MOMENT ESTIMATION FOR STATIONARY
POINT PROCESSES IN R¢

Emmanuel Jolivet
INRA
Départment de Biométrie
78530 Jouy-en-Josas
France

ABSTRACT

In this paper, we collect some results on the statistical analysis of
moments of stationary point processes. We do not advance any new
material, but try to bring together some important elements of the
theory. The reader is referred to the original publications for complete
proofs and explanations.
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1. Introduction

Point processes are natural models of the observed reality, when the phenomenon
under study can be considered as the random dispersion of small objects. Even if we
restrict our attention to applications of point processes in the plane to life sciences,
many references can be found in the literature. Such processes are used to model the
distribution of a parasitic fungus on wheat leaf area [17], of trees [19], of bird nesting
areas [14], among many others.

When such a random dispersion of objects is examined, the existence of an underly-
ing structure is a natural question. Indeed, the interactions between points of the same
realization, using the language of particle physic, must be studied as a central problem
to understand the generation and the pattern of the process.

One natural answer to that natural question is the estimation of moments and
cumulants of the process, because they measure the co-occurrence of points, or the
frequency of given configurations of a fixed number of points.

In that field, the precursor seems to be Bartlett [1], extending to point processes
on the line the ideas of spectral analysis of stationary time series. Brillinger, following
the same way, give a general rigorous theory of spectral cumulants estimation on the
real line [2], and later put forwards a method of direct estimation of the density for
some moment measures, with partial development of asymptotic theory [3]. Shortly
after, Ripley [18] shows that the decisive tool for second order analysis of stationary
point processes on a general space is the disintegration of invariant measures. That
question was first introduced in the framework of moment measures for point processes

by Krickeberg ([9], [10]).

The aim of that paper is to provide a general account of the asymptotic theory
of moment estimation, for a general class of point processes in R¢, in continuation of
those pioneering works. There is no new material to be found in the sequel, all the
results have been published elsewhere before. So we omit all the proofs. The basic
notions necessary to work with such point processes are only briefly recorded. There
are many basic references, among which the courses of Krickeberg [11] and Neveu [13]
at Saint-Flour are to be recommended.

2. Notations and aims

Let P be a stationary point process on RY, that is a probability measure on the
space {M, B(M)} of the simple point measures on R%. p is a typical realization of P,
that is an element of M chosen at random according to P. yu is then a point measure
on R4, with mass 1 where there is a point of the realization, and 0 elsewhere.

Let g be any real bounded measurable function on (R¢)¥, with compact range. The

kth order moment measure ug‘)(-) of P is defined by the following integrals, provided
they exist:

ugc)(g) = /M P(dp) /(laﬂk g(zy, ..., zp)p(dey) ... p(dey).

Let fi,..., fi be any kuple of real bounded measurable functions on R?. Then the kth



140 Emmanuel Jolivet - XI

order cumulant 7( ) of P is defined by the following expected formula:

YA®...0f)= ZZ( 1)° 3—1)']:[”#"' (@f:)

=1 @, J€Eqr

where Q, is the set of partitionsof 1,2, ...,k in s parts q1, . .., ¢s, and #¢, is the number
of elements of the subset g¢,.

If P is assumed stationary with respect to the translations in R4, then the moments
and the cumulants can be disintegrated: if #(*) is defined, then there exists a measure
'*) called the reduced kth order moment measure, defined by

V(k)(g) = / g(uy, ..., g1, zk)u’(’“)(dul, ooy dug_q)dzy (1)
(Re)*

with u; = z; — z, for i = 1,...,k — 1. The first order moment (or cumulant) of a
point process is called the intensity: if the process is stationary, it is proportional to
the Lebesgue measure on R? and the coefficient of proportionality is called the density.
The second order cumulant is also called the covariance measure of the process.

Furthermore, if P is stationary, there exists an unique probability Py on {M, B(M)},
called the Palm probability associated to P, such that

[ @mopEwuan =z [ fawPduds @)
MxR? MxR?

for any positive measurable function on M x R¢, with T, the translation of vector z on
R4 and z the density of the process.

