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GENERALIZED MAJORIZATION ORDERINGS
AND APPLICATIONS

By HARRY JOE!

University of British Columbia

Orderings that are special cases of or related to the majorization ordering
in Joe (1987a) for functions on a measure space are reviewed. Applications
in probability and statistics that have motivated the orderings are briefly
discussed and some new applications are given. Also some new links are
made between results of previous papers.

1. Introduction

This article reviews a class of majorization orderings that generalize vec-
tor majorization and some applications motivating or coming from the or-
derings. The emphasis is on work that has come after the publication of
Marshall and Olkin (1979). The class fits within the majorization ordering
in Joe (1987a) for functions on a measure space and includes most general-
ized majorization orderings. Exceptions are group majorization (see Eaton
(1987), Giovagnoli and Wynn (1985)) and stochastic majorization (see Shan-
thikumar (1987)).

In Section 2, the definition of Joe (1987a) is given and then it is shown
how other orderings are either special cases or are related in some way. A
diversity of applications are discussed or summarized in Section 3. Marshall
and Olkin (1979) unified inequalities through majorization, and although
generalized majorization leads to inequalities, they have not always been
the motivation for extensions. It is hoped that the results in this paper will
lead readers to discover further applications and extensions.

2. Generalized Majorization Orderings
The goal in this section is to show that results of various authors fit

within a unified framework. These authors have often not cross—referenced
each other. We start with the definition of Joe (1987a).
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146 Harry Joe

Let (X,A,v) be a measure space. For most applications, & will be a
subset of a Euclidean space, and v will be Lebesgue measure or counting
measure. For a nonnegative integrable function h on (X,A,v), let my(t) =
v({z : h(z) > t}), t > 0, and let h*(v) = mj (u) = sup{t : my(t) > u},
0 < u < v(X); h* is the (left—continuous) decreasing rearrangement of A.

DEFINITION 2.1  Let a and b be nonnegative integrable functions on
(X,A,v) such that fadv = [bdv. Then a is majorized by b, written a < b,
if one of the following four equivalent conditions hold.

(a) fla—t]*tdv < [[b—t]*dv for all ¢t > 0, where [y]* = max{y,0}.

(b) f¥(a)dv < [ 1(b)dv for all convex, continuous real-valued functions
% such that ¢(0) = 0 and the integrals exist.

(€) [° ma(s)ds < [7° my(s)ds for all ¢ > 0.

(d) f§a*(u)du < f{b*(u)du for all 0 < ¢ < p(X).

AsSIDE 2.2 The ideas in Definition 2.1 go back to Hardy, Littlewood and
Pélya (1929) for X being a finite interval of the real line and to Chong (1974)
for the general case. Except in some cases such as Case 1 and Case 2 (with
—00 < C < D < o) when X is a bounded subset of the real line, it is not
the same as the dilation ordering of measures given in Chapter 13 of Phelps
(1966) and references therein.

The above definition is suitable for all stochastic applications except one
in this article; in the exception, a,b can be partly negative. If one wants to
compare a,b that can have negative parts, then it appears necessary to have
v(X) finite. Note that [[a — t]*dv is not defined for an integrable function
aift <0 and (&) = o0.

If the v(X) is finite and the nonnegativity condition for @,b is removed,
then (i) mq,mp can be defined on IR, (ii) in condition (a), the inequality
holds for all ¢t € IR, and (iii) 4(0) = 0 in (b) is not required. In this case,
the equivalence of parts (a), (c) and (d) still follows from Chong (1974).
The main new contribution in Joe (1987a) is stating together the equivalent
conditions as a generalized majorization ordering, and including condition
(b) which is crucial to the applications in that paper. For v(X’) finite, another
equivalent condition is

(@) f(a—1t)~dv < [(b—t)"dv for all real ¢, where (y)~ = max{0,-y}.
The proof of condition (b) from (a’) and (a) then follows with a few steps.
The general case will follow after proving condition (b) for ¢ such that
¥'(04+4) = 0 = 9(0). The case where ¢ has domain on (—00,0] can be
handled similarly to when the domain is [0,00) (see the proof of Theorem
2.1 in Joe (1987a)). If 4 has domain [C, D] with C < 0 < D, then ¥(z)
can be approximated from below by functions of the form 3, . ., o(si—
)t + Yo<t; <t (— i)t and then the monotone convergence theorem can
be used.
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The following are specific cases (of Definition 2.1) that have been studied.

