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ABSTRACT

Mathematical problems which arise in river basin hydrology involve
the asymptotic analysis, under large source number, of random tree
graphs and branching patterns. Some orientation to these problems
will be illustrated by a brief survey of some rigorously known results
in the case of a well-known empirical bifurcation law due to Robert
Horton. Covered are the law of large numbers and central limit the-
orems which arise in connection with Horton ratios.
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1. Introduction

Hydrologists seek to understand and predict the movement of water over land and
beneath the surface. This makes the river basin a focal point of hydrologic science.
River basin anatomy may be viewed at various scales, extending from the microscopic
scales of porous media, to the hydraulic scales of flow through a pipe or channel, to
the much larger scales of river networks. Our focus here is on network (basin) scale
properties as opposed to the single channel hydraulics.

Hydrologic investigations of river basins are carried out with the aid of a number
of resources. One way, for example, is through the space/time data base of hydrologic
fluxes, e.g., streamflows, rainfall intensity, sediment flows, etc., made available by gauges
of various sorts. Although desirable, gauged networks are limited in the US and around
the world by the obvious expenses associated with their installation and maintenance.
Another important data resource is mapping, e.g., planimetric, topographic, remotely
sensed, etc. We shall address here some network properties known empirically through
the study of maps.

The hydrologic view of the pattern of streams found in river basins has led to a
number of interesting statistical observations which are understood to varying degrees
of empiricism and mathematical rigor. In the next couple of sections we shall describe
some results in the context of a simple model which were originally obtained from
maps of natural river systems. Some comparisons with the results known for real river
networks will also be indicated. Apart from scale considerations, there is still a degree
of arbitrariness with regard to inclusions or omissions of certain streams in the mapping
of networks. This makes asymptotics and robustness problems quite important from
the point of view of applications. In place of basin detail, one looks for asymptotic
stabilities and laws of averages which exploit the largeness of networks in various ways.

It is noteworthy that certain of the river network codes and statistics described here
have also been computed for other naturally occurring branching networks, including
lightning patterns, vessels of lung tissue, leaf patterns, root systems, computer storage
designs and so on. A few references in these directions are, for example, Berry and
Bradley (1976), Borchert and Slade (1981), Flajolet and Prodinger (1986), and Hors-
field (1980). As a matter of orientation to neural networks, Hopfield and Tank (1987)
liken neural processing to the "motion of a raindrop which lands on a terrain of hills
and valleys." Needless to say, the familiar uses of hydraulics to "clarify" the flow of
current in an electric network, or that of electric currents to "clarify" the principles
governing the flow of water in a pipe or channel network, at least signify an important
role for a certain amount of mathematical abstraction and rigor in the study of what are
otherwise largely physical problems. The approach illustrated here is to study simple
idealizations in an attempt to understand with paper and pencil what may be expected
as "typical"behavior of certain network statistics observed in practice. In any case, the
problems and results are of a broader interest than hydrology alone.

2. The random model

As we wish to consider probability distributions over a space of rooted trees, it will
be convenient to record some basic terminology pertaining to such structures. Broader
familiarity with general definitions from graph theory such as graph, vertex, edge, adja-
cency, connectivity, etc., is assumed; see Chartrand and Lesniak (1986), for example.

A tree graph is a connected graph without loops. A binary tree is a tree graph
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whose vertices each have degree (valence) one or three. A rooted (or planted) tree refers
to a tree graph in which a degree one vertex is selected to be uniquely designated as the
root. All other degree one vertices are referred to as sources. The degree three vertices
are called junctions. The single edge which has the root as an endpoint is called the
stem. Edges between two junctions are called internal links, and those between a source
and a junction are external links. The stem of a tree graph is regarded as an internal
link, except when the graph consists of only a stem joining a single vertex to the root.
In the latter case it is defined to be an external link. Finally, the rooted tree may
be endowed with a natural edge orientation (diagraph structure) consistent with the
direction of streamflows when the root represents the network outlet. This makes each
vertex, other than the root, incident to one and only one link (the "downstream" link).
There are places where it is convenient to use this identification of vertices and links in
the combinatorics. The above terminology is summarized in Figure 2.1.

(0,0,1,2,2)

(0,0,1,2,1)

(0,0,2) (0,0,1,1)

Junction *Γ(0,0,1,2)

External
Link

Root * (0)

Figure 2.1. Rooted Binary Tree Graph

From here on, the term "tree" will be used to refer to a rooted binary tree diagraph.
The number of sources in a tree is a basic parameter called the magnitude. A tree with
magnitude n > 1 has n — 1 junctions and a root. The total number of links, including
the stem, is 2n — 1; this also being the total number of vertices (excluding the root).

