
CHAPTER4

M, R AND SOME SCALE ESTIMATORS

4.1. INTRODUCTION

In the last three decades statistics has seen the emergence and consolidation
of many competitors of the Least Square estimator of β of (1.1.1). The
most prominent are the so-called M- and R- estimators. The class of
M-estimators was introduced by Huber (1973) and its computational aspects
and some robustness properties are available in Huber (1981). The class of
R-estimators is based on the ideas of Hodges and Lehmann (1963) and has

been developed by Adichie (1967), Jureckova (1971) and Jaeckel (1972).
One of the attractive features of these estimators is that they are

robust against certain outliers in errors. All of these estimators are
translation invariant, whereas only R-estimators are scale invariant.

Our purpose here is to illustrate the usefulness of the results of
Chapter 2 in deriving the asymptotic distributions of these estimators under
a fairly general class of heteroscedastic errors. Section 4.2a gives the
asymptotic distributions of M-estimators while those of R-estimators are
given in Section 4.4. Among other things, the results obtained enable one to
study their qualitative robustness against an array of non-identical error
d.f.'s converging to a fixed error d.f. The sufficient conditions given here are
fairly general for the underlying score functions and the design variables.

Efron (1979) introduced a general resampling procedure, called the
bootstrap, for estimating the distribution of a pivotal statistic. Singh (1981)
showed that the bootstrap estimate Bn is second order accurate, i.e.,
provides more accurate approximation to the sampling distribution Gn of
the standardized sample mean than the usual normal approximation in the
sense that sup{ | Gn(x) — Bn(x) | xeR} tends to zero at a faster rate than
that of the square-root of n. This land of result holds more generally as
noted by Babu and Singh (1983, 1984).

Section 4.2b discusses similar results pertaining to a class of
M-estimators of β when the errors in (1.1.1) are i.i.d.. It is noted that
Shorack's (1982) modified bootstrap estimator and the one obtained by
resampling the residuals according to a w.e.p. are second order accurate.

In an attempt to make M-estimators scale invariant one often needs a
preliminary robust scale estimator. Two such estimators are the MAD
(median of absolute deviations of residuals) and the MASD (median of
absolute symmetrized deviations of residuals). The asymptotic distributions
of these estimators under heteroscedastic errors appear in Section 4.3.

In carrying out the analysis of variance of an experimental design or a
linear model based on ranks one needs an estimator of the asymptotic
variance of certain rank statistics, see, e.g., Hettmansperger (1984). These
variances involve the functional • Q(f) = \ί dy>(F) where φ is a known
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72 M, R AND SOME SCALE ESTIMATORS 4.2a

function, F a common error d.f. having a density f. Some estimators of
Q(f) under (1.1.1) are presented in Section 4.5. Again, the results of
Chapter 2 are found useful in proving their consistency.

4.2. M-ESTIMATORS

4.2a. First Order Approximations: Asymptotic Normality

This subsection contains the asymptotic distributions of M-estimators of β
when the errors in (1.1.1) are heteroscedastic. The following subsection 4.2b
gives some results on the bootstrap approximations to these distributions.

Let the model (1.1.1) hold. Let ^ be a nondecreasing function from

R to R. The corresponding M-estimator Δ of β is defined to be a zero of
the M-score jψ(y) V(dy, t), where V is defined at (1.1.2). Our objective

is to investigate the asymptotic behavior of A" (A — β) when the errors in
(1.1.1) are heteroscedastic. Our method is still the usual one, v.i.z., to

obtain the expansion of the M-score uniformly in t e {t; || A-1(t—β)\\ < B}, 0

< B < oo, to observe that there is a zero of the M-score, A, in this set and

then to apply this expansion to obtain the approximation for A (A — β) in
terms of the given M-score at the true β. To make all this precise, we need
to standardize the M-score. For that reason we need some more notation.
Let

(1) A*(y) := diag(fnl(y), ...., fnn(y)), y g R,

C := AX'jY(y) d^y) XA,

An approximation to A is given by the zero Δ of T(^, t), v.i.z.,

(2) A-\Ά-β) = Ύ(tβ).

A basic result needed to make this precise is the a.u.l. of T(^, t) in

A"1(t — β). Often such a result is obtained,under some smooth conditions on
Ψ and under i.i.d. errors. Theorem 4.2a.l below gives such a result for a
general nondecreasing right continuous bounded $ and for fairly general
independent heteroscedastic errors.
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Theorem 4.2a. 1. Let {(xni, Yni), 1 < i < n}, β, {F n i , 1 < i < n} be
as in the model (1.1.1) satisfying all conditions of Theorem 2.3.3. In addition,
assume the following:

(3) i> e Φ := {f. R to R, φ G DI(R), bounded with \ ψ\ t v < k < α>}.

(4) Umsupn| |C" 1 | |α )<α).

ΓΛen, V 0 < B < oo,

(5) s u p ^ ||T(^, β + An) - T(̂ », 0 + Au)|| =

ί/i6 supremum is taken over allψeΦ and ||u|| < B.

Proof: Rewrite, after integration by parts,

, t) - Tfo, t) = / C^A [V(y, t) - V(y, ̂  -

Now (5) readily follows from this and (2.3.37).

In order to use this theorem, we must be able to argue that

||A"1(A - $ | | = O p(l). To that effect, define

μi := E φi), τ\ = Var # e i ) , 1 < i < n,

K := E T(tf, β) = -C - 1 A Σi xi μι

and observe that

^ Δ -β) -bn| | 2 = C1 Σi XKX'X)"1^ r\ Cι = 0(1),

by (3), (4) and the fact that Σi x ^ x ' x ) " ^ Ξ p < o . Hence by the Markov
inequality, V e > 0 3 O<Ke<oo 3

P(| |A - 1(A - β) - bn | | < K«) > 1 - c, for all n > 1.

Thus, assuming that

(6) Σi xi μι = 0,

and arguing via Brouwer's fixed point theorem as in Huber (1981,p 169), one
concludes, in view (5), that V c > 0 3 Ne and Ke such that
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(7) P(||A \Δ-β)\\<Ke)>l-e, V n > Ne.

Now, a routine application of (5) enables one to conclude that

0 = T{tp, Δ) = A - 1(A - β) - Ύ{ φ, β) + op(l),

i.e.,

(8) A - 1(A - β) = T(^, β) + op(l).

Note that, under (6), with To(^, β) = CT(φ, β),

E To(^, β) T'o( V, β) = A Σi xίxi A A = Ax'f XA

where f = diag (ri, ...., τn). Moreover, for any A e Kp,

λT0(ψ, /9) Σt jUjdy^ei) Σi λ Ά x

where {dy} are as in (2.3.32). In view of (2.3.33) and (2.3.34), (NX) and

(6) imply that λ To(^, β) is asymptotically normally distributed with mean

0 and the asymptotic variance λ AX T XA λ. Thus by the Cramer-Wold
device [Theorem 7.7, p 49, Billingsley (1968)], (4) and (8),

(9) Σ~1/2A~\Δ-β) —I N(0,IpXp), Σ:= C^AXfXAC" 1 .

We summarize the above discussion as a

Proposition 4.2a.l. Suppose that the d.ps {Fni} of the errors and the
design matrix X of (1.1.1) satisfy (4), (6) and the assumptions of Theorem
2.3.3 including that H is stήctly increasing for each n > 1. Then (9) holds, u

Now, consider the case of the iid. errors in (1.1.1) with Fni = F.
Then,

(10) r? = f $ dF - (f <φdF)2 = r2, (say), 1 < i < n,

C = {ft άi>) Ipxp, Σ = (/f d^)^2 r2 I p φ .