We observe that equation (2) changes a stochastic integral with respect to the
point measure g into an integral with respect to the intensity of the process, which is
deterministic. On the other hand, let

f(p,zi) = 1{6}(’3:')/(”),‘_l h(z1,...,zk—1)p(dz1) .. p(dee_1)

for G a bounded Borelian subset of R?. Taking g(-) = 1{g}(zk)h(z1,...,2k-1) in
equation (1), we observe that »'(¥) and zu(()k_l) coincide, where u((,k_l) is the (k — 1)th
moment of the Palm probability Py. Moreover, it is known that the Palm probability is
concentrated on the part of M consisting of point measures with a point at the origin.
All these remarks are leading to take as a natural estimator of +/(¥)(h) a sort of mean: if
G is (a part of ) the window of observation of the process, we will consider for each point
y of the realization of y, the random variable n(y,p) = f(nd)k—l h(zy —y,...,Lp—1 —
y)p(dzy) ... p(dzk_1). The random variable Ng(h, 1) defined by

Ne(h,p) = /\(G) > n(zen) 3)

Tx €EGNsupp .u

is an estimator of »'(®!)(h). ) is the Lebesgue measure on R and then A(G) is the
volume of G. Note that Ng(h, u) can be also written

1
Ng(h,p) = m/(na)k Ly (zr)h(z1 — 21y . - Te—1 — zi)p(dzr) - . p(dz).
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Combining equations (2) and (1) leads to the

Proposition 1. (Krickeberg, [11]) If 7(0, u) is in L}(P,), then Ng(h, p) is an unbiased
estimator of V'(¥)(h).

The next section of the paper will be devoted to the asymptotic properties of
Ng(h,v), for h a given function. Existence of densities for the moments will not be
assumed. In that paper, asymptotic is always understood as growth of the window
G to the whole space R%. In section 4, we do assume the existence of densities for
the moments with respect to the Lebesgue measure on the convenient space: they are
estimated taking for h a kernel, hence a function varying with G. These two types of
problems are nonparametric. In the last part of the paper we give some ideas of how to
develop a parametric theory of estimation for the covariance density.

3. Nonparametric estimation of v/(*)(h)

Let us make precise the notion of growth of G to R¢. In fact we wish G to behave
more or less like a ball. The following definition gives a rather general answer.

Definition 1. Let C be the family of nonvoid compact convex subsets of R¢ and B(0,r)
the open ball with center at the origin and radius r. A family {G, },¢r, of subsets of
R is said a regular family if G, € C, é, = sup{|z| : z € G,} tends to infinity with r
and if there exists a real positive number a such that A(G;) > aA(B(0,§é,)) for each r.

An essential property of a regular family is that, for r sufficiently great, side effects
can be neglected.

3.1. Consistency

The following ergodic theorem for random measures proves the consistency of
NG(h’/")‘

Theorem 1. (Nguyen, Zessin, [15]) If P is an ergodic stationary point process and if
the random field h(z, p) is such that, for any bounded Borelian B in R?

[ ([ bz wiutae)y? Py < o, @
M JB
if {Gr}rer, is a regular family, then lim, o, Ng, (h,p) exists P-almost surely and in

LP(P) and is equal to E(Ny(h,u)), U, any bounded Borel subset of R?. Moreover, if
n(0, 1) is in L}(P,) then equation 4 is true for p =1, and for any B,

[ Na(h, ) P(d) = 24w,
M
Consequently, Ng,(h, ) is a consistent unbiased estimator of v"(*)(h).

The proof of the theorem rests mainly on the fact that Ng(h, 1) can be bounded
above and below by quantities to which a classical ergodic theorem can be applied.
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3.2. Convergence in distribution

A rather general theorem is proved under the hypothesis that the process P is
mixing in a sense defined by Brillinger.

Definition 2. A stationary point process P is said Brillinger-mixing if all its reduced
cumulants exist and are o-finite.

Because the reduced cumulants can be seen as measure of the frequency of co-
occurrence of points in a certain configuration, that definition of mixing implies that
the interaction between points of a realization vanish rather quickly when points are far
from each other.

That mixing condition, well adapted to the point processes, is sufficient to prove a
central limit theorem for Ng(h, y).

Theorem 2. (Jolivet, [5]) Let h be a positive function with compact support on
(R%)*=1 and {G,}rer, be a regular family.

