D is a doubly stochastic matrix.

That type A operations always produce a PC-smaller matrix is an im-
mediate consequence of Theorem 2.5; namely, if D is doubly stochastic, then
YD -*<pc Y We further conjecture that any doubly stochastic matrix can be
written as a product of matrices of the form XQ + (1 - X)I where Q is an
n x n permutation matrix, / is the n X n identity matrix, and 0 < λ < 1. This
conjectured decomposition would allow an arbitrary uniform reduction to be
achieved as a sequence of 'rearrangement transfers' XQ + (1 — A)/. An exer-
cise in Arnold (1987, p. 75) demonstrates that the conjecture is false if the
permutation matrices Q are restricted to transpositions of two coordinates,
in which case XQ + (1 — X)I is called a 'Robin Hood transfer.'

Recall Example 2.4, where a PC-reduction was obtained by permuting
elements in the second row of Y. It was shown there that such a reduction
is not obtainable via type A operations. We now devise an elementary
operation, based on majorization reduction of individual rows of certain
submatrices of Y. Toward this end, consider the following definitions.

DEFINITION 4.2 Let J be a subset of {1,. . . , n} with cardinality no where
no > 2. X is said to have similarly ordered rows in J, if there is a permutation
ii? ?in0 °f the indices in J such that x^λ > ••• > X{jn , for each i =
1,. . . , m. If J = {1, . . . , n} then we will say that X has similarly ordered
rows. In the case that X has two rows, the notion of oppositely ordered rows
can be well defined, in the obvious way.

DEFINITION 4.3 Type (B) (Marginal reduction) operations.
A type (B) operation Y -» X is described as follows: Let Y* be an m x n 0

submatrix of Y (2 < no < n) with similarly ordered rows; let the ith row of

Y* be denoted by y*. For each i, replace y* by a vector x* which is smaller

with respect to •<. Assuming that the j t h column of Y* corresponds to the

kth column of Y, replace y^ by x*j. The result is defined to be X.

We need to show that any X resulting from a type B operation satisfies
X - < p c Y. We begin with a simple lemma whose proof follows directly from
elementary properties of vector majorization.

LEMMA 4.4 Suppose X and Y differ only in the columns j i , . . . Jno where
2 < n 0 < n. Then X ^ p c Y if and only if X* ^ p c Y*, where X*, Y* are the
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submatrices obtained from the j i , . . . , j n o columns of X and Y respectively.
A similar argument shows that -<FC can be replaced by -<υM, -<LC or ^ M M .

The key set of conditions under which PC- and marginal majorization
become equivalent are described formally as follows:

THEOREM 4.5 IfY has similarly ordered rows and X -<MM Y, then X -<PC

Y.

P R O O F Because -^ p c and ^ M M share the same invariance property given

in Theorem 2.5, we can assume without loss of generality that Y = (yij)

satisfies yn > > j / t n , i = 1,... , TO. Let a be an arbitrary vector in IR™.

Then z = aY satisfies z\ > > zn and the sum of the k largest elements

of z is Y%Lι αt Σ j = 1 yij. Let jt be the index of the Ith largest element of aX

and let x^ be the j t h largest element of the ith row of X. Then the sum of

the k largest elements of a.X is Σ£Li α% YA=\ xijt->

ί=l ί-\ t=l j=l i=l j=l

where the last inequality follows from the assumption X ^<M M Y. Π

Together, Lemma 4.4 and Theorem 4.5 prove that a type B operation on
Y leads to something smaller with respect to -<PC. Reduction via marginal
majorization is easy, and we have so far shown that reduction, via marginal
majorization, of an m x no submatrix of Y with similarly ordered rows also
leads to something smaller with respect to PC-majorization.

We wish to investigate the class of matrices that can be obtained by

applying sequences of type (A) and type (B) to a given matrix Y. For this

purpose, the following definition is convenient.

DEFINITION 4.6 X is majorized by Y via simple transfers (X -< s τ Y) if
X can be obtained from Y via a finite number of operations of type (A) or
(B) above.

By the above results, X -<SΎ Y implies X -<FC Y. The next theorem
shows that these two orderings are, in fact, equivalent when n = 2. Section
5 contains some other conditions under which equivalence is obtained.

THEOREM 4.7 // n = 2, then X ^ s τ Y if and only if X <¥C Y.