Consequently (4) is equivalent to requiring / f ά'φ > 0. Next, observe
that (6) becomes

(6*) ΣiX
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Obviously, this is satisfied if either Σi xi = 0, i.e., if X is a centered design
matrix or if jip dF = 0, the often assumed condition. The former excludes
the possibility of the presence of the location parameter in (1.1.1). Thus to
summarize, we have

Proposition 4.2a.2. Suppose that in (1.1.1), Fni Ξ F. In addition,
assume that X and F satisfy (NX), (Fl), (F2), (6*) and that Jί άψ > 0.
Then,

A~*(A - β) -> Np(0, τ 2 /(/f d<φ)2 Ipxp). D

Condition (6*) suggests another way of defining M-estimators of β
in (1.1.1) in the case of the lid. errors. Let

(11) x n j : = n " 1 ^ Xnij, 1 < j < p; x n : =

X : = [ Xn, — , Xnjnxpj Xc " = X X

Assume

(NX1) (XcXc)""1 exists for all n > p,

max Xni (XcXc)"^ni = o(l).

Let

(12) Ύ*(<ψ, t) := Ai Σ(xni - ί n ) ^(Yi - x n it), t e Rp,

Define an M-estimator Δ as a solution t of

(13) T*(V, t) = 0.

Apply Corollary 2.3.1 p times, j t h time with dni = i t h element of
the j t h column of XcAi, 1 < i < n, 1 < j < p, to conclude an analogue of (5)
above, v.i.z.,

(5*) sup

where

T*(̂ , t) := AT t̂ - β) - (fi diPY1 Ύ(φ, β).
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The proof of (5*) is exactly similar to that of (5) with appropriate
modifications of replacing X by Xc and A by Ai and using F n i = F in
the discussion there.

Now, clearly, F n i = F implies that E T*(^, 0) = 0,

E\\Ί(φ, β)f = Σi (x i-x jΆΊA, (x i-x) r 2 = 0(1).

Hence, ||T*(^, β)\\ = Op(l). If Δ* is zero of T*(β .), then

Argue, as for (7), (8) and (9) to conclude the following

Proposition 4.2a.3. Suppose that in (1.1.1), Fni = F. In addition,
assume that X and F satisfy (NX1), (Fl) and (F2). Then,

A l V - f l -j Np(0,r2/(Jfd^)2Ipxp),

where Δ is as in (13). α

Remark 4.2a.2. Note that the Proposition 4.2a.3 does not require the

condition jψ dF = 0. An advantage of this is that Δ can be used as a
preliminary estimator when constructing adaptive estimators of β. An
adaptive estimator is one that achieves the Hajek — Le Cam (Hajek 1972, Le
Cam 1972) lower bound over a large class of error distributions. Often, a
minimal condition required to construct an adaptive estimator of β is that
F have finite Fisher information, i.e., that F satisfy (3.2.a) of Theorem
3.2.3. See, e.g., Bickel (1982), Fabian and Hannan (1982) and Koul and
Susarla (1983). Recall, from Remark 3.2.2, that this implies (Fl).

On the other hand, the condition (NX1) does not allow for any
location term in the linear regression model. α

So far we have been dealing with the linear regression model with
known scale. Now consider the model (2.3.38) where 7 is an unknown scale

parameter. Let s be an n ' — consistent estimator of 7, i.e.,

(14) I

Define an M-estimator Δi of β as a solution t of

(15) Σx i ^((Yi-χ / it)8" 1 ) = 0 or / #y) V(βdy, t) = 0.

To keep exposition simple, now we shall not exhibit Ψ in some of the

functions defined below. Define, for an a > 0, t € Rp,
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(16) S(α,t) :=-A/^y)V(αdy,t),

S(α, t) := A-^t -β)^ + C^C, n ^ α - 7)7"'- C'1 S(7, β),

where

^ ' / ), f'(y) := (f^y), .... , fn(y)),

and where C is as in (1) above. Note that by (NX), (Fl), (F3), and (3),

(17)

The following theorem is a direct consequence of Theorem 2.3.4. In it

i := {(a, t): a > 0, teKp, \\A~\t-β)\\ < B7, |n 1 / 2 (α- 7 ) | < b7}, 0<b, B<α,.

Theorem 4.2a.2. Let {(xni, Yni), 1 < i < n}, β, 7, {Fni, 1 < i < n}
be as in (2.3.38) satisfying all ύie conditions of Theorem 2.3.4. Moreover,
assume (3) and (4) hold. Then, for every 0 < b, B < 00 fixed,

(18) s u p | | S ( α , t ) - S ( α , t ) | | = o p ( l ) .

where the supremum is taken over allψζ Φ, and (α, t')'6iVi. D

Now argue as in the proof of the Proposition 4.2a. 1 to conclude

Proposition 4.2a.3. Suppose that the design matrix X and d.f.'s
{Fni} of {eni} in (2.3.38) satisfy (5), (6) and the assumptions of Theorem
2.3.4 including that H is strictly increasing for each n > 1. In addition
assume that there exists an estimate s of η satisfying (14). Then

(19) A"1(A1-^)7"1 = C~H{Ί, β) -C-'C^S - 7) 7~'+ oP(l),

where Δi now is a solution of (15). D

Remark 4.2a.3. In (6), Fi is now the d.f. of a, and not of 7Ci,
1 < i < n. D

Remark 4.2a.4. Effect of symmetry on Δi. As is clear from (19), in

general the asymptotic distribution of Δ t depends on s. However, suppose
that

(20) dtf{y) = - dii-y), fi(y) = fi(-y), 1 < i < n, - * < y < + ».

Then Jy fi(y) dip{y) = 0, 1 < i < n, and, from (16), C\ = 0. Consequently,
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in this case,

Hence, with Σ as in (9), we obtain

(21) ϊ - ^ A - ^ Δ i - 0) 7"1 - 3 Np(0, I p φ ) .

Note that this asymptotic distribution differs from that of (9) only by

the presence of 7 . In other words, in the case of symmetric errors {ei}
and the skew symmetric score functions {ψ}y the asymptotic distribution of

M-estimator of β of (2.3.38) with a preliminary n^-consistent estimator

of the scale parameter is the same as that of 7 χM-estimator of β of
(1.1.1). D

4.2b. Bootstrap Approximations

Before discussing the specific bootstrap approximations we shall describe the
concept of Efron's bootstrap a bit more generally in the one sample setup.

Let ξu 6 ) •••) £n be n i.i.d. G r.v.'s, Gn be their empirical d.f.
and T n = Tn(fn, G) be a function of f n ' ' .= (£1, £2, .., £n) and G such
that Tn(fn, G) is a r.v. for every G. Let (1, £2, ..., ζn denote i.i.d. Gn

r.v.'sand £n':=(Ci, £2, —, Cn). The bootstrap d.f. B n of Tn(fn, G) is the
d.f. of Tn(Cn, Gnj under Gn. Efron (1979) showed, via numerical studies,
that in several examples B n provides better approximation to the d.f. Γn

of Tn(£n, G) under G than the normal approximation. Singh (1981)
substantiated this observation by proving that in the case of the standardized
sample mean the bootstrap estimate B n is second order accurate, i.e.,

(1) sup{ I Γn(x) - Bn(x) I xeK} = o(n"1 / 2), a.s..

Recall that the Edgeworth expansion or the Berry-Esseen bound gives that

where Φ is the d.f. of a N(0, 1) r.v. See, e.g., Feller (1966. Ch. XVI). Babu
and Singh (1983, 1984), among others, pointed out that this phenomenon is
shared by a large class of statistics. For further reading on bootstrapping we
refer the reader to Efron (1982).