If P is a stationary Brillinger-mixing process, and if n(0,p) is in L'(P,), then,
when r tends to infinity, the random variable X, (h, 1) = \/A(G,)[Ne, (h, 1) —'®)(h)]
converges in distribution to a Gaussian random variable, with expectation 0 and variance
depending on the 2p first moments of P and on h.

This result is proved by showing that the kth order moment of X, vanish for
k > 3 when 7 tends to infinity.

However, the hypothesis of Brillinger-mixing is a rather strong one, because it
assumes existence of moments of any order for P. A recent result by Heinrich [4] on a
particular class of point processes shows that it is not minimal. Let’s consider the class
of stationary cluster point processes with a Poisson process as primary process. Heinrich
call them Poisson cluster processes. Let T' be the number of points of one realization of
the secondary process. If E(T'™) exists for any n, then the process is Brillinger-mixing.
But the following weaker result can be shown.

Theorem 3. (Heinrich, [4]) Let P be a stationary Poisson cluster process such that
E(T'?%) exists, and {G, }rer, be aregular family.! Let h obeys the following conditions:

- h has a bounded support,
- |h] is bounded,
. f(Rd)(k-l) h2(£1, ey :Bk_])l/'(k)(dl'l, S ,CI.’L’};_l) > 0.

Then Xg, (h, p) converges in distribution to a Gaussian variable.

1 In fact, the system of subsets considered by Heinrich is slightly more general.
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The proof of this result is done by approximating P with truncated Poisson cluster
processes, that is considering the restrictions of the secondary processes on spheres
centered at the masses of the primary Poisson process, and then showing that Ng_(h, p)
for such a process is a sum of m-dependent random variables.

These two last theorems have a multivariate version in the following sense: if we
consider now h as a function on C, x (R4)¥~1, C, being the unit cube of R?, and if the
conditions of theorem 2 (resp. 3) are fulfilled for h(t;-) for any t in C,, then for any
n-uple ¢1,...,t, of fixed points of Cy, there is a multidimensional version of the central
limit theorems for the vector Xg, (¢1),-..,Xq,(tn)-

3.3. Functional limit theorems

In applications, we are often interested in simultaneous estimation of V’("’)(h) for
various h. Let’s take the following example. Let B be any bounded borelian subset of
RY, and Z(B, u) = p(B) the number of points of the realization in B. The functional
A(B) = E(Z*(B, u))E~Y(Z(B, p)) can be used as an indicator of the aggregative pattern
of a stationary point process, inspired by the methods of quadrat counts (see [16], for
instance). Let h(z) = (BN T,B)A"1(B):

1 A(B T:c,—x;,B
Nolh ) = 555 | 1iorea = )

is a consistent unbiased estimator of v/(?)(h) = A(B).

But A(B) is an indicator of clustering of the process at the scale of B. And it is
obvious that it is not an indicator of the aggregative pattern of the process as a whole.
But we can consider the family A(C;) for the set {C:}c(o,1)¢ of all the parallelepipeds

in the unit cube of R¢. And then we are interested with the process {A\G(Ct)}te[o,l]d
with Ag(C;) = Ng(h(t;-), ) and h(t;z) = A(C, N TC)A™L(CY).
Going back to the general case, assuming the hypothesis of theorem 2 are fulfilled

by h(t;-) for each t in Cy, and some strong continuity property for h with respect to t,
we prove the

Theorem 4. (Jolivet, [5]) If P is a stationary, Brillinger-mixing process, if {h(t; -) }:¢[0,1)¢
fulfils the above mentioned conditions, and if 1,(0, u) is in L'(P,) for each t € [0, 1]¢,
then the process

t— X, (h(t;-), 1)

has almost surely continuous sample paths and, as r tends to infinity, converges in
distribution into the Skohorod space D([0, 1]¢) to a Gaussian process with mean 0 and
covariance function given by

K(s,)= lim [ Xo,(h(s5), )X, (h(t; ), w)P(dn).
r—oo J g
The proof requires two steps:
- almost sure continuity of the sample paths of Xg,,

- convergence of its modulus of continuity to 0.
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Besides the drawback of Brillinger-mixing condition, which is rather sharp, the
continuity condition just referred to ensure almost sure continuity of sample paths can be
regarded as very strong. That assumption is relaxed in Heinrich’s version of functional
limit theorem for Poisson cluster processes. Nevertheless, the conditions he assumes for
the increments of h as a function on [0,1]¢ are not easy to summarize, and we refer the
reader to his original paper.

