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The distribution of waiting time until a rare event is often approximated
by the exponential distribution. In the context of first hitting times for
stationary reversible chains, the error has a simple explicit bound involving
only the mean waiting time ET and the relaxation time r of the chain. We
recall general upper and lower bounds on ET and then discuss improve-
ments available in the case ET >> τ where the exponential approximation
holds. In a sequel, Stein's method will be used to get explicit bounds on
the Poisson approximation for the number of non-adjacent visits to a rare
subset.

1. Introduction

The Poisson approximation for numbers of rare events which actually
occur, and the exponential approximation for the waiting time until first oc-
currence of a rare event, are useful throughout many areas on probability -
one view of this big picture is presented in Aldous (1989). Here we study ex-
plicit bounds in these approximations, in the special setting of hitting times
of stationary reversible Markov chains. This paper deals with the exponen-
tial approximation and bounds on the mean waiting time; a sequel (Aldous
and Brown (1991)) studies Poisson approximations using an implementation
of the Chen-Stein method.

The following set-up and notation will be used throughout. (Xt; t > 0) is
an irreducible finite-state reversible Markov chain in continuous time. The
state space is / and the transition rate matrix is Q = (q(i,j)',i,j G /)
where q(iyi) = —ΣjφiQihJ)' Let π be the stationary distribution. The
symmetrizable matrix -Q has real eigenvalues 0 = λo < λi < λ2 < —
Call r = 1/λχ the relaxation time of the chain. Let A be a fixed (proper,
non-empty) subset of /, and let TA be the first hitting time on A. So 0 <
EΈTA < oo.
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THEOREM 1

\Pπ(TA/EπTA > t) - e-*| < 1 ^ J t < r/EπTA for all t > 0.

In the special case where A is a singleton this was proved by Brown (1990).
That proof exploits the completely monotone property of the distribution of
TA. In section 3 we show how the general case can be reduced to the special
case. In section 7 we give bounds on the density function f(t) of TA. Lemma
13 gives explicit bounds in the natural approximation

f(t) « -4— o n r « t « EπTA.

Use of Theorem 1 and Lemma 13 requires an upper bound on r, and
bounds on EπTA. We have nothing new to say about the much-studied issue
of upper bounding r, and refer the reader to Diaconis and Stroock (1991) for
interesting recent work. The problem of bounding EπTA in terms of readily
computable quantities has apparently not been studied much, aside from the
simple and well-known general bounds stated in Lemma 2 below. The left
two inequalities, and (1), follow easily from complete monotonicity (Keilson
(1979) Theorem 6.9C). The rightmost inequality is an easy consequence of
extremal characterizations: see the proof of Lemma 10 below.

LEMMA 2

where

and where a is the quasistationary distribution defined at (12).

The extreme bounds in Lemma 2 are often crude. In our setting where
T < EπTA the intermediate inequality, and its distributional version

(1) P*(TA > ί) < (1 - π(A)) exp(-t/EaTA)

is often fairly sharp, but in practice is hard to use. The point is that, because
of the extremal characterization (13) of EaTA as a sup, it is often easy to
get a good lower bound on EaTA, but much harder to get an upper bound.
Our main new result is the following usable inequality.

THEOREM 3

^ ^ ) , t > 0.



Rare Events in Markov Chains 3

Integrating over t gives

COROLLARY 4 EπTA > EaTA - r.

The point is that these results may be applied without any prior estimate of
EπTAy merely a lower bound on EaTA Note also that we may use Corollary
4 to rewrite Theorem 1 as

COROLLARY 5

IP^TA/EVTA > t) - e-*| < T T V ' ' ^ °

Note also that Theorem 3 improves on the simple complete monotonicity
result underlying the left inequality in Lemma 2:

P*(TΛ > < ) > ( ! -

In section 4 we record results bounding E^0TA in terms of E^TA for
non-stationary initial distributions π 0. Let us emphasize that our results
are "absolute" inequalities, i.e. do not involve any unspecified constants
depending on the Markov chain under consideration. Without going into
details, it follows that our results extend unchanged to continuous-space
stationary reversible processes (under weak regularity conditions - say strong
Markov and cadlag paths). For such processes we may have r = oo, but
the results are only interesting when r < oo. One explanation is that the
proofs extend, unchanged except for terminology. Another explanation is
that, given a continuous-space process, one may express it as a weak limit of
finite-state processes in such a way that relaxation times, first hitting times
and the other parameters of interest converge.