P R O O F Suppose X -<FC Y. By Theorem 2.5, X -<MM Y. IfY has similarly
ordered, then by Definition 4.6, X can be obtained from Y via one operation
of type (B). Next suppose that Y does not have similarly ordered rows. Since
X -< M M y, for each i = 1, . . . , m, there exist constants 0t in the interval [0,1]
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such that Xi\ = θ{yn + (1 - θ%)yi2, X{2 = (1 - θi)yn + θ{yi2. Suppose that
rows i and %' of Y are oppositely ordered. Let a be a vector with αt = 1,
«*' = (yn - yi2)l{y%'2 - ί/ι'i) > 0 and ak = 0,k φ i, i'. Then a y is a 2-vector
of the constant yn + αt /yt /i; and aJΓ -< a y implies that B.X = ay, which
can happen for this a only if θ{ = 0,/. Since each non-constant row must be
oppositely ordered to either row i or if and θ can be anything (in [0,1]) for

a constant row, it follows that X = YD, where D =

EXAMPLES 4.8 In general, there can be matrices that axe - < p c ordered but
not -*<sτ ordered. The methods of Section 3 can be used to verify that

Γl 2 3 4 51 pc [1 2 3 4 5

[ 2 3 4 5 l j [ l 4 2 3 5

For this example, it is easily checked that the matrices X and Y are not -< s τ

ordered.

The example on page 59 of Arnold (1987) with Y = \ \ \ | , X =
[Z 4 DJ

Γ.5 .5 01 .5 .5 , and X = YD, with D =
3 4 5 j 0 .5 .5

.5 0 .5 shows that Definition

4.6 cannot be simplified to simple transfers of type (A) and (B) that operate

on only two columns at a time. This is one difference in going from vector

majorization to matrix majorization.

The next, and last, example shows that with X -<SΎ Y, it is possible for

one column of X to be dominant even if there is no dominant column in Y.

2.1 2.5 2.41 ST [2.1 3.0 1.91 ST [4 3 0

This cannot happen if there is a nonnegative vector a such that a y is a

constant vector.

The following development suggests a simple operation other than (A)

and (B) that also preserves the - < p c ordering, and which allows the trans-

formation from y to X in the first of Examples 4.8.

DEFINITIONS 4.9 Let x,y, and z be π-dimensional row vectors. Then x

is z-majorized by y (written x <z y) if cz + x -< cz + y for every c > 0.

In the case where x -< y, we define £Xy = {z : x -<z y}.

DEFINITION 4.10 Type (C) (Directed reduction) operations.

A type (C) operation is described as follows. Let Y have rows y i , . . . ,y m ,

and let x -< yz . Then y, may be replaced by x if Sxy is convex and yj G Sxyi

for each j φ i.
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To prove that a type C operation produces a PC-reduction, it is neces-
sary first to develop properties of z-majorization and the set S^y. Some
immediate consequences of the definiton of z-majorization are listed in the
following lemma.

LEMMA 4.11

(a) J/x -<z y, then x <cZ y for every c > 0.
(b) x <z y if and only if z + ex -< z + cy for every c > 0.
(c)Ifx-< y, then x -^e y, where e is the 1 x n vector of ones,
(d) x <z y if and only if

Part (a) of the lemma shows that the <z ordering depends only on the
direction, and not the actual value, of z. Part (b) is an alternate definition
useful in proofs. Part (c) shows that the definition is not vacuous. Part (d)
makes the key association with PC-majorization.

The role of z in x -<z y is to determine a set of permutation pairs
PXy = {(τr,z/)} under which

t = l t = l

for each k = 1,..., n. Suppose that X and Y have the form given in Lemma
4.11d, with X ^ p c y . Then

( l - λ ) z + λ x x ( l - λ ) z + λy for 0 < λ < 1.

If λ is sufficiently close to 0, Lemma 4.lid implies that (π z ,π z ) must be in
PXy, where τrz is the permutation that puts the components of z in decreasing
order. Similarly the pair (τrx,πy) must be in P x y . As λ moves from 0 to 1,
the ordering of (1 — λ)z + λx changes from π z to π x , and the ordering of
(1 — λ)z + λy changes from τrz to π y . In fact, the number of transpositions
(Hamming distance) between either (1 - λ)z + λx or (1 - λ)z + λy and π z

is an increasing function of λ (cf. Theorem 5.2).
Lemma 4.1 Id describes, for m = 2, when one of the rows y of Y can be

replaced by a new row x to achieve a PC-reduction; namely, when x -<z y.