4. Density estimation

In that section, we restrict ourselves to the estimation of the covariance density,
assuming its existence. We assume h to be a bounded continuous function with integral
1, and we define the family of kernel functions

he(-) = B72h(B;)

where r — (3, is a nonnegative application on R4 such that §, tends to 0 when r tends
to infinity. Let ¢ be the density of the covariance of the process:

Y3(g) = / 9(z,y)q(y — )dz dy.
(Ré)?
An estimator of q(u), u € R?, is given by
(0 =07G) [ Xl @k (e ~y - 0@
R 2

where p¢(-) = p(+) — zA(+), and x is the indicator function of the complement of the
diagonal set A = {z € R%,y € R4z = y}. It was proposed by Krickeberg [11].

As a direct consequence of the cumulant study developed for the proof of theorem
2, we have the following proposition:

Proposition 2. (Jolivet, [7)) If h and B, fulfil the above mentioned conditions, if q is
continuous at u, and if {G,} is a regular family, then, as r tends to infinity, the kth
order cumulant of g,(u) is equivalent to

(NGB atw) [ HH(ee

Two direct consequences are asymptotic unbiasedness of these estimators and conver-
gence in distribution of A\Y/?(G,)(g(u)—¢(«)) to a Gaussian variable. Various extensions
of that result are possible: we examine two of them in the following paragraphs.

4.1. Convergence in distribution

We assume the existence of densities for the moments of order 2, 3 and 4, being
some integrability conditions (for details, see the cited reference). Define

Ar(w) = (MGr)BHY2 (G, (v) — E(G (w))-
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Theorem 5. (Heinrich, [4]) Let P be a stationary Poisson cluster process with moments
verifying the above mentioned conditions and E(T'*) < co; let {G,} be a regular family.
Let uy,...,un be n fixed points of continuity of q such that u; # *uj, for i # j.
Then the vector A(uy),...,Ar(uy) converges in distribution to a vector of n centered
independent Gaussian variables. Furthermore, the quadratic form

n

( /R B(z)dz) - 5 ‘:(i“))

i=1

converges in distribution to a x? with n degrees of freedom when r tends to infinity.

Obviously, that result can be used to test if a Poisson cluster process has a given
covariance density q. Another question is how fast g, approaches g. The next paragraph
answers that question.

4.2. Speed of convergence

Here we assume that A fulfils the assumptions of Proposition 2 and is strongly sym-
metric, that is, for any a € {~1,1}¢, h(z) = h(az). Let D*q(u) be the sth differential
of ¢ at u and ||D*q(u)]| its norm as a s-linear form on RY. Let

10%al = [ 10" g(wfau
Re

Then we have the

Theorem 6. (Jolivet, [7]) If P is a stationary Brillinger-mixing point process, and if
it admits reduced cumulants of order 2, 3 and 4 with bounded continuous densities, if
q is s times differentiable, and if || D,q||3 exists, then

limsup A(G,) P B [ (3 () - a(w))*du < C [l Q7 + 10" al50 7]

r—o0

where K is a compact subset of R%, C a constant depending only on s and g, and the
relation between the size of G, and B, being given by Q = X\(G,)B+2?*, for Q a constant.

r

We then have an overestimation of the speed of convergence of g, to ¢ as measured
by an integrated square error on any compact K. That result is optimal in that it is
not possible to achieve a better speed, as is claimed by the following theorem. Here
Q, is the whole set of stationary point processes on R? with density z and s times
differentiable covariance density such that ||D,q||3 is bounded above by M.

Theorem 7. (Jolivet, [6]) If P is a point process in Q,, and if § is any estimator of
its covariance density, then

liminf inf sup A(G,)7%7 / (@ (u) — q(v)%du > C
r—00 q PEQM R4

where C is a constant.
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All the results until Theorem 6 are purely nonparametric and rest on a careful study
of the cumulants of the statistics involved. The (Brillinger or m) mixing conditions play
a key role in the theory. To prove the Theorem 7, the methods change radically: we
need to study the likelihood of a family of point processes very close to the Poisson
process, here a family of Gauss-Poisson processes. Studying the likelihood open the
way to estimation in parametric models of the moments: it is the aim of the following
section.