An equivalent (coordinatized) representation of rooted binary trees may be obtained
by a standard coding of the vertices. Namely, consider the space of words (sequences)
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given by
oo

W=\J\Vk (2.1)
fc=0

where Wo = {(0)}, Wt = {(0,0)}, Wk = {(εo,ε1,ε2,... ,ek) : ε 0 = fii = 0, 6 j € {1,2},
3 > 2}, in general. Then W may be regarded as the set of vertices of the full infinite
rooted binary tree graph, with root (0), when endowed with the obvious edge connections
between vertices (a) G W. A (finite) rooted binary tree graph of magnitude n can be
defined within this framework as a connected subgraph of W containing the root (0)
and having 2n — 1 edges.

Let Ωn denote the sample space of trees of magnitude n. Then Ωn consists of
(Cayley's formula)

1 ' 2 n - l

distinct trees. The finite random model is defined by the equiprobable (uniform) distri-
bution pn on Ωn according to which each tree graph r in Ωn occurs with equal probability
Pn({τ}) = lΩnl"*1. For 0 < p < 1/2, q = 1 — p, an infinite (grand canonical) random
model can be defined as the probability distribution concentrated on the denumerably
infinite sample space Ω^) of finite trees given by

oo

Ω<'> = U Ωn, (2.3)

as
Qp({τ}) = pn ιqn for τ £ Ωn for some n > 1. (2-4)

The root-stem is certain, and may be terminated with probability q or twice repli-
cated with probability p. For this model the magnitude is a random variable Mo with
probability distribution given by

1 / O._ 1 \
n-l n _ i o / o K Λ

(f , /«• — 1 , Z , . . . . yΔ.Oj

In particular, MQ is Qp-almost surely finite for p < 1/2 and

Qp({τ}\M = n) = { \ n J (2.6)

otherwise

This latter property may be viewed as sufficiency of the statistic Mo (for estimating p)
based on the tree sample.

The successive family trees r ^ 0 ) , ^ 1 ) , ^ 2 ) , . . . , r^n\ . . . of the Bienayme-Galton-
Watson binary branching process (starting from a single root-stem) may be regarded
as randomly generated rooted trees. The offspring distribution has mean μ — 2p < 1,
making eventual extinction and,therefore, a finite limiting family tree certain to occur.
The distribution of the entire (limiting) family tree r(°°) G Ω ^ so generated is given
by (2.4).

Channel lengths are certainly among the most important quantities one observes in
a river network. Investigations of certain basic notions pertaining to river length may
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be found in the classic papers of Steinhaus (1954) and Einstein (1934) which continue
to inspire modern research. In the present framework one may consider the (graphical
or topologicat) distance (or height) from a vertex v = (εo,£i,£2, ' ε *) ^ ^ t o ^e
root (0) G W is defined by \υ\ = k. While this distance is sufficient for the problems
described here, more general notions of distance between vertices and lengths of links are
easily introduced with the aid of weighted graphs; i.e., positive numbers are (randomly)
assigned to the edges according to various possible schemes to represent link lengths.
One may then study various statistics such as total channel length, main channel length,
etc.; the latter being an extreme value statistic. For networks one seeks to obtain laws
of averages for river lengths by exploiting the largeness of the link population. The
literature on problems pertaining to main channel length is relatively large. Readers
interested in some recent theoretical results on main channel length may consult Gupta,
Mesa, and Waymire (1989) and references therein.

3. Horton laws

The Horton-Strahler ordering of a channel network is a coding scheme which weights
the network bifurcation pattern. Horton's ideas led to the rather striking estimate on
the total length of channels in the US to be on the order of 3 million miles [Leopold,
1962]. The ordering of a network is constructed recursively as follows. The external
links, equivalently source vertices, are defined to have order one. The vertex and its
associated edge incident from a pair of first order links has order two. The rule from
here on says that a vertex and its associated edge incident from a pair of links of orders
m and n, respectively, each has order max(ra,n) if m φ n. The order of the stem is
referred to as the order of the network (see Figure 3.1). In particular, the network order
is the maximal stream order in the network.

(a) (b) (c)

Figure 3.1. Horton Order

Note that if the magnitude Mo = n > 2 then the network order H satisfies

2 < H < log2 Mo + 1. (3.1)
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If Mo = n = 1 then H = 1.

A stream of order ft is a maximal connected directed path of links of equal order ft.
The stream is said to originate at the vertex (α) associated with the link of the path at
the farthest graphical distance from the root. Let S^ denote the number of streams
of order ft and let L^*1' denote the number of links of order ft in a network. For the
networks of Figure 3.1 one has L^ = S& = 5, L& = 4, S<2) = 1 in (a); L^ = S™ = 8,
L{2) = 5 ( 2 ) = 4 j L (3) = 5 ( 3 ) = 2 > L (4) = 5 (4 ) = ! i n ( b ) ; LW = 5 ( 1 ) = 8 j L(2) = 4 >

5(2) = 3, L(3) = 3, S& = 1 in (c). In any case, L^ = S& = Mo (magnitude) and
S(H) = L τ h e r a t i o s

are referred to as (Horton) link and stream number bifurcation ratios, respectively.
Robert Horton (1945) observed early on that such ratios were quite stable for natu-
ral basins, with values of Brs , for example, near 1/4.