We now turn to the problem of bootstrapping M-estimators in a
linear regression model. For the sake of clarity we shall restrict our attention
to a simple linear regression model only. Our main purpose is to show how a
certain weighted empirical sampling distribution naturally helps to overcome
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some inherent difficulties in defining bootstrap M-estimators. What follows
is based on the work of Lahiri (1989). No proofs will be given as they involve
intricate technicalities of tne Edgeworth expansion for independent
non-identically distributed r.v.'s.

Accordingly, assume that {e\} i > 1} are i.i.d F r.v.'s, {xni, i>l} are
the known design points, {Yni, i>l/ are observable r.v.'s such that for a /3eR,

(2) Yni = xni/? + e i f i > 1.

The score function φ is assumed to satisfy

(3)

Let Δ n be an M-estimator obtained as a solution t of

(4) Σ Xni^(Yni-Xnit) = O
1=1

and F n be an estimator of F based on the residuals eni := Yni — xniΔn,

1 < i < n. Let {eni, 1 < i < n} be i.i.d. F n r.v.'s and define

(5) Yni = Xniλn + eni, 1 < i < n.

The bootstrap M-estimator Δ n is defined to be a solution t of

(6) Σ XniV<Yni-Xnit) = O.
1 = 1

Recall, from the previous section, that in general (3) ensures the absence of

the asymptotic bias in Δn. Analogously, to ensure the absence of the

asymptotic bias in Δn, we need to have F n such that

(7)

where En is the expectation under F n . In general, the choice of F n that
will satisfy (7) and at the same time be a reasonable estimator of F depends
heavily on the forms of ψ and F. When bootstrapping the least square
estimator of /?, i.e., when ψ(x) = x, Freedman (1981) ensures (7) by choosing

F n to be the empirical d.f. of the centered residuals {eni — en., 1 < i < n},

where en. := n~ Σj= ί eni. In fact, he shows that if one does not center the
residuals, the bootstrap distribution of the least squares estimator does not
approximate the corresponding original distribution.
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Clearly, the ordinary empirical d.f. Hn of the residuals {eni; l<i<n}
does not ensure the validity of (7) for general designs and a general ip. We
are thus forced to look at appropriate modifications of the usual bootstrap.
Here we describe two modifications. One chooses the resampling distribution
appropriately and the other modifies the defining equation (6) a la Shorack
(1982). Both provide the second order correct approximations to the

distribution of standardized Δn.

Weighted Empirical Bootstrap:

Assume that the design points {xni} are either all non-negative or all
n

non—positive. Let ωx := Σ |x n i | be positive and define

(8) F J

Take the resampling distribution F n to be Fin. Then, clearly,

Em V{em) = α^.ΣJxnil V{eni) = sign(xi) tifc^Xni^Yni-XniA) = 0,

by the definition of Δ n . That is, F ί n satisfies (7) for any ψ.

Modified Scores Bootstrap:

Let F n be any resampling distribution based on the residuals. Define the
bootstrap estimator Δ n s to be a solution t of the equation

(9) Σ x n i [i{Yli - xn it) - E n Heli)] = 0.
1 = 1

In other words the score function is now a priori centered under F n and
hence (7) holds for any F n and any *ψ.

We now describe the the second order correctness of these procedures.
To that effect we need some more notation and assumptions. To begin with

2 n 2

let τ x := Σ xni and define
i = l

m x := max{|xn i | ; 1 < i < n}, b ί x := .Σ x2i/τx, b x := .Σ |xJi |/r?.
1=1 1=1

For a d.f. F and any sampling d.f. F n , define

7(x) := E ^ e ! - x), «*(x) = σ2(x) := E { ^ e i - x) - -γ(x)}2,
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) ( ) j ( ) E{^( ) ( ) } 27n(x) := Enψ(enl - x), «*n(x) = σj(x) := En{^(eni - x) - 7n(x)}2,

mln(x) := En{V<eni - x) - 7n(x)}3, x e R.

An(c) := {i: 1 < i < n, | x n i | > cτx b x}, Kn(c) := # 4 n ( c ) , c > 0.

For any real valued function g on R, let g, g denote its first and second
derivatives at 0 whenever they exist, respectively. Also, write j n , 4*n etc.

for 7n(0), -a*n(0), etc. Finally, let a := — 7/σ, α n := — 7h/σn, and, define
for x e R, H2(x) := x 2 - 1, and

^ ( x ) := Φ(x) - b l x [{7n/σn - 7n **n/σl}(x2/2o&) + (**m/6σ2) H2(x)]

In the following theorems, a.s. means for almost all sequences {βi; i> l}
ofi.i.d. F r.v.'s.

Theorem 4.2b. 1. Let the model (2) hold. In addition assume that $
has uniformly continuous bounded second derivative and that the following
hold:

(a) τl —> OD. (b) a > 0.

(c) There exists a constant 0 < c < 1, such that in r x = o(/Cn(c)).

(d) m x in τx = o(r x ) .

(e) There exist constants θ > 0, δ > 0 and q < 1 such that

supdEexpOt^βi-x)}!: |x | < δ, | t | > 0\ < q.

(f) V λ > 0, Σ00 exp(-λα;x/τ!) < αo.
11 = 1

Then, with Δ n defined as a solution 0/(6) with F n = Fin,

supy|Pin(αnrx(Δn - Δ n) < y) - ^n(y)| = o(mx/rx),

sup y |P l n (αrχ(Δ n -/?)<y)-Pin(r x (Δn- Δ n ) < y ) | = o(mx/rx), a.s.,

where P i n denotes the bootstrap probability under Fi n , and where the
supremum is over y e K. •

Next we state the analogous result for Δ n s .

Theorem 4.2b.2. Suppose that all of the hypotheses of Theorem 4.2b.1

except (f) hold and that Δ n s is defined as a solution of (9) with F n = H n , the
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ordinary empirical of the residuals. Then,

sup y |Pn(αnr x(Δn s - Δn) < y) - 9jjj)\ = o(mx/rx),

sup y |Pn(ατ x (Δ n -/?)<y)-P n (τ x (Δ n s - Δ n )<y) | = o(mx/rx), a.s.,

where P n denotes the bootstrap probability under Hn. D

The proofs of these theorems appear in Lahiri (1989) where he also
discusses analogous results for a non-πsmooth ψ. In this case he chooses the
sampling distribution to be a smooth estimator obtained from the kernel type
density estimator. Lahiri (1991) gives extensions of the above theorems to
multiple linear regression models.

Here we briefly comment about the assumptions (a) — (f). As is seen
from the previous section, (a) and (b) are minimally required for the
asmyptotic normality of M-estimators. Assumptions (c), (e) and (f) are
required to carry out the Edgeworth expansions while (di is slightly stronger
than Noether's condition (NX) applied to (2). In particular, xi = 1 and xi =
i satisfy (a), (c), (d) and (f).

A sufficient condition for (e) to hold is that F have a positive density
and Ψ have a continuous positive derivative on an open interval in R.

4.3. DISTRIBUTION OF SOME SCALE ESTIMATORS

Here we shall now discuss some robust scale estimators.

Definitions. An estimator /7(X, Y) based on the design matrix X
and the observation vector Y of β is said to be location invariant if

(1) flX,Y + Xb) = #X,Y) + b, V beRp.

It is said to be scale invariant if

(2) #X, aY) = a#X, Y), V a e R, a φ 0.