Finally, we repeat that the existence of some exponential approximation
has nothing to do with reversibility or even Markovianness: it is merely that
in the reversible Markov context one can hope to get sharper general bounds.
The non-reversible case, and applications to queueing networks, has recently
been discussed by Iscoe and McDonald (1991), who give general explicit ex-
ponential approximations in terms of the spectral gap. Charles Stein, lec-
turing at Stanford in June 1991, outlined how to use the Chen-Stein method
in the non-reversible case, giving bounds in terms of non-explicit "coupling
times" which need ad hoc arguments to estimate. In older work, Flannery
(1986) gave complicated bounds in terms of the maximal correlation func-
tion. Aldous (1982) gave bounds in terms of a uniform mixing coefficient.
Exponential limits without explicit bounds can be proved in great general-
ity. For instance, Korolyuk and Silvestrov (1984) and Cogburn (1985) prove
exponential limits for hitting times to receding subsets of a fixed Harris-
recurrent chain.
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2. Background

It has recently become fashionable to treat reversible chains in terms of
the associated Dirichlet form S. That is, for functions g : I -+ R define

) = 5ΣΣ*(0β(
1 i jφi

= lm

= l imr

(X denotes the stationary chain). Write also

Various parameters of the chain have extremal characterizations, for example
(Diaconis and Stroock (1991))

(2) r = svLv{[g,g)/£(g,g) :

A more probabilistic interpretation is via the following maximal correlation
property. For the stationary chain,

p(t) = max{cor(Zi, Z2) : Zx G T(XS, s < 0), Z2 G Γ{X» s > t)}

(3) = expH/r).

As a standard consequence, if Eg(Xo) = 0 and \\g\\ = y/Eg2(Xo) < oo
then
(4) \\Ptg\\ < e-*/η|sf||, where (Έ>tg)(i) = E(g(Xt)\X0 = i).

Finally, we often use the fact that the tail distribution function PΈ{TA > t)
and the corresponding density function / are completely monotone (CM)
functions, i.e. are of the form Σ% ci exP(~7t'O f°r nonnegative Q, 7,-. Elemen-
tary qualitative properties of CM functions will be used without comment.

3. Proof of Theorem 1

Write

PA 7Γ7~ΓT ~rr\ \0
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Brown (1990) section 7 shows that for singletons A = {a}

(5) \PΛTjEπTa > t) - e-*| < - ^ - .

(6) pa < τ/EπTa.

To prove Theorem 1 it suffices to show these remain true for general subsets
A:
(7) \Pw(TA/EπTΛ > <) - e-*| < - ^ - .

(8) p Λ <

Write Ac = J\A. Consider the chain X in which the set A has been collapsed
to a singleton α. Precisely, the state space is / = Ac U {α} and the transition
rates are

(*ti)> * € I\A

It is straightforward to verify (e.g. Keilson (1979, p. 41)) that X is reversible
and has stationary distribution

7Γ» = 7Γt , ί G A C

πα = τr(A)

By construction the Pπ-distribution of TA is the same as the /^-distribution
of Tα. So (7) is immediate from (5). To get (8) the key fact, proved below,
is
(9) f < r.

Then

PA = PA < -Πf ^ Yψ

which is (8).
Inequality (9) is one of a group of fairly well-known consequences of the

extremal characterization (2) of the relaxation time. Given a function g on
/, consider its natural extension to a function g on /:

g(i) =g(i), ieAc

= g(a), i e A.

It is straightforward to verify
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[g,g] = [g,g]

Then (9) follows from (2).

4. Means from Nonstationary Starts

If EKTA > T then the approximation

EπoTA « EVTA

holds for many non-stationary initial distributions τr0. In this section we

study bounds for EπoTA obtainable by standard methods.

LEMMA 6 Let h(i) = E{TA. Then var(/ι(X0)) < τEvTΛ.

It is easier to interpret this if we consider the standardized mean hitting
time

h(i) = EITA/E^TA

for which Lemma 6 implies

var (h(Xo)) < r/E^TA.