[ z 1
, what vectors x

satisfy x -<z y? It appears easiest to approach this problem indirectly, by
first fixing x and y and then relating P x y to the key construct of Definition
4.9, 5 x y .

LEMMA 4.12 The set Sxy has the following properties:
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(a) IfzE 5 x y , then cz G S'xy, for every c > 0.
(b) If z is similarly ordered to y, then z G S'xy.
(c) If z is oppositely ordered to x, then z G 5χy.

PROOF Part (a) is an immediate consequence of Lemma 4.11a. Part (b)
follows from

k k k k

Σ ( χ + c*)\i) < Σ xw + czw ̂  Σ y H + czw = Σ (y + c z ) w
t = l t = l i = l t = l

Part (c) follows from the existence of some permutation π such that

k k k k

Σ (y + cz)w = Σ yw + cz*ω ^ Σ xw + ̂ w > Σ ( χ + cz)w D

t = l ι'=l i = l i = l

EXAMPLE 4.13 Lety = (1,2,3). We will show that, for each x = (xi,»
-< y, S'xy can be described as the intersection of half-spaces.

First note that for x = y, SXy is all of IRn. Otherwise,
a) If x\ φ 1 and £3 φ 3, then 5 x y is constrained by z3 > z\.
bl) If X2 < 2, then 5 x y is constrained by 2̂ > z\.
b2) If X2 > 2, then S'xy is constrained by 23 > 22-
Thus there are six possibilities for S'xy. Either it is all of IRn; is one of

the three half spaces {22 > zi}, {z$ > z\} or {z% > z<ι\\ or is the intersection
of two half spaces {z$ > Z\] Π {22 > z\] or {23 > Z\] Π {̂ 3 > z<ι\.

More generally, it appears that S'xy is the union of convex cones that are

subsets of sets of the form {z : zπ^ > . . . > 2π(n)}, where π ranges over a

subset of permutations. As the following example illustrates, 5 x y need not

always be convex.

EXAMPLE 4.14 Let x = (3,5,3,1) and y = (0,2,4,6). Then S'xy is the

union of 6 regions:

A. z4 > z3 > z2 > z\

B. z\ > z2 > zz > z\
C. z4> z3> zι > z2

D. Z4 > z\ > Z3 > z2

E. z3> z4> zι > z2

F. Z3 > z4 > z2 > z\.
The point (0,1, .1,3) is in B, the point (1,0, .1,3) is in D, but the average

of these points, (.5, .5, .1,3) is not in the union 5 x y of the 6 regions.
Although the convexity of S x y is not always guaranteed, the following

theorem, which presumes the convexity of S'xy for a particular pair of vectors
(x,y), can be useful for reducing a matrix Y when redistribution is restricted
to a single resource.
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THEOREM 4.15 Let Y have row vectors y i , . . . ,y m Suppose that X differs
from Y only in the ith row, and that SXiγi is convex. Then X - < p c Y if and
only ifxi -<yj y t for each j φ i.

P R O O F First suppose that X -<FC Y. For fixed j φ i, and k G 1,2,... ,m,
let

ak = { c, if k = i;
1, i ί * = jf;
0, otherwise.

Then ΣX=i αfcχfc "̂  Σ J £ = I
 akΎk implies that XJ + cy, -< XJ + cx;, and so

Ύi <xj Xt

We prove the converse by induction on m. By Lemma 4.11(d), the con-
verse is true for m = 2. Suppose that it holds for some m - 1 where m > 3.
Then there are at least two indices in l , . . . , r a that are distinct from i.
Without loss of generality, call these m - 1 and m. Then for any a G HI^
define

z = Γy*, for k=
%ym, for k = m- 1,

and
jk, for k φ i]

:t , for k = i.

To invoke induction, we need to verify that

(4.1) z* <Zj Zi for each j G {1, . . . , m - l}\{z}.