A scale estimator s(X, Y) of a scale parameter 7 is said to be
location invariant if

(3) s(X, Y + Xb) = s(X, Y), V b e Rp.

It is said to be scale invariant if

(4) s(X, aY)) = |a | s(X,Y), V a e R, a Φ 0.



4.3 DISTRIBUTION OF SOME SCALE ESTIMATORS 83

Now observe that M-estimators Δ and Δ of β of Section 4.2a are

location invariant but not scale invariant. The estimators Δi, defined at
(4.2a. 13), are location and scale invariant whenever s satisfies (3) and (4).

Note that if s does not satisfy (3) then Δi need not be location invariant.
Some of the candidates for s are

(5) s^Kn-p^ΣiίYi-x^)2}1/2,

s2 := med { |Yi- Yj - ( x i - x j ) ' ί | ;

where β is a preliminary estimator of β satisfying (1) and (2).

Estimator s , with β as the least square estimator, is the usual
estimator of the error variance, assuming it exists. It is known to be
non—robust against outliers in the errors. In robustness studies one needs
scale estimators that are not sensitive to outliers in the errors. Estimator Si
has been mentioned by Huber (1981, p. 175) as one such candidate. The
asymptotic properties of Si, s2 will be discussed shortly. Here we just
mention that each of these estimators estimates a different scale parameter,
but that is not a point of concern if our goal is only to have location and
scale invariant M-estimators of β.

An alternative way of having location and scale invariant
M-estimators of β is to use simultaneous M-estimation method for
estimating β and 7 of (2.3.38) as discussed in Huber (1981). We mention
here, without giving details, that it is possible to study the asymptotic joint
distribution 01 these estimators under heteroscedastic errors by using the
results of Chapter 2.

We shall now study the asymptotic distributions of Si and S2 under

the model (1.1.1). With Fi denoting the d.f. of ei, H = n" 1 Σi Fi, let

(6) Pi(y):=H(y)-H(-y),

(7) P2(y) := / [H(y + x) - H(-y + x)] dH(x), y > 0.

Define 71 and 72 by the relations

(8) Pi(7i) = 1/2,

(9) p2(72) = 1/2.

Note that in the case Fi = F, 71 is median of the distribution of
|ei | and 72 is median of the distribution of |ei — β2|. In general, 7j, pj,
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etc., depend on n, but we suppress this for the sake of convenience.
The asymptotic distribution of Sj is obtained by the usual method of

connecting the event {SJ < a} with certain events based on certain empirical
processes, as is done when studying the asymptotic distribution of the sample
median, j = 1, 2. Accordingly, let

(10) ^

Then, for an a > 0,

(11) {8l < a} = {S(a) > (n+l)2"1}, n odd,

{S(a) > U2"1} C {si < a} C {S(a) > n2~* - 1}, n even.

Similarly, for an a > 0,

(12) {s2 < a } = {T(a) > (N+l)2"1}, N := n(n-l)/2 odd,

{T(a) > N2""1} C {s2 < a} C {T(a) > N2"1 - 1}, N even.

Thus, to study the asymptotic distributions of Sj, j = 1, 2, it suffices to
study those of S(y) and Tίy), y > 0.

In what follows we shall be using the notation of Chapter 2 with the

following modifications. As before, we shall write S°, μ°\ etc. for Sd, μS etc.

of (2.3.1) whenever dni = n"1'2. Moreover, in (2.3.1), we shall take

(13) Xi = Y i - χ /

i ^ = e i , Ci = Axi, 1 < i < n.

With these modifications, for all n > 1,

(14) S(y) = Sfor, v) - S^(-y, v) = n" 1/ 2 Σ I( | e t - c'i v| < y),

2n'1T(y) = / [S?(y+x, v) - S^-y+x, v)] S?(dx, v) - 1, y > 0,

with probability 1, where v = A" (β — β). Let

(15) M?(y, u) = ̂ (Hίy), u), Y?(y, u) = yi(H(y), u), - oo < y < .;

K(y, u) = / [Y^y+x, u) - Yft-y+x, n)] dH(x), y > 0, u G Rp.
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We shall write W(y), K(y) etc. for W(y, 0), K(y, 0) etc.

Theorem 4.3.1. Assume that (1.1.1) holds with X and {Fni}
satisfying (NX) and (2.3.3). Moreover, assume that H is strictly increasing
for each n and that

(16) lim x π lim supn sup [H(H"1(s+ί)±72) - H(H"1(s)±72)] = 0.
^ ϋ 0<s<l-ί

About {β} assume that

(17) iiA^tfr-flll-Opίi).

Then, V aeIR,

(18) P ( n 1 / 2 ( S l - 7 i ) < a 7 l )

= P(w(7i) + n-^Σix'iA {fi(7l) -fi(-7 l)} v

(19) P(n1/2(s2-72)<a72)

= P(2K(7 2) + n"3/2ΣΣ C i j /[fi( 7 2+x) -fi(-7 2+x)]dFj(x).v

> - 7 2 a n" 1 Σ J[fi( 7 2 +x) + fi(-72+x)] dH(x)) + o(l).

where cy = (xi — XJ) A, 1 < i, j < n.

Proof. We shall give the proof of (19) only; that of (18) being similar
and less involved. Fix an aeK and let Qn(a) denote the left hand side of

(19). Assume that n is large enough so that an := (an' 1 ' + 1) 7 2 > 0.
Then, by (12),

(20) Qn(a) = P(T(an) > (N+l)/2), N odd (N := n(n-l)/2),

P(T(an) > N/2) < Qn(a) < P(T(an) > N2" 1 -!), N even.

It thus suffices to study P(T(an) > N2"1 + b), b e R . Now, let

Tt(y) := n'1/2(2n-1T(y)+l) - n^p^y), y > 0,

kn := (N + 2b) n"3/2 + n1'2 - uλ
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Then, direct calculations show that

(21) P(T(an) > N2"1 + b) = P(T,(an) > kn).

We now analyze kn: By (9),

kn = - n 1 / 2(P 2(a n) - P 2 ( 7 2 ) ) + O(n"1/2).

But

n1/2(p2(an)-P2(72))

= n1/2/[{H(an+x) - H(72+x)} - {H(-an+x) - H(-7 2+x)}] dH(x).

By (2.3.3), the sequence of distributions {p2} is tight on (R,«#), implying

that 72 = 0(1), n- 1/272 = o(l). Consequently, in view (2.3.3),

n 1 / 2 /{H(±a n + x) - H(±72 + x)} dH(x)

/ x) dH(x) +

and

(22) kn = - a 72U"1 Σi f [U(n+x) + fi(-72+x)]dH(x) + o(l).

Next, we approximate Ti(an) by a sum of independent r.v.'s. The
proof is similar to the one used in approximating linear rank statistics of
Section 3.4. From the definition of T t and (14),

(23) Ti(y) = n" 1/ 2/[Sfo+x, v) - S^-y+x, v)] S?(dx, v) - n1/2p2(y)

, v) - Y'K-y+x, v)] S (̂dx, v)

+ n- 1 / 2 /[^(y+x, T) - μt-f+x, v)] Y^dx, T)

+ n- 1 / 2 /[^(y+x, T) - ^(-y+x, v)] ̂ (dx, y) - n1/2p2(y)

= E,(y) + E2(y) + E3(y), say.

But
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(24) E3(y) := i f 1 ' 2 / [^(y+x, v) - ^(-y+x, v)] ^(dx, v) - n

= n"3/2Σ Σ /{Fiίy+x+c'ijv) - Fi(-y+x+c'ijv) - Fi(y+x)

dFj(x)

= n"3/2Σ Σ cΊj v / [fi(y+x) - fi(-y+x)] dFj(x) + op(l),

by (2.3.3], (NX) and (17). In this proof, op(l) means op(l) uniformly in
|y| < k, for every 0 < k < m.