So Chebyshev's inequality says that for "most" i the mean hitting time
started at i is about the same as starting with the stationary distribution.

PROOF OF LEMMA 6 Applying (2) to g(i) = h(i) - EΈTA gives

var (Λ(X0)) < r£(Λ,Λ).

But the third formulation of €, along with a routine dominated convergence
argument, gives

Proposition 7 gives an upper bound on ET from an arbitrary initial
distribution πo Define

x (*o) -

If Xo has distribution πo then Xt has distribution π̂  which satisfies (after a
brief calculation)

*t-7Γ = p / π o - π \

7Γ * \ π J

and then by (4)

(10) χ(*t) < X(τro)e- ί/τ.
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PROPOSITION 7 For any initial distribution

EπoTA < EτTA + T + Jlog+ ( χ V o ) )
Z \ T J

Taking πo = δ{ gives

COROLLARY 8

Another Corollary is given below.

P R O O F OF PROPOSITION 7 For any function g

Eπog{Xt) - Eπg(Xt) =

< yχ2(πt)v&τπg(Xo) by Cauchy-Schwarz

^ 0 ) by (10).

Now put g(ι) = EΪTAI observe that

Eπg(Xt) = EπTA, EπoTA < t + Eπog(Xt)

and apply Lemma 6 to get

EπoTA - EπTA < t + χ(π

Minimizing the right side by putting

gives the result.

The next Corollary shows that in our setting i's with large E{TA are

exponentially rare with respect to π. It is easy to see that no similar result

can hold for small E{TA

COROLLARY 9 For allb>0

P R O O F Fix a subset B and set πβ(i) = 7r(z|J5). Then

l-π(B) ^ 1
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and so Proposition 7 gives

(11) ^ Γ Λ < £ , T j + r + I l o g

Now fix 6 > 0 and consider

B = {i: EiTA > E*TA + τ

which we may assume to be non-empty. Then

EπTA + τ + b < EπBTA.

Combining with (11) gives the inequality below:

* * (

the equality because the left side is positive. Rearrange.

REMARK One can use Proposition 7 to give an upper bound on EaTA, but
the bound is weaker than the bound EaTA < E*TA + r given by Corollary
4. So the (novel ?) argument in section 6 seems more powerful than the
standard arguments above.

5 Properties of the Quasistationary Distribution

Let QA be the transition rate matrix Q restricted to Ac. Let λ^ be the

smallest eigenvalue of —QA and let a be the corresponding eigenvector

(12) aQA = - λ ^ α

normalized to be a probability distribution on Ac. Then a is the quasista-
tionary distribution, and

Pa(TA >t) = exp(-λ^)

EQTA = l/λA.

And there is a variational interpretation:

(13) EaTA = sup{[g,g]/E(g,g) :g>0,g = 0onA}

where the sup is attained by

(14) g(ί) = α(i)Λφ ).
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It is often easy to find lower bounds on EaTA by evaluating (13) for conve-
nient g.

Lemma 10 gives easy relations between ETTA and E^TA- Part (b) implies
that a « π when T/E^TA is small, using the general identity

7 Γ t

LEMMA 10 ^ ^ ^ j < E^ΓΛ < r/π(Λ).
(b) Now suppose τ < E^TA- Then

PROOF Assertion (a) repeats part of Lemma 2. We shall give the usual
proof of the right inequality, because ingredients are needed for subsequent
parts. As at (14) set g(i) = a(i)/π(i), so

(15) EaTA = \g9g]/S(g,g).

Applying (2)

b ] []

Using the expression for S(g,g) given in (15), we get

^ ΓΛΪ^-FV

Since α is a probability distribution on Ac we have

1 = ElAc(Xo)g(Xo)

and so by Cauchy-Schwarz

I 2 < (ElAc(X0)) X [g,g] = (1 - π(A))[g,g].

Using (16),

which gives the right inequality in (a).

Now suppose T/EWTA < 1. Since EaTA > EπTA we can invert (16) to
get

(17) [g,g] < (1-T/EVTA)-1
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which is (b).

6 Proof of Theorem 3

We now come to Theorem 3, the main result which we believe to be new.
There is no loss of generality in supposing that A is a singleton {α}, since
(as in the proof of Theorem 1) we could replace the original chain by the
"collapsed" chain X.