For j < m— 1, (4.1) holds by assumption. For j = m — 1, (4.1) follows from
the convexity and scale invariance (Lemma 4.12a) of Sz*Zr Now define

Then

where
Y. D

bk

771

Σ α * x

fc=l

the majorization

Γ djt, for
= \ 1, for

7 7 1 - 1

:* = Σ δfcZ^
A ; = l

follows from

* = 1,..,
k = m —

7 7 1 - 1

. ,ra-2;
1.

771

Ẑ . = / akYk^

the induction assumption. Thus X -<pc

Theorem 4.15 proves that type (C) operations preserve the -^<PC ordering:
It should be clear that a type (C) operation is distinct from types (A) and
(B). Nevertheless, even with this additional operation, repeated application
of operations (A), (B), and (C) do not generally produce all the matrices
that are ^< p c smaller than an arbitrary initial matrix, as the following coun-
terexample shows.
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EXAMPLE 4.16 Let X = ^ 5 35 1] a n d Y = [4 \ *]• U s i n g

Theorem 3.2, it can be shown that X -< p c Y. It is easy to argue that X

and Y are not -< s τ ordered. Also, it can be shown that X is not attainable

from Y using type (C) operations. This example is a specific case of a more

detailed study of 2 x 3 matrices in Theorem 5.6.

We do not know if there is yet another simple operation, which, in combi-

nation with (A), (B), and (C), will produce all matrices that are - ^ p c smaller

than an arbitrary initial matrix.

5. Further Properties and PC-Reductions

In this section, we obtain additional properties for the -<FC and - ^ s τ

orderings. We show that the set Ay — {X : X -<FC Y} is convex and

is contained in the convex set {X : X ^ M M Y}. The extreme points of

{X : X -<M M Y] constitute the set, denoted by Cy, of matrices whose rows

are permutations of the corresponding rows of Y. Methods for identifying

the extreme points of Ay are described and illustrated in the case m = 2,

n = 3. One of the methods suggests a (non-simple) PC-reduction operation

to be studied in further research.

In the course of this development, we show that, when restricted to Cy,

the -<sτ ordering is the same as the multivariate arrangement ordering of

Boland and Proschan (1988).

THEOREM 5.1 For fixed Y, the set Ay = {X : X -<FC Y} is a convex set

PROOF Suppose Xλ -<FC Y and X2 -<FC Y. Let λ be in the interval

[0,1]. For a 6 IR™, a(λXχ + (1 - X)X2) = λ(aΛΊ) + (1 - λ)(aX2) -< aY

since SLXI -< aY, aX2 <̂ aY and the set {x : x -< aY} is convex. Therefore

(1 - \)X2 <FC Y. •

A natural question now concerns the extreme points of Ay and relation-

ships with convex hull results for vector majorization. First recall that Cy

is the set of the extreme points of {X : X ^<MM Y}? and that the extreme

points of Ay include some, but not necessary all, of the points in Cy.

Consider the ^ s τ and the - ^ p c orderings on Cy. The maximal matrices

in Cy with respect to - ^ s τ or - ^ p c have similarly ordered rows. If Y has

similarly ordered rows, then by BirkhofF's theorem, Ay is the convex hull of

the matrices in Cy. By Theorem 4.6, the ^< s τ and -<FC orderings on Cy are

the same if n = 2. For m = 2 and n = 3 or 4, the X p c and -< s τ orderings

on Cy can be shown to be the same by complete pairwise comparisons.

Example 4.8 shows that the equivalence does not extend to m = 2, n > 5.



174 Harry Joe and Joseph Verducci

From results of Section 4, if two matrices in Cy are -< s τ ordered, then they
are -^PC ordered.

We next note that the -< s τ ordering on Cy is the same as the multivariate
arrangement increasing ordering in Boland and Proschan (1988). This is the
arrangement increasing ordering or decreasing in transposition ordering of
Hollander, Proschan and Sethuraman (1977) in the case m = 2. Boland and
Proschan's definition involve only transfers that operate on two columns at
a time. The equivalence follows from the proposition below.

PROPOSITION 5.2 Let Y be a m x n matrix with similarly ordered rows
and let X be a matrix such that its ith row is a permutation of the ith row of
Y. Then X can be obtained from Y using a sequence of type (B) operations
that operate on two columns.