Case 1. The usual vector majorization results if X = {1,...,n} and
a=(a,...,a,), b = (by,...,b,) and v is counting measure. Condition (d)
in Definition 2.1 is the usual definition with decreasing components of the
vectors a,b. The generalization to Case 2 below comes from thinking of a,b
as probability vectors; i.e., a;,b; are probability masses at a point z;. The
generalization to Case 3 below comes from considering random variables X
and Y with masses n~! at points a; and b; respectively.

Case 2. Continuous majorization for densities on an interval [C, D] (pos-
sibly unbounded) results if a = f, b = g, where f,g are densities on [C, D]
with respect to Lebesgue measure. In this case, < is an ordering of close-
ness to uniformity of the density, and it has been studied in Hickey (1984).
This ordering on densities can be extended to higher dimensional Euclidean
space. In related work, Chan, Proschan and Sethuraman (1987), following
up on Ryff (1963), study the majorization ordering for integrable functions
(not necessarily nonnegative) on [0,1].

Case 3. The Lorenz ordering in Arnold (1987) and Das Gupta and
Bhansali (1989) results if X = [0,1], v is Lebesgue measure and a = F~!,
b = G, where F,G are the respective distribution functions of nonnegative
random variables X,Y (X and Y have a common finite mean) and F~1,G~!
are the corresponding quantile functions. Since a,b are monotone increas-
ing, the decreasing rearrangements are respectively a*(u) = F~1(1 — u) and
b*(u) = G™1(1 — u). Condition (d) of Definition 2.1 is f{ F~'(1 — p)dp <
ng'l(l -p)dp,0<t<1lor

t t
(21) [Fiw> [ 6@, 0<t<y;
0 0

the latter being the definition in Arnold (1987) and Das Gupta and Bhansali
(1989). Condition (b) becomes

(2.2) E¢(X)<Ey(Y) V convex continuous functions ¢
and condition (a) becomes
(2.3) EX-t)<E(Y -t)*, Vvi>o0.

The Lorenz ordering is known by other names in earlier work. Let F =
1- F,G — 1 — G be the survival functions of F,G. In the form of condition
(c) of Definition 2.1, that is,

(2.4) /:o F(z)dz < /uoo G(z)dz  V real u,

the ordering is referred to as the “more variable” ordering in Ross (1983)
and as a majorization ordering in Boland and Proschan (1986).



148 Harry Joe

If the random variables X,Y have support on a bounded interval, say
[0,1], then the doubly stochastic condition of vector majorization generalizes
in two ways. From Ryff (1965), Definition 2.1 for F~! < G~! in this case is
equivalent to the condition:

(e) there exists a doubly stochastic operator T' (a positive, contraction
operator such that fol(TIE)dV = v(E), where v is Lebesgue measure and
Ig is the indicator function of the measureable set E) from L! to L! such
that F~! = TG™1, where L! is the space of Lebesgue integrable functions
on [0,1].

Also, from Theorem 10 of Blackwell (1951), it is equivalent to the condition:

(f) there is a stochastic transformation H(z|y) (H(-|y) is a distribution
for each y in the support of G) such that [ H(z|y)dG(y) = F(z) for all z
and E(Y|X) = X.

Note that if X,Y have support on the points z1,...,2, and y1,...,¥n
respectively with masses n~! at each support point, then both conditions
(e) and (f) are equivalent to the existence of a doubly stochastic matrix P
such that (21,...,2x) = (Y1,.--,Yn)P.