Integration by parts, (17), (2.3.25), H increasing and the fact that

Jn"1/2^(dx, v) = 1 yield that

(25) E2(y) := n" 1 ' 2 / {^(y+x, Y) - ^(-y+x, v)} Y^(dx, v)

, v) - Y^-y+x, v)} ^(dx, v)

/ !(-y+χ)} dH(x) + op(l).

Similarly,

(26)

Now observe that n ' S° = Hn, the ordinary empirical d.f. of the errors
{βi}. Let

Eπ(y) := /{Y°i(y+x)-Yi(-y+x)} d(Hn(x) - H(x)) = Z(y) - Z{-j),

where

Z(±y) := / Yfcy+x) d[Hn(x) - H(x)], y > 0.

We shall show that

(27) £(±an) = op(l).

But
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= \f[Yι(E(^n+x))-Yi(E(±Ί2+x))]d{En(x)-E(x))\.

<2 sup |Yi(H(y))-*(!!(•)) |.
|y^|<|aln ^

(28) = op(l),

because of (2.3.3) and Corollary 2.3.1 applied with dni Ξ n"1/2. Thus, to
prove (27), it suffices to show that

(29) Z(±Ί2) = op(l).

But

= |/o

1[yi(H(± 72+H-1(t)))-r1(H(± 72+H-1(t)))]dt|

< sup |y1(H(±72+H"1(HHή1(t))))-ri(H(±72+H"1(t)))l
0<t<l

by the assumption (16), Lemma 3.4.1 and Corollary 2.3.1 applied with

dni Ξ n ' . This proves (27). Consequently, from (26) and an argument
like (28), it follows that

(30) Ei(an) = /{Y^an+x) - Vft-an+x)} dH(x) + op(l)

= /{Y'ϊ(72+x) - Y°i(-72+x)} dH(x) + op(l).

From (23), (24), (25), (30) and the definition (15), we obtain

(31) T!(an) = 2K(72) + n"3/2ΣΣ c'ijA /{fi(72+x) - fi(-?2+x)} dFj(x) v

Now, from the definition of kn and (22), it follows that the lim kn does not
depend on b. Thus the limit of the l.h.s. of (21) is the same for b = —1, 0,
1/2, and, in view of (21), (22) and (31), it is given by the first term on the
r.h.s. of (19). D

Remark 4.3.1. Observe that, in view of (8) and (9),
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K( 7 a) = /{H(72+x) -H(- 7 2+x)}

= i f ^ Σ i {H(72 + βi) - H ( - 7 2 + βi) - 1/2}.

Thus, W(7i) and K(72) are the sums of bounded independent centered
r.v.'s and by the L-F CLT one obtains

(32) σT1 W(7i) - j N(0, 1) and σ? K(72) - * N(0, 1),
α α

where

σ\ := Var W(7i) = n " 1 ^ {Fi(7l) - Fi(-7 l)}{l - Fi( 7 l) + Fi(- 7 l )},

σ\ := Var K( 7 2) = n " 1 ^ /[H( 7 2 +x) - H(- 7 2 +x)] 2 dFi(x) - (1/4).

Remark 4.3.2. If {Fi} are all symmetric about zero, then from (32),
(18) and (19), it follows that the asymptotic distribution of Si and s2 does

not depend on the initial estimator β of β. In fact, in this case we can
deduce that

(33) ΰ1 n 1 / 2 ( S l - 7 l ) 7 T X -2 N(0, 1),

r i 1 n 1 / 2 (s 2 - 7 2 ) 7 ^ -^ N(0, 1),

where

τ\ := σ\ {27l h(7l)}""2, h(x) := n" 1 Σi fi(x),

Λ := A {72 /h( 7 2 +x) dH(x)}"2. D

Remark 4.3.3. iid. case. In the case Fi = F, the asymptotic

distribution of Si depends on β unless F is symmetric around zero.

However, the asymptotic distribution of s2 does not depend on β. This is
so because in this case the coefficient of v in (19) is

n" 3/ 2 Σ Σ(xi -xj) 'A /[f( 7 2 +x) -f(-7 2+x)]dF(x) = 0.

That the asymptotic distribution of s2 is independent of β is not
surprising because s2 is essentially a symmetrized variant of Si. We
summarize this property of s2 as
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Corollary 4.3.1. If in model (1.1.1), Fni Ξ F, F satisfies (Fl), (F2)

and X satisfies (NX) then TJ n ' (s2 — 72) —* N(0, 1), where

d

Λ = { / [ F ( 7 2 + x ) - F ( - 7 2 + x ) ] 2 dF(x) - l/4} {/f(72+x) dF(x)}"2. •

Note that 72 is now the median of the distribution of |ei — β2|.
Also, observe that the condition (16) now is equivalent to

sup [ P ( F ( e i - y ) < s + ό ) - P ( F ( e i - y ) < s ) ] — » 0 as 6—>0,VyeR,

0<s<l-ί

which is implied by the assumptions on F. D

4.4. R-ESTIMATORS OF β

Consider the model (1.1.1) and the vector of linear rank statistics

(1) T(t) := At Σi ( x n i - XnMRit/(n+l)), t 6 Kp,

where Ai is as in (4.2a.l2) and Ru is the rank of Yni — Xnit among

{Y n j -xήjt, l < j < n } .
One of the classes of R-estimators of β is defined by the relation

(2) inft I X(t) I! = I T(A) I ^ ^ I Xj(t) | = 0,

Tj being the jth component of T of (1). The estimators β\ were initially

studied by Adichie (1967) for the case p = 1 and by Jureckova (1971) for
P > 1 .

Another class of R-estimators can be defined by the relation

(3) inft ||T(t)|| = ||T0OI|.

Yet another class of estimators, introduced by Jaeckel (1972), are
defined by the relation

(4)

where

(5) J(t) := Σi (Y n i - x^it) v<Ru/(n+l)), t G

Jaeckel (op. cit.) showed that for every observation vector (Yi, ...,Yn)
and for every n > p, Σi (p(i/n+l) = 0 implies that ^(t) is nonnegative,
continuous and convex function of t. If, in addition, Xc has the full rank p
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then the set {t; /(t)<b} is bounded for every 0 < b < <D, where Xc is

defined at (4.2a.ll). Consequently, fc exists.
Moreover, the almost everywhere derivative of /, w.r.t. t, is

-X[ T(t). Thus, at βz, T is nearly equal to zero and hence βu j?2, and fc
are essentially the same estimators. Jaeckel showed, using the a.u.l. property

of T(t) due to Jureckova (1971), that indeed \\Aχ{βx - βz)\\ = o p ( l ) .

Here we shall discuss the asymptotic distribution of {β2} under
general heteroscedastic errors. The main tool is the a.u.l. Theorem 3.2.4.

We shall also conclude that \\Ai{fi2 - Λ) | | = o p ( l) under (1.1.1) with
general independent errors.

To begin with note that T of (1) is a p—vector (Ti, ..., T p ) where
Tj(t) is a Ίd(φy π) - statistic of (3.1.2) with

(6) X n i = Y n i - XniA Cn i = Ax{xni - in), U = A ^ ( t - # ,

d n i = a!j)(xni~Xn), 1 < i < n; a ( j } = j t h column of Ai, 1 < j < p.