PROOF Without loss of generality, suppose that each row of Y is increasing.
X can be obtained from Y by operating in columns (n — l,n) followed
by ( n - 2 , n ) , . . . , ( l , n ) , ( n - 2 , n - 1),... ,(l,n - 1),... ,(1,2). In the first
stage, each row involves switches of the j t h column with the nth column,
j = n — 1,...,1, until the nth column of X is obtained. In the next stage
switches are made until the (n - l)st column is correct, etc. Note that the
appropriate columns are ordered correctly after each transfer of type (B) on
two columns in order that the later type (B) operations can be made. •

We now go to a further study of Ay. Consider the set Vy = {Z G Cy :
Z -<sτ Y} and let By be the convex hull of the points in Vy. Then clearly
By C Ay. By Theorem 4.6, By = Ay if n = 2, and it can be shown that
this is also valid sometimes when n > 2. One problem for future research is
to deduce all conditions for which By = Ay.

From Theorem 3.2, the region Ay can be specified precisely through
a finite number of linear inequalities. The extreme points of Ay can be
enumerated by using some theory from linear programming and the sim-
plex method. An alternative approach makes use of separating hyperplanes.
Both approaches are not difficult to implement on a computer for a given Y
but the combinatorial enumeration grows rapidly as m and n increase. How-
ever, both approaches led to the examples showing that the -<p c and -«<sτ

orderings are not equivalent, and partly with the help of symbolic manipu-
lation software, have been used to prove general results for m — 2, n = 3.
We illustrate both approaches below. The separating hyperplane approach
is shown first. Its advantage is that it suggests a more general reduction
operation which is mentioned at the end of this section.

Since each matrix in Ay has the same row sum vector as y, Ay is a set
in m{n — 1) dimensional space. Hence By can be partitioned into simplices,
each with m(n — 1) + 1 vertices, where each vertex is in Vy. To see if Ay
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extends beyond &γ, for each point Y* in Cγ\Vγ, simplices extending from

By to Y* can be defined and then it can be checked whether any point in

these simplices are in Ay. All such simplices can be found by enumerating

sets of m{n - 1) matrices in T>γ and obtaining the hyperplane that these

matrices lie on; the hyperplane can be found by solving a linear system

or using a singular value decomposition depending on whether the matrix

consisting of the column vectors formed from the first n — 1 columns of

each of the m(n - 1) matrices has full or less than full rank. The simplices

involving Y* that need to be checked are those resulting from hyperplanes

that separate Y* from 13γ. The ideas will be clearer from the next result

below for m = 2, n — 3 where Y has two oppositely ordered rows.

T H E O R E M 5.3 Letu\ <u2 <u3 andvi < υ2 < υ3. ForY = \Ul u<2> Us \.
[v3 v2 vι\'

AY =BY. Hence for this Y, if X < p c Y} then X -<SΊ Y and X - < U M Y.

PROOF Let Yl = Y,Y2= h u* U 2 i y3 = h u* H Y4 =
L̂ 3 vx v2y [v2 v3 vλy

u2 u3 u,] ϊu3 Ul u2λ . \u3 u2

[ J[υ2 v\ v3\ [vι υ3 v2 L
points in Ί>γ and BY lies in a four-dimensional space determined by the row

sums remaining constant. Let X = be a generic point in
6 U21 x22 x23\

 &

this four-dimensional space.

Let b\ = (u2 - u\)l(v3 - v2), b2 = (u 3 - uι)/(υ3 - vι) and 63 = (u3 -

u2)/(v2 - vι). These are the values of 6 such that (1, b)Y is a vector with at

least two components equal. Either 61,62,63 are distinct or they are all the

same. In the latter case, the conclusion follows from Proposition 5.4 below.

Hence we now assume the former case. Note that b2 is a convex combination

of 6χ and 63 so that it cannot be largest or smallest of the 3 6j's. The 15

subsets of size 4 from Ί)γ and the equations of the corresponding hyperplanes

for the each set of 4 are:
(a) Yi,y2,*3,*4:
(b)y l 9y2,y3,y5:
(c) Yi,Y2jY3,Y6: (v3 - vι)xn + (u3 - ui)z 2 i + (v2 - vx)x12 + (u3 - u2)x22