The first rigorous result in this connection was a calculation of the following ratios
of probabilities by R. Shreve (1967). Let Hs(a) denote the order of a stream which
originates at the vertex (α), and let HL{O) denote the order of (α) (or the link associated
with (α)). Note that the random field Hsipί) is not defined for all vertices (α); one may
arbitrarily define Hs(oc) = 0 if no stream originates at (a).

Theorem 3.1. Under the random model distribution (2.4),

'• Q1/2(Hs(α) = A)

JJ.
) = h)

The ratios are obtained by considering the tree recursions

QP(HL(α) = ft) = vQp{HL{α, 1) = ft) £ Qp(HL(α, 2) = j)

3 = 1

h-1

+ PQP{HL{α, 1) = ft) Σ Qv(HL{α, 2) = j)
3 = 1

+ pQP(HL(α1l) = ft - l)Qp(HL(α,2) = ft - l),ft > 2, (3.2α)

Qp(HL(α) =l) = q (3.26)

and

QP(Hs(α) = h)= pQp(HL(α, 1) = h - l)Qp(HL(α, 2) = h - 1), h > 2, (3.3α)

Qp(i75(α) = 1) = q, (3.36)

under the invαήαnce property, Qp(Hs(&) = ft) = Qp(Hs(β) = ft) and <5p(i/χ,(α) = ft) =
Qp(HL(β) = ft), ft > 1, for all (α), (/?). In particular, one obtains Q1/2(HL(α) = ft) =
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2"Λ, h > 1, and Qp(Hs{ot) = h) = 2/4\ A > 1. The distribution of Hs(a) is defective
since a stream that originates at (α) need not occur; the conditional distribution of
Hs(a) given that a stream originates at (α) is of the form 3/4Λ, h > 1.

For a given value of n, the largest network order possible is 1 -f Iog2n. Precise
asymptotics on the expected network order were obtained by Meir,Moon, and Pounder
(1980) which show that for fixed n, the expected network order is \log2n + 0(1). This
and the above result of Shreve describe the structure of network statistics in terms of
"phase averages". From the point of view of network data analysis, one also seeks the
behavior of sample values for large networks. In this connection, Gupta and Waymire
(1983) provide a law of large numbers for rigorous interpretation of Shreve's probability
ratios (ie.jThm 3.1 above) in the form of a statistical law of stream numbers as observed
by Horton. The precise result is as follows.

Theorem 3.2. (Law of Large Numbers). Let S$?\S^ = n, L ^ \ L ^ = n denote the
numbers of second and first order streams and links, respectively, in the random model
Pn of magnitude n. Then

> — in probability as n —• oo
4

ϋ . — j ~ —• - in probability as n —> oo.
Lγi

The proofs are simple applications of Chebyshev's inequality based on first and sec-
ond moment calculations. In the case of stream numbers Shreve (1966) used simple
combinatorics which provide the exact form of the distribution of Sn according to

( ; _ 2 ) | ^ ( ) i = l,2 [»/2], (3.4)

where

is the normalization constant. The first two moments are, as first computed by Werner
(1972),

n{n —

2(2n-V(2n-5) - ϊ e 3 3 " ^ 0 0 -
So part (i) follows directly from this and Chebyshev's inequality. The companion cal-
culations for part (ii) were made by Mesa (1986). Self-contained derivations of these
results can also be found in Wang and Waymire (1989).

The fluctuation laws for the bifurcation ratios were recently worked out by Wang
and Waymire (1989) in the case of stream order ratios. The precise result is as follows.
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Theorem 3.3. (Central limit theorem) Let S$?\S£\I$\L^ be as in Theorem 3.2.
Then} denoting convergence in distribution by =>>,

where N(μ,σ2) denotes the normal distribution with mean μ and variance σ2.

The proof is based on methods from large deviation theory. In fact, we obtain that

^ ± i ) . (3-6)

in a suitably small neighborhood of zero.

In the case of link number ratios companion calculations suggest the following
conjecture:

r(2)
(3.7)

However we have not been able to completely resolve this problem. Another somewhat
related class of problems is treated by Flajolet and Odlyzko (1984) with methods which
may be relevant here, or vice-versa.

In the course of trying to identify the slowly varying part of a Tauberian limit
for a moment sequence in the proof of Theorem 3.3, the following curious identity was
discovered

(3.8)

where Γ(x) is the gamma function. Among its many innocent-looking equivalents is the
identity

fn+l\ (n-l\
uA-lJ°*-'-- » c )

It may be worthwhile remarking that this is precisely the sort of identity for which the
symbolic software package Mαcsymα is very quick to furnish a hi-tech "proof". Although
we could not come up with a "ball and urn"explanation, we did eventually find a more
conventional induction proof and we have since learned a bit about the combinatorial
content of (3.9) from Otto G. Ruehr. In fact he observed that it may also be obtained
as a special case of Gauss's theorem for 2^1 hypergeometric functions; see Wang and
Waymire (1989) for a sketch.
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