Thus specializing Theorem 3.2.4 to this case readily gives

Lemma 4.4.1. Suppose that (1.1.1) holds with F n i as a d.f. of eni,
1 < i < n. In addition, assume that

(NXc) (Xc'Xc)"1 exists for all n > p,

maxi (Xni-Xn) (Xc XcΓ^Xni-Xn) = θ(l).

About {Fni} assume that H is strictly increasing for each n and that
(2.2.3b), (3.2.12), (3.2.35), (3.2.36) hold and that

(7) lim lim supn sup [Lj(s+ό) - Lj(s)] = 0, j = 1, ..., p
^ ϋ 0<s<l-ί

where

Lj(s) := Σi (a!j) (xni-in))2Fni(H"1(s)), 0 < s < 1, 1 < j < p.

Then, for every 0 < B < GO,

(8) sup ||T(t) - Ύ(β) + KnA^t-flll = Op(l)

where

J 91 n /

Σ ( x n i - Xn(s))(Xni ~ In) q n i
0 1 = 1
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-1 n-1
ίn(s) := n

4i(s) as in (3.2.35) and qni(s) := f^EΓ^s)), i < i < n, 0 < s < 1. Q

In order to prove the asymptotic normality of βι, we need to show

that \kχ(β%-β)\ = Op(l). To this effect let

μ := At Σi (xn i - ϊ n ) / F ^ l Γ 1 ) dφ, S := Ύ(β) - μ.

Observe that the distribution of (fa — 0) does not depend on β, even when
{eni} are not identically distributed.

Lemma 4.4.2. In addition to the assumptions of Lemma 4.4.1 suppose
that

(9) IIS + μ\\ = O p(l),

(10) liminfn inf | 0 ' κ n 0 | > a for an a > 0,

IMI=i

(11) K" 1 eήsts for all n > p, ||K^|| = 0(1).

Then, for every e > 0, 0 < z < α>, there exist a 0 < b < <n and Ne such
that

(12) P( inf ||T(A!U + 0)\\ > z) > 1 - e, n > Ne.

IM|>b
Proof. Fix an e > 0, 0 < z < α>. Without loss of generality assume

β = 0. Observe that by the C—S inequality

l l ί m ) ! ! 2 ^ inf {
Nl>b IMI=l,|r|>b

Thus it suffices to prove that there exist a 0 < b < α> and Ne such that

inf (

IMI=i,|r|>b

(13) P( inf {θ Ύ{τkι ff))2 > z) > 1 - e, n > Ne.

Let, for t € Rp, T(t) := T(0) - Kn A ^ t , so that, by (8) for every 0 < B < OD,

(14) H n sup I <?'T(rA, <f) - ΘΎ{τkx <f)\ =
= l , | r | < B
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But

ΘΎiτkiβ) = θ { S + μ)- ΘKn θτ.

By (9), there exist a Ke and an Nie such that

P(|S + μ| <Ke)>l-e/2, n>N l f .

Choose b to satisfy

(15) b > (Ke + z1/2)α~\ a as in (10).

Then

(16) P( inf (^T(rA! ff)f > z)

> P(||S + μ\\ < - z 1 / 2 + b πinf | 0 ' κ n

> P(||S + μ\\ < Ke) > 1 - e/2, V n > N l f.

Therefore by (14) and (16) there exist Ne and b as in (15) such that

(17) P( inf ( f l ' T ί r A ^ S z ^ l - e , n > Ne.

But

ΘΎ(τAιff) = flΆi Σi (xi - x ) ^(Rtr/(n+l)) = Σi di y<RtΓ/(n+l)),

where di = θ At (xi — x), Rjr is the rank of Yi — r(xi — x) Ai ft But
such a linear rank statistic is nondecreasing in r, for every ft See, e.g.,
Hajek (1969; Theorem 7E, Chapter II). This together with (17) enables one
to conclude (13) and hence (12). D

Theorem 4.4.1. Suppose that (1.1.1) holds and that the design matrix
X and the error dps {Fni} satisfy the assumptions of Lemmas 4.4.1 and
4.4.2 above. Then

(18) A[\β2 -0)- K^/ι = K^S + θp(l).

Proof. Follows from Lemmas 4.4.1 and 4.4.2. D
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Remark 4.4.1. Arguing as in Jaeckal combined with an argument of

Lemma 4.4.2, one can show that \\A[ (fh — fo)\\ = op(l). Consequently,

under the conditions of Lemmas 4.4.1 and 4.4.2, fa and the Jaeckel

estimator βz also satisfy (18). α

Remark 4.4.2. Consider the case when Fni = F, F a d.f. satisfying
(Fl), (F2). Then μ = 0 and S = Ύ(β). Moreover, under (NXc) all other
assumptions of Lemmas 4.4.1 and 4.4.2 are a priori satisfied. Note that here

4 i ^ l , x n (s)=x n and Kn Ξ Jf d^F) IpXp.

Moreover, from Theorem 3.4.3 above, it follows that S —> Np(0, σ Ipjφ),

σ = J φ (u)du — (J y>(u)du) . We summarize the above discussion in

Corollary 4.4.1. Suppose that (1.1.1) with Fni Ξ F holds. Suppose
that F and X satisfy (Fl), (F2), and (NXc). In addition, suppose that φ
is nondecreasing bounded on [0, lj and Jf d^(F) > 0. Then

(19) k

Moreover,

A T 1 ^ - β) -< N(0, τ 2 l p ) φ ), r 2 = σ2 (/ f d ^ F ) ) " 2 . D

This result is quite general as far as the conditions on the design
matrix X and F are concerned but not that general as far as the score
function ψ is concerned. α

Remark 4.4.2. Robustness against heteroscedastic gross errors. First ,
we give a working definition of qualitative robustness. Consider the model
(1.1.1). Suppose that we have modeled the errors {eni, 1 < i < n} to be i.i.d.

F whereas their actual d.ί.'s are {Fni, l<i<n}. Let P n := ft F, Q* := ft F n i
i = 1 i = 1

denote the corresponding product probability measures.

Definition 4.4.1. A sequence of estimators β is said to be
qualitatively robust for β at F against Qn if it is consistent for β under
P n and under those Qn that satisfy T)Ώ := maxi supy |Fni(y) — F(y)| —» 0.

The above definition is a variant of that of Hampel (1971). One could
use the notions of weak convergence on product probability spaces to give a
bit more general definition. For example we could insist that the Prohorov
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distance between Qn and P n should tend to zero instead of requiring
Ώn —» 0. We do not pursue this any further here.

The result (18) can be used to study the qualitative robustness of /fe
against certain heteroscedastic errors. Consider, for example, the gross errors
model where, for some 0 < δn\ < 1, with maxi Sn\ —> 0,

Fni = (1 - ίni) F + ίni G, 1 < i < n,

and, where G is d.f. having a uniformly continuous a.e. positive density. If,
in addition, {ίni} satisfy

(20) l l A ^ i t X n i - ϊ n H n i H O α ) ,

then one can readily see that HK^H = 0(1) and \\μ\\ = 0(1). It follows

from (18) that β2 is qualitatively robust against the above heteroscedastic
gross errors at every F that has uniformly continuous a.e. positive density.
Examples of δn\ satisfying (20) would be

ίni Ξ n " 1 / 2 or ίni = p " 1 / 2 ||A! ( x n i - ϊ n ) | | , 1 < i < n.

It may be argued that the latter choice of contaminating proportions {Sn\}
is more natural to linear regression than the former.

A similar remark is applicable to β\ and fc. u

4.5. ESTIMATION OF Q(f).

Consider the model (1.1.1) with Fni = F, where F is a d.f. with density f
on R. Define

(1)

where φ e tf of (3.2.1).