(d) Yi, y 2 ,y 4 , Yδ . (v3 - v2)xn + O2 - ^1)^21 ~ (̂ 2 - vχ)x12 - (u3 -

(g) Yi, Y3, Y4, Y5: (v2 - ϋi)zπ + (U3 - ^2)^21 + (v3 - vx)x12 + (u3 -

(i)Y1,Y3,Y5,Y6: xi2 +

(j) Yi, Y4, Y5, Ye: (v3 - vχ)xu + (u3 - uλ)x21 + (υ3 - v2)x12 + (u2 -

(k)Y2,Y3,Y4,Y5: xi2 + 62α;22

(1) Y2, Y3, Y4, Ye: (v3 - v2)xu + (u2 - uχ)x2ι + (υ3 - υι)x12 + (u3 -
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(m)Y2,Y3,Ys,Yβ: -(v2-
(n) Y2,Y4,Y5,Y6: x13

(o)Y3,Y4,Y5,Y6: xn + 63*21.
For cases (c), (d), (g), (j), (1), (m), it is straightforward to check that

the remaining 2 points in Vy are on opposite sides of the hyperplane (by
making use of the fact the 62 is neither largest or smallest). The argument
for the other cases is analogous to case (a) which is given next.

The equation x\\ + 61^21 applied to Yi, 12,13,14 leads to the constant
a = u\ +&1V3 = 1̂2 + 62̂ 2? and when applied to Y5, Yβ it leads to the constant
β =z U3 + bιvχ. For a Yγ in Cγ\Vy, suppose the equation leads to 7. The
hyperplane x π + &i#2i = OL separates Yγ from Y5, Yβ only if β < a < 7 or
β > a > 7. In either case, if X is any convex combination of Y1? Y2, Y3, Y4, Yγ
with a positive weight for Y7, then (l,fci)X is not majorized by (l,&i)Yi
Hence it is not possible to extend By towards Yγ.

The above argument works for the nine hyperplanes of the form (a) and
any Yγ not in T>γ so that the conclusion of the theorem follows. •

PROPOSITION 5.4 Let Y be a 2 x n matrix. If, for a nonnegative nonzero
vector (01,02), (αi,α2)Y is a constant times a vector of ones, then X -<pc Y
is equivalent to X -<υM Y.

P R O O F Let yi,y2 be the first and second rows of Y. Theny2 = c ( l , . . . , l ) -
αiyi for a constant c. Suppose X -<pc Y. Then {a\,a2)X — c ( l , . . . , 1) and
x 2 = c ( l , . . . , l ) — αiXχ, where xi,X2 are the first and second rows of X.
X -<P C Y implies xi -< y\ so that there is a doubly stochastic matrix D
such that X! = yiD. The preceding equalities imply then that X2 = y2D
and hence X ^ U M Y. D

We next illustrate the "linear inequalities" approach. Because of the
second invariance property in Theorem 2.5, we can assume that the minimum
component of each row of Y is 0 so that all components of Y are nonnegative.
In the general case, one can subtract the ith row minimum C{ from the ith

row, find the extreme points of Ay* for the resulting Y*, and then add ct to
the ith row of each extreme point in Ay* to get Ay. Note that the ordering
B.X -< BY = y* is equivalent to the following set of inequalities:

Xijk

t = l

) < V[ι] + '•- V[k]j j i < < j * , A: = 1,... ,n - 1,

together with the sum constraint. The set Ay can be represented by a fi-
nite number of inequalities of the above type together with the m row sum
constraints. As in the simplex method for linear programming (see for ex-
ample Gass (1985)), nonnegative slack variables can be introduced for each
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inequality. The total number of variables, TV, is now ran plus the number
of nonredundant inequalities, and the number of equations, M, is ra plus
the number of nonredundant inequalities. The extreme points can now be
enumerated by setting in turn N — M of the variables to zero and solving
the resulting M x M linear system if the linear system is nonsingular; non-
negative solutions generated in this way correspond to the extreme points.
However there are too many inequalities to prove a general theorem except
for in a couple of "small" cases, given in the next two results.

These results involve one or two inversions of the second row relative to
the first. For a 2 x n matrix with a strictly increasing first row vector and
with a second row vector z = (21,... ,2n)> the number of inversions is the
cardinality of the set {(jιj2) : j i < 32, zh > zh}-

T H E O R E M 5.5 Let uι < u2 < u3, v\ < υ2 < v3. For Y = \ U l U2 U3

L Vι V3 V2

Ay = Bγ.