The proof involves study of a certain irreducible reversible Markov chain
on states {0,1,2,...,r} where the only allowable transitions are 0 «-> i. In
graph theory terminology, the graph of such allowable transitions is a "star",
so we shall call the chain X* and write π*,τ*,<z*(i,0), etc, for quantities
associated with X*. We shall construct X* such that CΈ*TQ = CπTa, (i.e.
the distribution of Tζ under π* coincides with the distribution of Ta under
7r) and Ea*TQ = EaTa. From the explicit form of X* it is easy to see that the
analog of Theorem 3 holds for X*, and to complete the proof we demonstrate
in Lemma 12 that r* < r.

We shall make use of standard facts from the spectral representation for
finite state irreducible reversible Markov chains. Keilson (1979, Chapter 3
and section 6.9) covers the relevant material. We first recall that

m

(18) Pπ(Ta>t)

where pi > 0 and 0 < 71 < 72 < . . . < 7™ are the distinct eigenvalues of
—Qα, the restriction of —Q to {a}c. We first show that the term in (18)
corresponding to failure rate 71 has strictly positive coefficient pi, and this
identifies 71 as l/EaTa.

LEMMA 11 p\ > 0.

P R O O F For x ψ α,y φ a write qt(x,y) = Px{Xt = y^Ta > t). By the

spectral representation for Qa

where cι(x,x) > 0 and where Σxφaci(x*x) = multiplicity of 71 > 1. Thus
cι(xo,xo) > 0 for some xo Φ a. Again by the spectral representation, for
yφx

m
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for certain constants Cj(x,y). It follows that

0 < lim (exp(7iί)g t(x,y)) = cx{x,y).
t—> o o

Since P π (Γ α > ί) = Σx,yφa Φ)?tO*Mθ> i* follows t h a t

Pi = X) τr(x)ci(a:,2/) > 7r(zo)ci(zo,zo) > 0

establishing the Lemma.

Now eliminate the zero-coefficient terms from (18) and relabel, so (18)
becomes

(19) P«(Ta > 0 = Σ P i
1=1

where p t > 0, 1 < i < r, and 0 < l/EaTa = 71 < 72 < . . . < Ίr and
Σ i = i Pi = -Pπ(2o > 0) = 1 — π(α). Each 7,- is an eigenvalue of -Qa-

Let X* be the Markov chain on states {0,1,... ,r} with transition rate
matrix Q* defined by

ί*(i,0) = 7, , i^O

q*(i,j) = 0 elsewhere.

Here the quantities η%yp% are those appearing in (19). The chain X* is
irreducible and reversible, with stationary distribution π* = (poiPi, - . ,p r)j
where po = τr(α).

Clearly the eigenvalues of QQ are the (7^), and so in particular

(20) Ea*TZ = l / 7 l = EaTa

using Lemma 11. We also have the distributional identity

(21) Cv TS = £*Ta

because

t = l
r

= P π (Γ α > T) by (19).
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Next, note that the star chain has Dirichlet form

(22)
t'=l

The particular function g(i) = l(i=i) — Pi satisfies Σί=oπ*(*)flf(O = 0, and
so by (2) and (22)

r * > [9,9] _ Σri=oPi92(i) _ Pi(l-Pi) _ I-Pi

~ €(g,g) ΣUiPΠi(9(i)-9(0))2 PΠi 71 '

In other words

(23) Pi > 1 - Ίiτ*.

Granted Lemma 12 below, we have

P*(Ta>t) >

> ( l-7ir*)exp(- 7 i ΐ )by(23)

> (1 - 7ir)exp(—7iί) by Lemma 12

= (l--I-) e χp(--A Γ )by(20)

establishing Theorem 3.

LEMMA 12 The eigenvalues of Q* form a subset of those of Q. Consequently

r* <τ.

PROOF A classical Markov chain identity (Keilson (1979, p. 77)) relates
Laplace transforms of hitting times to Laplace transforms of transition den-
sities. Writing

ΛOO

p(s) = / Pa(Xt = a)e-stdt
Jo

the identity asserts that for arbitrary initial distribution μ

p(s) f°° e-stdPμ(Ta < t ) = Γ Pμ(Xt = a)e-stdt.
Jo Jo

Taking μ = π the right side becomes π(a)/s and the identity shows that
the distribution CΈTa determines p{s). So the distributional identity (21)
implies

roo
= p*(s)= / P0(X; = 0)e-stds.