Case 4. Simonis (1988) defines a “spectral order” which is the Lorenz
ordering in Case 3 without the constraint of nonnegativity on the random
variables X,Y (see also Aside 2.2). Let X,Y have respective distribution
functions F,G, and corresponding survival functions F,G. Simonis defines
X <YifEX =EY and I F '(u)du < [{G Y(u)duforall 0 < t < 1
This is the same as (2.1) and condition (d) of Definition 2.1 but without the
nonnegativity requirement for a = F~! and b = G~!. Simonis proves the
(a), (b) and (c) are equivalent, that is, X < Y if and only if (2.3), (2.2) or
(2.4) hold.

This ordering is also used in Stoyan (1983), where it is called a convex
ordering or an ordering of “mean residual life” (with (2.3) as the definition).

Case 5. Non-uniform weighted majorization results if a measure other
than Lebesgue measure or counting measure is used. For the vector case,
let X = {1,...,n} and v be a measure with positive mass ¢; at the point
t,1=1,...,n. Cheng (1977) defined this ordering for vectors that are sim-
ilarly ordered and called it p—majorization. Joe (1990) uses this ordering
without the constraint of similarly ordered and in addition used the contin-
uous version, that is, with X = [C, D] being an interval of the real line and
v corresponding to a positive density ¢(-) on [C, D]. Both of these orderings
will be referred to as majorization with respect to ¢ and denoted by <,4. For
this case, the various forms of Definition 2.1 and other equivalent conditions
are given and discussed in Joe (1990).

Case 6. The r—majorization ordering with respect to ¢ of Joe (1990),
denoted by <7, follows from Case 5, with ratios of densities with respect
to ¢. That is, for n—dimensional probability vectors p; = (p11,...,P1n) and
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P2 = (P21, -5 P20), P1 < P2 if (P11/q1,- -, P1n/qn) <q (P21/ Q15+ - -3 P2n/Qn)s
and for densities p;,p; of random variables on [C, D], p1 <} p2 if p1/q <,

p2/q. R-majorization puts the probability vector or density ¢ at the lower
end of the ordering instead the the uniform vector or density, and can be
interpreted as an ordering of divergence or distance from ¢. With applica-
tions to thermodynamics, this ordering is called a mixing distance in Ruch
and Mead (1976) and Ruch, Schranner and Seligman (1978).

3. Applications

In this section, we summarize some recent applications of the majoriza-
tion orderings in Section 2, and also we give some new applications (in 3.5
and 3.9 and part of 3.2). In some cases, the application motivated the study
of the majorization ordering. One goal is to show a diversity of applications
so they are mainly brief (in which case details can be found in the papers
that are referred to). The applications taking up more space are the new
ones and the one in 3.8 which is more detailed in order to mention an open
problem.

3.1. Ordering on Random Variables or Cumulative Distribution Functions

The ordering in Case 3 of Section 2 has been applied in diverse areas.
Applications in reliability are given in Boland and Proschan (1986) and Ross
(1983) with earlier such applications going back to Marshall and Proschan
(1970). Applications to queueing models are given in Ross (1983) and Stoyan
(1983). Arnold (1987) has applications to distributions of wealth; the idea is
that with a given mean wealth y, a distribution of wealth F' with a constant
F~1 is most equitable (this corresponds to a mass of 1 at p) and a distribu-
tion F which is larger in the (Lorenz) ordering is less equitable. A further,
more detailed application is given next.

3.2. Probability Forecasting

Conditions (e) and (f) of Section 2 are used in this application. DeGroot
and Fienberg (1982) and DeGroot and Erikkson (1985) consider an ordering
of forecasters with possible forecasts in the set {zg,z1,...,Zn}, where 29 =
0,z,, = 1 and 29 < ;3 < --+ < Zy,. Their ordering can be generalized
to allow forecasts in [0,1], in which case, their ordering becomes that in
Application 3.1 or Case 3 of Section 2 with support of random variables in
the interval [0,1].