As is seen from Corollary 4.4.1, the parameter Q appears in the
asymptotic variance of R-estimators. The complete rank analysis of the
model (1.1.1) requires an estimate of Q. This estimate is used to
standardize rank test statistics when carrying out the ANOVA of linear
models using Jaeckal's dispersion J of (4.4.5). See, for example,
Hettmansperger (1984) and references therein for the rank based ANOVA.

Lehmann (1963) and Sen (1966) give estimators of Q in the one and
two sample location models. These estimators are given in terms of lengths
of confidence intervals based on linear rank statistics. Koul (1971) extended
these estimators to the multiple linear regression model (1.1.1). In this case
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these estimators are given in terms of Lebesgue measures of certain
confidence regions based on ranks and are hard to compute for p > 1.

Cheng and Serfling (1981) discuss several estimators of Q when
observations are i.i.d. F, i.e., when there are no nuisance parameters. Some
of these estimators are obtained by replacing f by a kernel type density
estimator and F by an empirical d.f. in Q. Scheweder (1975) discusses
similar estimates of Q in the one sample location model.

In this section we discuss two types of estimators of Q. Both use a
kernel type density estimator of f based on the residuals and the ordinary
residual empirical d.f. to estimate F. The difference is in the way the
window width and the kernel are chosen. In one the window width is
partially based on the data and is of the order of square root of n and the
kernel is the histogram type whereas in the other the kernel and the window
width are arbitrary. It will be observed that the a.u.l. result about the
residual empirical process of Corollary 2.3.5 is the basic tool needed to prove
the consistency of these estimators.

We begin with the class of estimators where the window width is
partly based on the data. Define

(2) P(y) := /[F(y+x) - F(-y+x)] dp(F(x)), y > 0.

Since φ is a d.f., p(y) = P( |e — e*| < y) where e, e* are independent r.v.'s
with respective d.f.'s F and φ(F). Consequently, under (Fl), the density of
p at 0 is 2Q. This suggests that an estimate of Q can be obtained by
estimating the slope of p at 0.

Recall the definition of the residual empirical process Hn(y, t) from

(1.2.1). Let β be an estimator of β and define

(3) Hn(y) := Hn(y, β), y G R.

V.I.Z.,

A natural estimator of p is obtained by substituting H n for F in p,

(4) Pπ (y) := / [Hn(y+x) - H n(-y+x)] dy<Hn(x)), y > 0.

Let — QD = e ( 0 ) < e ( ^ < e ( 2 ) i ••• ί e ( Π) < e ( n + i ) = α> denote the ordered

residuals {βi, 1 < i < n}, where e\ = Yi — Xi/7, 1 < i < n. Since ^ H n )

assigns mass {Ψ{}/TL) — y>((j-l)/n))} to each e ( j } and zero mass to each of

the intervals (e ( j . t ) , e ( j } ), 1 < j < n + 1; it readily follows that V y e R,



4.5 ESTIMATION OF Q(f) 97

n Λ

Pn(y) = . Σ ^ j / n ) - p((j-l)/n)} [Hn(y+e( j } ) - Hn (-;

(5) = n .Σ {^(j/n) ~ ^((j~l)/n)} ΣI(|e (i% — e ( jx I < y).
j =1 i = l

From (5) one sees that pn(y) has the following interpretation. For

each j , one first computes the proportion of {e (i }} falling in the interval

[~y+έ(j)> y+έ(j)] a n d then ρn(y) gives the weighted average of such
proportions. Formula (5) is clearly suitable for computations.

Now, if {hn} is a sequence of positive numbers tending to zero, an
estimator of Q is given by

fin = Pn(hn)/2hn.

This estimator can be viewed from the density estimation point of view also.

Consider a kernel—type density estimator fn of f based on the residuals {ei}:

f n ( x ) : = ( 2 n h n ) " 1 Σ I ( | x - e i | < hn),
1=1

which uses the window wn(x) = (l/2) I( |x | < hn). Then a natural
estimator of Q is

ΐ H fn(e(j,) = δπ.

Scheweder f1975) studied the asymptotic properties of this estimator
in the one sample location model. Observe that in this case the estimator of
Q does not depend on the estimator of the location parameter which makes
it relatively easier to derive its asymptotic properties.

In fin, there is an arbitrariness due to the choice of the window width
hn. Here we recommend that h n be determined from the spread of the data

as follows. Let 0 < a < 1, tn be α t h quantile of p n and define the

estimator fin of Q as

(6) fin:=Pn(n"1/2t?)/(2n"1/2t?).

The quantile tn is an estimator of the α t h quantile t α of p. Note

that if φ(s) = s, then t α is the α t h quantile of the distribution of |erβ2|

and tn is the α t h quantile of the empirical d.f. p n of the r.v.'s {| erβj | , 1

< i, j < n}. Thus, e.g., t n

5 = s2 of (4.3.5). Similarly, if φ) = I(s > 0)
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then t α (tn) is α t h quantile of the d.f. of |ei | (empirical d.f. of |β i | , 1 < i

< n). Again, here tή5 would correspond to Si of (4.3.5). In any case, in

general, t α is a scale parameter in the sense of Bickel and Lehmann (1975).

The consistency of fin is asserted in the following

Theorem 4.5.1. Let (1.1.1) hold with F n i = F. In addition to (NX),

(Fl) and (F2), assume that β is an estimator of β satisfying (4.3.17).
Then,

(7) sup | δ n - Q ( f ) | = o p ( l ) .

The proof of (7) will be a consequence of the following three lemmas.

Lemma 4.5.1. Under the assumptions of Theorem 4.5.1, V 0 < a < OD,

(8) sup I n ^ ί p n ί n - ^ z ) - p(if
# 0

Consequently, V 0 < a < oo,

(9) sup I n ^ p n ί i Γ ^ z ) - 2zQ(f) | = op(l).
# 0 < <

Proof. We shall apply Corollary 2.3.5. Let • = A \β-β),

bή = n " 1 / 2 Σ xήi A. Then, from (2.3.46), (3) and (4.3.17), we obtain

(10) sup I n1/2{Hn(y) - Hn(y)} - Wv f(y) | = op(l).

where

Hn(y) = Hn(y, 0) = n^.Σ^βni < y), ye R.

Also, we will use the notation of (2.3.1) with

(11) dni = π > Xni = Yni"~ ^Ώiβt Fni = F and π = 0.

Then rt(t, 0) = n 1 / 2 [H n (F" 1 ( t ) )- t ] , 0 < t < 1. Write Yι( ) for Yι(-,0).
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Now, (10) and φ bounded imply that,

n1/2{Pπ(y) - P(y)} = ̂ 2f{En(j+x) - Hn(-y+x)} dy<Hn(x))

+ ϊ>; v /[f(y+x) - f(-y+x)]

(12) = Rm(y) + Rn2(y) + Rn3(y) +

where θp(l) stands for a sequence of random processes that converge to
zero, uniformly in — αo < y < αo, ψ e % in probability, and where

Rm(y) =

Rn2(y) = b; v /[f(y+x) -f(-y+x)] dy<Hn(x))

Rns(y) = n ^ / ^ y + x ) - F(-y+x)] dp(Hn(x))

- /[F(y+x) - F(-y+x)] d^F(x))}, y e R.

From (Fl), (F2), the boundedness of φ, and the asymptotic
continuity of Fi, which follows from Corollary 2.2a.l, applied to the
quantities given in (11), we obtain, with k = 2a ||f|| ,

(13) sup iRn^n-^z)! < sup ( / I ̂ (t) - F,(s)| = op(l).