Jo
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Now in terms of the matrix Q

P(s) = J\-at(e^)aa dt

det(gα - si)

det(Q - si) '

Equating this with the corresponding expression for the star chain gives

det(Q - si) άet(Qa - si)
V ; det(Q*-sJ) det(Q*-siy

The eigenvalues (71,...,η r) of QQ axe also, by (21), eigenvalues of Qa. So the
characteristic polynomial of QQ is a divisor of the characteristic polynomial
of Qa. But then by (24) we see that the characteristic polynomial of Q* is
a divisor of the characteristic polynomial of Q. Thus the eigenvalues of Q*
are also eigenvalues of Q, establishing the Lemma.

QUESTION. Does the relation between X and X* fall into the general notion

of "duality" described in Liggett (1985) page 84?

7. Bounds on the Density Function

For use in Aldous and Brown (1991) we need delicate estimates of the
density function f(t)yt > 0 of T = TA for the stationary chain, which imply
that f(t) « 1/ETTA on the range r < / < E^TA- By scaling we can reduce
to the case ET = 1.

LEMMA 13 If ET = 1 then

(a) f(t) < 1 + r/(2ί), t > 0.

(b) f{t) > 1 - 2r - ί, * > 0.

(c) -f'(t) <2fort> r(5 + 21og(l/r)), provided r < 1.

PROOF / is CM and so is convex (Keilson (1979, p. 66)). Then

< / f(s)ds by convexity
Jo

= P*(0<T<2t)

< P^O < T < 2t)

< 1 - e'2t + T by Theorem 1

< 2t + τ



14 David J. Aldous and Mark Brown

giving (a).

To prove (b), note that Corollary 4 and Lemma 2 imply

(25) 1 < EaTA < 1 + r.

By CM, the "hazard rate" is decreasing (Keilson (1979, p. 75)):

Pπ(TA > t) + EaTA

So

f(f\ > p (Ύ . v. f\

- Ί Γ τ ^ ( e χ P ( ~ Ί ? " τ " ) " r ) b ^ τ h e o r e m 3

> 1 - ί - 2r

giving (b). In the inequalities above we implicitly assumed 1 — t — r > 0,
since otherwise the result is trivial.

The proof of (c) has several ingredients. Excursions of the stationary
chain inside A alternate with excursions outside A. Let r(ΐ)dl be the rate
of excursions outside A of length €( / , / + dl). Then an easy renewal theory
argument (Aldous and Brown (1991, Lemma 3)) shows

(26) /(/) = - / ' ( / ) .

Now consider the joint density θ(tι,t2) of (7^,7^), where ΓJ = min{t >
0 : X-t G A} and the stationary chain is extended to — oo < t < oo. By
conditioning on XQ we see

But in the notation of (26), θ(tut2) = r(tι + t2). So putting t\ = t2 = t,

(27) Ef?(Xo) = θ(t, t) = r(2ί) = -f'(2t)

the final equality by (26).
For the second ingredient, let ft(i) be the density of TA under P;. We

shall show
(28) Eπβ+t(Xo) < f(t) + e-2s'τEπfUXo).
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For s, t > 0 consider

g.,t(i)dt = Pi{Xu G Ac for s < u < s + t,Xs+t+dt G A).

Then 5S)t = P s / t in the notation of (4), and the assertion of (4) gives (for
the stationary chain)

var g.,t(Xo) < e~2slτv^τ ft(X0).

Plainly fs+t < gs>t and Egs<t(X0) = Eft(X0) = f(t), so

= f\t) + var gs,t{Xo)

and (28) follows. Next we shall show

(29) - /'(2ί) < r 2/2.

For the function -f(u) is decreasing, so

f(u) > (2t - ti)(-/'(2ί)) on 0 < u < 2ί

and hence

1> Γ f(u)du>2t2(-f'(2t))
Jo

giving (29).

Combining (27-29) shows that , for any s,t > 0,

Putting t = 2τ and appealing to part (a)

-f(2s + AT) < (5/4)2 + e'2s

Then putting s - r(log(l/r) + 1/2) establishes part (c).
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