The framework is that forecasters give a probability each day for an
event like occurrence of rain. A forecast of 1 means a prediction that the
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event will happen and a forecast of 0 means a prediction that the event
will not happen. A forecaster is well-calibrated if the conditional proba-
bility of the event, given that the forecaster’s prediction is z, is z. Let
two well-calibrated forecasters A, B have distributions F,G for their fore-
casts. Then the means of F,G must be the same, both being the prob-
ability or relative frequency of the event. Forecaster B is at least as re-
fined as A if condition (f) holds. In well-behaved situations, the doubly
stochastic operator in conditions (e) and (f) becomes an integral opera-
tor, that is, there is a function k on [0,1]2 such that [k(u,v)du = 1 for
all v, [k(u,v)dv = 1 for all u, and [k(u,v)G~}(v)dv = F~1(u). In fact,
k(u,v) = h(F~1(u)|G™1(v))/ f(F~1(u)), where h(-|y) is the density of H(-|y)
and f is the density of F'; both densities are with respect to a measure that
dominates F' (for simple cases, Lebesgue measure, counting measure or a
combination).

Let p be the relative frequency of the event. It is intuitively true, and
not difficult to show from Definition 2.1, that the best or most refined well-
calibrated forecaster has a forecast distribution G that has mass of p at 1
and mass of 1 — p at 0. The least refined well-calibrated forecaster has a
forecast distribution F' that has a mass of 1 at p. With the restriction that
forecasts are in the set {zo,z1,...,Zn}, referred to above, DeGroot and
Fienberg (1982) proved that the least refined well-calibrated forecaster has
a distribution F' that puts mass a at z; and mass 1 — a at z;41, where 7 is
such that z; < p < z;41 and & = (zi41 — p)/(Tiy1 — Zi)-

3.3. Constrained Majorization

The author has used constrained majorization in several papers: Joe
(1985, 1987a,b, 1988a, 1990). This comes about when there are additional
constraints on a,b (in Definition 2.1) of the form

/h,adu = /thdu, Vre,

where T is an index set. Only functions that satisfy the additional con-
straints are comparable. With constrained majorization, maximal and min-
imal functions in the orderings can be of interest.

3.4. Orderings of Dependence

If the h, are taken to be appropriate indicator functions and a = f,
b = g are m-dimensional multivariate densities with respect to a measure
v, the constraints can be that f,g have the same set of univariate margins,
say fi,...,fm- Then the constrained majorization ordering is an ordering of
dependence among densities in the set I'( fy, ..., fin) of multivariate densities
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with univariate margins fi,..., f,,. This and generalizations are studied
in Joe (1987a) and Joe (1985), with the latter mainly concerned with the
bivariate discrete case with counts from a two-way contingency table (see
also Application 3.6) as well as bivariate distributions. With this ordering,
the density fr = [[; f; is among those which are minimal. If it is desired
to have f; as the “unique” minimal density, then ratios relative to f; can
be used with Case 6 of Section 2 (that is, r—majorization with respect to
f1). The ordering of dependence in Scarsini (1990) is r-majorization for
the bivariate case. However Scarsini also allows for the pair of univariate
margins not being identical for comparison of two densities.

3.5. Exploratory Data Analysis for Two-Way Tables

There is a benefit to having more than just f; as the minimal density
in Application 3.4, especially for two—way tables of counts or sample pro-
portions. For this special case, Joe (1985) proves that a necessary condition
for minimal tables is that each row is similarly ordered with the column
sum margin and each column is similarly ordered with the row sum margin.
Since minimal tables with respect to the constrained majorization ordering
can be interpreted as those “closest” to independence, this result provides
a quick way to check whether two categorical variables are approximately
independent. This can be done in one’s head, unlike computation of the
expected counts under the assumption of independence.

An example illustrating this is given below; the data are from students
at the University of British Columbia in a recent year who took a first
year calculus course. The two—way table below is constructed from the two
variables, with grade in calculus (A, B or < C) as the column variable and
type of high school (Vancouver, rest of Greater Vancouver Regional District,
rest of British Columbia, private) as the row variable. The last row and the
last column are the marginal totals by grade and by type of high school.