5. Likelihood - Parametric models

The general form of the likelihood of a point process which cumulants admit densi-
ties with respect to the Lebesgue measure was first given by Kuznetsov and Stratonovich
[12]. Let p*) be the density of ¥(*). If we observe u = €z, + ...+ €z, on G, g; being
the measure with mass 1 concentrated at z, then the density of the likelihood is given
by

L(n,G) = eXP Z( G,p(“(yx,...,yj)dyx-.~,dy,-
J

ZZH Z( Gjp(#q')(:ca;,...,:ca;qr,yl,...,yj)dyl...dyj (5)

=1 Ql r=1

where Q; is the set of partitions of {1,...,k} into [ parts g1, ..., q, the elements of g,
being af,...,a%, .

That very unattractive expression is simplified in the case of a Gauss-Poisson pro-
cess. Let’s recall that a stationary Gauss-Poisson process is, roughly speaking, a Poisson
cluster process whose random cluster size is 1 or 2. Its cluster members are indepen-
dently distributed around the cluster centers according to a distribution on R? which
is the reduced cumulant conveniently normalized. Then a stationary Gauss-Poisson
process is completely determined by the densities of its two first cumulants.

Let, as in the preceding section, ¢ be the density of the reduced covariance. Then,
by application of formula 5, we have

£(1,6) = 4exp (—zA(G) 43 [ dte-visay)

[k/2] j
33 T e@onier = 2020) H < / q(xa.—y)dy> (6)
i=0 a(j;k)i=1 1=2j+1

when the observation of the realization p on G is €, + ...+ €,,. Here o(j;k) is the
set of all the partitions of {1,...,k} into j pairs and k — 2j singletons, o2;—1 and o
being the elements of pair number j and oy being the element of singleton number . A
careful study of formula 6 (see [6] and [8]) leads to the following approximation

Le(p,q) = %G) (/Gz(zzq(x —-y)+ %qz(z' — y)) - (/Gz x(z,y)q(z - y)ﬂ(dx)u(dy)) :

(M)
From now on, we forget this approximation is coming from a Gauss-Poisson model.
If the covariance density ¢ is assumed to vary into a parametric family {g(.,0)}sco,
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© being a compact subset of R™, then it is tempting to use Cg(p,0) = Le(p,q) for
q(-) = g(-,0), as a contrast, and to choose as estimator for §

9, = arg {’réig Cq, (4, a).

The results given by the two next theorems are obtained by using the standard methods
of asymptotic statistics.

Theorem 8. (Jolivet, [8]) If the stationary process P,, with known density z and
covariance density g(-,0) is ergodic and if

- g(.,8) is non-negative, bounded, continuous and integrable for each 6 in ©,
- g(z,.) is continuous for each z in RY,

then 5, is a weakly consistent estimator of 6.

Theorem 9. (Jolivet, [8]) If
- Py is Brillinger-mixing,

- for any z, g is twice differentiable with respect to 6 and follows the hypotheses
of theorem 8, as well as any of its two first order derivatives,

T
dg(x,0 dg(x,0 . . .. .
: fR., (—'("Tlao ) —ﬂw—ldz: is a non-singular positive matrix

then A(G,)'/%(8, — 0) converges in distribution to a centered Gaussian variable, as
r tends to infinity.

6. Conclusion

The results collected in that paper show that the statistical analysis results of
moments of stationary processes are very similar to the ones of classical statistical
analysis of i.i.d. samples, although the methods are relatively different. The only
requirement is a reasonable mixing condition.

The nonparametric approach seems to be rather complete. Nevertheless, minimal
conditions on the process, in terms of mixing conditions, could be investigated. On the
other hand, the functional central limits theorem quoted here are restricted to the class
of parallelepipeds of an euclidean space: investigation on more general classes would be
of interest from both theoretical and applied points of view.

The parametric theory is much less developed, because of the complicated structure
of the likelihood of such processes, even for simple models like Gauss-Poisson. How-
ever, even the very restricted results obtained until now could be extended along the
lines of actual works in asymptotic statistics: better knowledge of asymptotic behavior,
introduction of resampling techniques could be some promising perspectives.
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