PROOF Without loss of generality, we can assume that uι = vι = 0. From

Theorem 3.2, X ^ p c Y if SLX -< aY for a = (1,0), (0,1), and (1,6) where

6 = (u3 — u2)/(υ3 — υ2). In addition to nonnegativity constraints, the linear

inequalities and equalities imposed by the three majorization orderings are:

xij < u3, X2j < v3, j = 1,2,3,

0 = m + bvi < xij + bx2j <u2 + bυ3 = u3 + bv2, j = 1,2,3,

#11 + #12 + £13 = U2 + W3, X2ι + X22 + X23 = V2 + V3.

Note that the lower bound of the second set of inequalities are redundant
given the nonnegativity constraints. By adding 9 nonnegative slack variables
5χ,... ,59, the 11 resulting equations are:

χij + sj = ^3, X23 + *3+j = V3, j = 1,2,3,

xij + bx2j + s6+j = u2 + bv3, j = 1,2,3,

Zll + ^12 + Zl3 = U2 + U3, X2\ + X22 + X23 = V2 + V3.

The extreme points can be found by setting in turn 4 of the 15 variables to

zero and solving the 11x11 linear system. At most one of x\j can be set to

zero and at most one of x2j can be set to zero and at most two of sγ, θs, sg can

be set to zero. If four zeros are chosen in this way, then either no nonnegative

solution exists or YQ is the solution where Q is a permutation matrix. For

other cases, one of s i , . . . , sβ is set to zero. By symmetry, assume that si = 0

and #ii = ^3. Substitute xχ3 = u2 - x12, x23 = v2 + v3 - x2\ - x22. The

linear system simplifies to:

*1 = U2, X2\ + t2 = V2, a?22 + *3 = ΐ>3> #21 + #22 — *4 > *>2>
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where tι^t2yt3^t4 a r e nonnegative slack variables. Now set in turn 3 of the
7 variables to zero. 16 of the resulting systems are nonsingular, of which 4
lead to nonnegative solutions and the other 12 lead to solutions of the form
YQ where Q is a permutation matrix. •

The last case to consider for m = 2, n = 3 is when there are two inversions

of the second row relative to the first. For example, Y = * 2 3 ,
[v3 vι v2y

where u\ < u2 < u3 and υi < υ2 < v3. This is interesting because it is the
simplest case where Ay is strictly larger than By. To further illustrate the
two approaches, a combination of them are used to find the extreme points
of AY in this case. Not all details are provided.

T H E O R E M 5.6 Let uλ<u2< u3 and vx < υ2 < υ3. Let Y = | Ul U<2 Us\.
L v3 υi υ2 J

Dfi f d d

L v3 υi υ2 J

Define U{j = U{ — Uj> Vij = V{ - i?j, for i > j , and d = ^31^31 - ^21^32- In

addition to the matrices in Ί)γ, the extreme points of Ay include

(5 1) Z = Γ
L d"1 (u32v3ιv2 + ^21^21^3) d-1(u21υ2ιv2 + u32v31v3)

and the matrices obtained by column permutations of this matrix.

OUTLINE OF DETAILS. Let YΊ,..., Y6 be as in the proof of Theorem 5.3. Let

i u3 u2] __ \u2 uλ u3λ _ \u2 u3

3 v2 υ j ' ^ - ί ^ i v3 t;2J' y i 0~Ui v2

γ = Γw3 ^i ^2] γ ϊu3 u2 uλ
1 1 L V2 v3 υi J ' 1 2 [ υ2 vι υ3

T h e s e a r e t h e 12 p o i n t s i n Vy. F u r t h e r m o r e , l e t Y13 = | x U<1 Us\.F [v2 υ3 vx\

Let X = n 1 2 1 3 be a generic point in the four-dimensional
[x2ι x22 x23\

space containing By. It is straightforward to show that the hyperplane

—v32X\\ + u2χx22 = u2v2 - uχv3 contains Yi,Y3,Ys,Y9 and separates the

other Y's in Vy from Y13.