A B <C Total

1 198 143 201 542

2 186 169 284 639

3 80 102 159 341

4 42 40 83 165
Total 506 456 727 1687

By checking for similarly ordered rows and columns, one can see that the
two variables are close to being independent, with the main discrepancies
being that more A’s than expected under independence are from “Vancou-
ver” (compare first and fourth columns) and less A’s than expected under
independence are from “rest of B.C.” (compare third and fifth rows). A
measure of dependence given in Joe (1987a) is §* = (1 — e~2%)1/2, where
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6 = Y, ; pijlog[pi; /(pi+p+;)], i is the proportion simultaneously in cate-
gory i of the row variable and category j of the column variable, p;y = 3~; p;;
and py; = Y ; pij. The value of 6* is 0.13 for the above table, and this sug-
gests very little dependence as é* can take values between 0 and 1.

3.6. Fisher’s Fzact Test

The maximal and minimal tables from the constrained majorization or-
dering in Applications 3.3 and 3.4 were used in the network algorithm of
Mehta and Patel (1983) for the computation of the P—value of Fisher’s ex-
act test for two-way contingency tables. This allowed the use of maxima
and minima of certain functions instead of the use of the bounds in Mehta
and Patel. The theorems from Joe (1985) were programmed into a Fortran
routine, and the improvement in computational time reported in Joe (1988b)
and Clarkson, Fan and Joe (1990). The routine has now been adapted into
IMSL and Splus.

3.7. Ordering of Transitivity

Depending on what X is, constrained majorization can lead to interpre-
tations other than an ordering of dependence. An example is for paired
comparison matrices @ = {p;; : 1 < i,j < n,i # j}, where there are n items
and p;; is the probability that item ¢ is preferred to item j. The ordering
on a with the constraints 3°;; pij = mi, @ = 1,...,n, is interpreted as an
ordering of transitivity in Joe (1988b), in that matrices at the lower end of
the ordering are such that there is a preference transitivity among the items.

3.8. Conjugate Priors and Majorization with Moment Constraints

The ordering Case 6 was partly motivated with the aim to justify the use
of some common conjugate priors. This goal was only partly reached and
the remaining step to be proved is posed as a problem here. This application
also shows the connection between majorization and entropy, and illustrates
what constrained majorization results are like.

Consider the problem of choosing a prior distribution for a random (con-
tinuous) quantity after having elicited the mean and/or variance. We com-
pare the use of r-majorization with the maximum entropy principle and the
principle of minimum cross entropy (Jaynes 1983, Shore and Johnson 1980).
The following results from Joe (1990) are needed; they concern minimal den-
sities relative to r—~majorization with respect to ¢ when there are first and /or
second moment constraints.
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THEOREM 3.8.1  Let g(z) be a positive continuous function on the in-
terval [C,D]. Let P = P(C,D;u) be the class of densities f (with re-
spect to Lebesque measure) on the interval [C, D] satisfying fcl? zf(z)dz =
fé)a: r(z)q(z) dz = p, where r(z) = f(z)/q(z). Then f € P is minimal with
respect to q if and only if r(z) is monotone.

THEOREM 3.8.2 Let g(z) be a positive continuous function on the interval
[C,D]. Let P = P(C,D;p1,p2) be the class of densities f (with respect
to Lebesgue measure) on the interval [C, D] satisfying [5 zf(z)de = p,
JP 22f(z)de = pz. Then f € P is minimal with respect to q only if r(z) =
f(z)/q(z) is monotone, U-shaped or unimodal.

By taking a limit, Theorems 3.8.1 and 3.8.2 are valid for open (and
possibly infinite) intervals and ¢ can approach oo at one or both of the
endpoints.