Again, (Fl) and the boundedness of φ imply, in a routine fashion,
that

(14) sup |Rn l(n"1 / 2z)| = o p ( l ) .

Now consider Rn3 By the MVT, (Fl) and the boundedness of φ, the

first term of RΠ3(n ' z) can be written as

2z /f(£χzn) MH n(x)) = 2z J f(x) άφ(En(x)) + op(l)

where {£XZn} are real numbers such that | £ x z n — x| < an ' . Do the same
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with the second integral and put the two together to obtain

Rn 3(n" 1 / 2z) = 2z{/f d<p(Kn) - fi άφ(F) } + op(l)

= 2z{ Γ1 [qίFH-^t)) - q(t)]

But,

(15) sup I FH^(t) -11 < n" 1 + supy | Hn(y) - F(y) | = op(l)
0<t<l

by (10) and the Glivenko-Cantelli Lemma. Hence, q being uniformly
continuous, we obtain

sup |R n 3 (n" 1 / 2 z) | = o p ( l ) .

This together with (12) - (15) completes the proof of (8) whereas that of (9)
follows from (8) and the fact that the uniform continuity of f implies that

sup I n 1 / 2p(n" 1 / 2z) - 2z Q(f) | -> 0. D

Lemma 4.5.2. Under the assumptions of Theorem 4.5.1, V y > 0,

sup |p n (y)-p(y) | = o p ( i ) .

Proof. Proceed as in the proof of the previous lemma to rewrite

Pn(y) -P(y) = Γnl(y) + Γn2(y) + Γn3(y) + op(l)

where Γnj = n " 1 / 2 ^ , j = 1, 2, 3, with Rn j defined at (12).

By Corollary 2.2a.2 applied to the quantities given at (10), || Fi||

Op(l) and hence f, φ bounded trivially imply that

sup |Γ n j (y) | = op(l), j = l,

Now, rewrite

Γn3(y) = [/F(y+x) dy<Hn (x)) _/F(y+x)

n (x)) - jF(-y+x) dφ{F(x))\
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= Γn(y) + Γn(-y), say.

But, V yeR,

Γπ(y) = / / {F(y + F-^FH^Ct))) - F(y + F ^ t ) ) } dp(t) = op(l),

because of (15) and because, by (Flϊ and (F2), V y > 0, F(y + F - 1 (t)) is
uniformly continuous function of t e [0, 1]. D

Lemma 4.5.3. Under the conditions of Theorem 4.5.1, V e > 0,

£ - t α | <etα, V^et?) — 1.

Proof: Observe that the event [pn((l-e)tα) < a < pn((l+e)tα)]

implies the event [(1—e)tα < t " < (l+ejt0]. Hence, by two applications of

Lemma 4.5.2, once with y = (l+e)tα, and once with y = (1—c)tα, we obtain
that

l i m i n f n P ( | t n - t α | < ct α , V^et?)

> p(p((l-€)tQ) < a < p((l+e)tα), V ψ € tf) = 1. D

Proof of Theorem 4.5.1. Clearly, V φ e %

I Ql - Q(f) I = (2tS)'11 n 1 / 2 pnίn"1/2 t?) - 2t£ Q(f) |.

By Lemma 4.5.3, V e> 0,

P(0 < t? < (1 + 6)tα, V φ e ί?) —»1.

Hence (7) follows from (9) applied with a = (l+e)tα, Lemma 5.4.3 and
Slutsky's Theorem. D

Remark 4.5.1. The estimator β" shifts the burden of choosing the
window width to the choice of a. There does not seem to be an easy way to
recommend a universal a. In an empirical study done in Koul, Sievers and
McKean (1987) that investigated level and power of some rank tests in the
linear regression setting, a = 0.8 was found to be most desirable. •

Remark 4.5.2. It is an interesting theoretical exercise to see if, for

some 0 < δ < 1, the processes {n1 '2(g" - Q(f)), δ < a < I - δ} converge
weakly to a Gaussian process. In the case φ(t) = t, Thewarapperuma (1987)
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has proved, under (Fl), (F2), (NX), and (4.3.17), that V fixed 0 < a < 1,

n1 / 2(S£ - Q(f)) -^ N(0, σ\ where σ2 = 16

Remark 4.5.3. As mentioned earlier, {t£, φ € # } provides a class of

scale estimators for the class of scale parameters {tα, φ e # } . Recall that
Si and S2 of (4.3.5) are special cases of these estimators. The former is
obtained by taking φ[u) Ξ I(U > 0) and the latter by taking ψ(u) Ξ U. For
general interest we state a theorem below, giving asymptotic normality of
these estimators. The details of proof are similar to those of Theorem 4.3.1.
To state this theorem we need to introduce appropriately modified analogues
of the entities defined at (4.3.15):

Ki(y) := / M ( y + χ ) - Yΐ(-y+χ)]

K2(y) := /Y?(x) [f(y+χ) -f(-y+χ

y > 0,

where Y^ is as (4.3.15) adapted to the i.i.d. errors setup. It is easy to check

that K(tα) is n " 1 / 2 x {a sum of i.i.d. r.v.'s} with E K(tα) = 0 and

0 < (σα) 2 := Var(K(tα)) < GO, not depending on n.

Theorem 4.5.2. In addition to the conditions of Theorem 4.5.1,
assume that either φ(t) = I(t > u), 0 < u < 1, fixed or φ is uniformly
differentiate on [0, 1]. Then, V 0 < a < 1,

where

We now turn to the arbitrary window width and kernel—type
estimators of Q. Accordingly, let K be a probability density on R, hn be a

sequence of positive numbers and β and {έi} be as before. Define

fn(x) := (nhn)"
1JK((x-ei)/hn),

fn(x) := (nhn)"1.! K((x - ei)/hn), x e R,

δn:=/fn(x)dy<Hn(x)).
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Theorem 4.5.3. Assume that the model (111) with Fn\ = F holds. In
addition, assume that (Fl), (F2), (NX) and (4.3.17) and the foUowng hold:

(i) h n > 0 , h n — » 0 , n 1 / 2 h n — » O D .

(ii) K is absolutely continuous with its a.e. derivative K satisfying

f\*\<m.
Then,

(16) sup | δ n - Q ( f ) | = o p ( l ) .

Proof. First we show f n approximates f. This is done in several
steps. To begin with, summation by parts shows that

f n(x) - fn(x) = - h / J [Hn (x - hn z) - Hn(x - hn z)] K(z) dz

so that

llfn-fnll^^n' hn) | |n ' (Hn-Hn)^-J |K|.

Hence, by (10) and the fact that |bήv| = Op(l) guaranteed by (4.3.17), it
readily follows that

(17) ||fn-fn||α) = O

Now, let

Note that integration by parts shows that

fn(x) = - h^/Kίz) F(x - hn z) dz

so that

(18) l|f» - Ϊ..II. < (n

by (i) and by the fact that ||n1/2(Hn - F)!^ = Op(l). Moreover,

(19) l|ϊ»-fllβ< sup |f(y)-f(x)|=o(l), by (Fl).
m | y - χ | < h n
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Now, consider the difference

Qn-Q(f) = / ( f n - f ) d ^ H n ) + fi ά[φ(ΈΏ) - φ(F)]

= Dm + Dn 2, say.

Let q(t) = fCF'V))- Then

sup |D n 2 | < sup IqίFίH^tW-qίt)! = op(l)
φttf 0<t<l

by the uniform continuity of q and (15). Also,

sup | D n l | < | | f n - f | | = o p ( l )

by (17) - (19), thereby proving (16). DO