Consider the simplex with vertices Y\, Y3, Yg, Y9, Y13. Let X be the convex

combination λχYi + λ3Y3 + A8Y8 + A9Y9 + λi3Yi3. Let c\ = u2ι/υ3ι and c2 =

u3ι/υ32. Since X -<MM Y, by Theorem 3.2, X <pc Y if (l,c;)X -< (l,Cj)Y,

j = 1,2. These two majorization orderings impose the constraints

(5.2) Oi + cιv3)λι + {u2 + cxv2)\3 + (uι + Cιv3)λ8 + (u2

= U2 +
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(5.3) (u2 + cιv2)λι + (t*i + civ3)λ3 + (ti3

<U3 + CχV2,

(5.4) (uι + c2v3)λι + (u2 + c2υ2)X3 + (uι + c2υ3)\g + (u2 + c2vι)X9

> U2 + C2V\,

(5.5) (u2 + c2v2)Xχ + (uι + c2v3)X3 + (u3 + c2υ2)Xg + (uι + c2v3)X9

< u\ + c2υ3 = u3 + c2v2

on λi,λ3,λs,λ9,λi3. If the inequality (5.3) is multiplied by
cxv2), then (tit + CXVJ){U3 + c2υ2)/(u3 + cλv2) < m + C2VJ, for (ij) = (2,2),
(1,3), (3,2), (2,3) or (3,3). Comparison with (5.5) then makes the inequality
(5.3) redundant. Similarly if the inequality (5.4) is multiplied by (u2 +
cιvι)/(u2 + c2vι), then (u{ + C2VJ)(U2 + c\Vi)/(u2 + c2υχ) > U{ + c\Vj, for
(ij) = (2,2), (1,3), (2,1), (1,2) or (1,1). Comparison with (5.2) then makes
the inequality (5.4) redundant.

For the remaining two inequalities (5.2) and (5.5), substituting λi3 =
1 — λi — λβ — As — λg leads to

and
U2ι X3 + U2ιXg

Other than the extreme points with λi = 1, λ3 = 1, A8 = 1, λ9 = 1, the
single nontrivial extreme point from these inequalities is when λi = u2\v2\jd,
X3 = u32υ32/d} Xg = λ9 = 0 (and Aχ3 = u32υ2ι/d). This leads to the matrix
given in (5.1).

Hence the separating hyperplane approach has extended Ay beyond By.
However in this case, it cannot show that ZQ, where Q is a permutation
matrix, are the only other extreme points of Ay. The linear inequalities
approach can be used to complete this last step. The details are more tedious
than in Theorem 5.5.

Let u\ = V\ = 0 now without loss of generality. The linear inequalities
and equalities imposed by X -<pc Y are:

xij<u3, X2j<v3, j = 1,2,3,

u2 < xij + cιx2j <u3 + cιυ2y j - 1,2,3,

u2 < x\j + c2x2j < c2υ3, j = 1,2,3,

#11 + Zl2 + X\3 - U2 + ̂ 3, X2\ + X22 + X23 = V2 + V3.
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Slack variables si, . . . , sis can be added (or subtracted) corresponding to the
18 inequalities. This leads to 20 linear equations in 24 variables. At most
one of x\j can be set to zero and at most one of #2j can be set to zero, so
that at least two of the slack variables must to set to zero to find the extreme
points. By symmetries and constraints, there are 21 pairs (st1?Sι2) = (0,0)
that have to be considered. Once a pair of slack variables is set to zero,
the variables Xij and the remaining s '̂s can be expressed in terms of two
slack variables, say Sjx^Sj2. Symbolic manipulation software helps for the
algebra in this reduction. Extreme points from inequalities in two variables
(in symbols) can be solved by hand. The outcome of all this is that the only
extreme points are of the form YQ, YiQ, ZQ, where Q is a permutation
matrix. •

REMARKS The two techniques for identifying the structure of Ay can in
general be implemented in computer programs. Numerical examples studied
in this way may lead to more general theorems. Further research will attempt
to determine when Ay = By and when Ay is strictly larger than By for
general (ra,π) not covered by theorems in this paper. In addition, it would
be useful to discover an approach that does not require enumeration.

The derivation in the first part of the proof of Theorem 5.6 suggest the
following (non-simple) operation for extending to points in Ay\By. Choose
a matrix YQ in Cy\Vy satisfying some properties. Find a separating hyper-
plane that separates YQ from some points in Cy. Take a convex combination
of Yb and matrices in Cy that on the hyperplane. The linear inequalities
imposed by the PC-ordering will put constraints on the possible convex
combinations. A goal is to identify those YQ where the coefficient of YΌ in
convex combinations can be definitely positive.
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