One approach to eliciting a prior distribution might be to first use the
invariance principle to obtain a “non—-informative”, possibly improper, prior
¢ (Cox and Hinkley (1974, Chapter 10)) and then use knowledge (possibly
subjective) of first and /or second order moments to choose a prior close to
q satisfying the moment constraints. The minimum cross entropy principle
(and the maximum entropy principle as a special case) lead to a very small
class of priors — for example, only the exponential and normal, possibly
truncated, result as prior distributions from the maximum entropy principle.
Although several common conjugate priors are maximum entropy based on
other constraints, a stronger justification is based on first and/or second
moment constraints since these are more easily elicited than something like
the expected value of the logarithm of the quantity.

It is known (see, for example, Berger (1980)) that if the minimum cross
entropy distribution with respect to ¢ exists, then it has the form

f(@) =C(M,-..y Am)g(x) exp[—Z Ajhj(z)),z € X,

when the constraints are [y hj(z)f(z)dv = pj, j =1,...,m. When ¢ is not
a constant function and the constraints are moments, no commonly used
conjugate prior probability distribution has this form. It is shown below
that several conjugate prior distributions of an unknown scale parameter o
satisfy the necessary conditions for minimality with respect to the invariant
(improper) prior which is proportional to g(0) = 1/o. That is, the con-
strained r—majorization results lead to a larger class of distributions that
are “near” ¢, subject to the moment constraints. Nearness of a density to ¢
here means that for any closed subinterval of (0, c0) the density is (relatively)
near c¢/o, where c is the normalizing constant for the interval.
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Conjugate priors for scale parameters include (a) the inverse gamma
density, f(o) « o=* lexp{-B/c}, 0 > 0, for a gamma distibution with
known shape parameter, (b) the density, f(o) x 0=2*"1exp{-A/0?}, 0 > 0,
for a normal distribution with known mean, and (c) the hyperbolic or Pareto
density (Raiffa and Schlaifer (1961)), f(o) x ¢™*" ', 0 > M (M > 0),
for a uniform distribution on 0 to an unknown upper bound. It is easy
to check that of(o) is unimodal over (0,00) for (a) and (b) and o f(o) is
monotone over [M, 0o) for (c) when a > 0. Hence the necessary condition for
minimality in Theorem 3.8.2 is satisfied for (a) and (b), and the necessary
condition for minimality in Theorem 3.8.1 is satisfied for (c). Note that
C(A1,A2)0 texp{A10 + A\20%} from (3.1) is not a proper density on (0, 0).

For an example not involving a scale parameter, consider the probability
parameter 6 (0 < 6 < 1) of a binomial distribution. “Noninformative” priors
that have been proposed are ¢(8) = [#(1 — 0)]7°° (Jeffreys (1961)), q(0) =
[6(1 — 6)]7! (Haldane (1948)) and ¢(@) = 1. The conjugate prior for the
parameter 6 is the Beta density f(6), which is proportional to §2~1(1-6)5-1,
Hence, for all three of these ¢, f(8)/q(#) is monotone, U-shaped or unimodal,
and the necessary condition for minimality when there are two moment
constraints is satisfied. This is better than saying that the beta distribution
is a maximum entropy distribution subject to knowing the expectation of
log @ and log(1l — 6). It would be nice to prove in addition that the beta
density is minimal relative to r—majorization with respect to ¢ for any of
the above ¢ (since satisfying the necessary condition for minimality need not
imply minimality). This however is an open problem (a similar comment
holds for cases (a) and (b) in the preceding paragraph). The techniques
in Joe (1990) do not work but numerical comparisons with the maximum
entropy density on (0,1) show that the beta density with the same first two
moments does not majorize the maximum entropy density.

3.9. Updating Subjective Probability

This is another application of r—majorization.

For simplicity of presentation, we think of a random quantity which has
a finite number of possible outcomes, labelled as 1,2,...,n; however results
do generalize. Suppose our initial prior distribution is ¢ = (g1,...,¢n), With
¢; being the probability of outcome ¢. If we then get further information
that cause us to revise our probabilities for some pairwise mutually exclu-
sive events, how should we update our probability distribution? Diaconis
and Zabell (1982) study this problem using Jeffrey’s conditionization rule
and a divergence or distance approach; the latter was called mechanical up-
dating. We look at this updating problem using majorization as an ordering
of divergence instead of using several different measures of divergence. This
is, in a sense, a simpler way of obtaining and viewing the results in Section
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5 of Diaconis and Zabell.

Let E,,...,E. be pairwise mutually exclusive events (subsets of § =
{1,...,n}). Without loss of generality, we suppose that these form a par-
tition of S. Let ¢* = (¢f,...,q};) be the updated subjective probability
distribution, where our further information causes us to decide

(3'1) q*(Ej) = E q: =15, J=1,...¢,
i€E;

where }°;7; = 1. The constrained r—majorization approach is to consider
the r—majorization ordering with respect to ¢ (<7 ) for the class of ¢* that
satisfy (3.1).

The minimal ¢* is such that ¢*/q is as close to uniform as possible, and
therefore, from Joe (1990), it is piecewise uniform and satisfies ¢} /¢; = c;,
i € E;, j =1,...,e, for some constants ¢;, and from (3.1), clearly, ¢; =
i/ Liek; ¢i- Hence Jeffrey’s rule,

. 2ieAnE; & € 2icAnE; % 2icAnE; G
(3.2) ¢*(AlEj) = —— = ———— = =1 = ¢(A|E)),
j Ul EzeEj 4

for the conditional probabilities holds. Theorem 5.1 of Diaconis and Zabell
(1982) makes the conclusion (3.2) for the ¢* that minimizes the Hellinger or
cross entropy divergence from g subject to (3.1). This follows as a corollary
of the r—majorization result since both of these divergence measures are
increasing in the ordering <7 (Section 3.1 of Joe, 1990).

Diaconis and Zabell (1982) also study the case of (compatible) updated
probabilities for two partitions Fi,...,E. and D;,...,D4. Let ¢* be the
updated probability distribution. Suppose ¢*(E;) = n; and ¢*(Di) = b.
Let Ajx = E;NDy. Notethat Ajx,j =1,...,e,k=1,...,d, form a partition
of S. Let q(Ajk) = (jk = Liea,, % and let ¢*(4jk) = (= Tica,, ¢+ Then
the revised probabilites are specified up to

Zc;k:nj’ j=1a'-'aea ZC;k-_—ok, kzl,...,d.
k J

Consider the set @* of ¢* which satisfy these constraints and put the r—
majorization ordering with respect to ¢ on this set. Now there is not a
unique minimal ¢* in @* for this ordering. This explains why Diaconis and
Zabell obtained different ¢* for different divergence measures (cross entropy
and variation distance) However, in an argument similar to the above, it can
be concluded that minimal distributions in Q* are piecewise uniform and
must satisfy ¢} /q; = C}‘k/g’jk = ¢ji for i € Aj for some constants c;i. If the
(jx’s are all the same, then similar to Theorem 1 of Joe (1985), a minimal
¢* must be such that the matrix (c;;) has rows which are similarly ordered
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to (01,...,04) and columns which are similarly ordered to (1,...,7). In
general there is no simple characterization of the minimal ¢*. But a sufficient
condition for ¢* in @Q* to be minimal is that it minimizes

Yoa(a/a) = DD CGed(ChlGin)
; 7k

for a strictly convex real-valued function . If ¥(u) = ulogu, the minimum
cross entropy distribution results and its form is (;‘k = (jra;Bi for some
positive constants a;, Br. Hence (j, = 7,0k is a minimum cross entropy
distribution only if (jx = (j+(4x Where (i3 = 3" Gk and {4k = 355 G-
The conclusion here is not always the suggestion of updated probabilities,

(i = Mjk, in Section 4.2 of Diaconis and Zabell (1982).

Acknowledgements. I am grateful to the referees for comments leading
to an improved presentation.
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