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ABSTRACT

One observes a finite sample from a discrete process indexed by a
cf-dίmensional lattice, d >= 1. If d = 1 and it is assumed that the
process is a Markov chain of order at most t, known, then procedures
are available for estimating the order and obtaining the admissible
confidence intervals. These procedures are (partially) extended to
Markov fields, d >=̂= 2, where it is necessary to consider shapes and
where the "order" is described by the nearest neighbor potential.
Bayes tests are obtained for testing independence against a depen-
dence described by an arbitrary clique. The equivalence of a minimal
sufficient statistic and a canonical nearest neighbor Gibbs potential
is obtained for arbitrary Markov chains and for Markov fields which
are exponential families.
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1. Introduction

Imagine that you are looking at a map of southern Arizona and you see the locations
of twenty rain-gauge stations. In addition to the map you have daily precipitation data
for the past ten years at each station. (An extensive network of raingauge stations exists
near Tombstone, Arizona, the location of Wyatt Earp's shootout at the OK Corral.)
Next imagine you are looking at a black-and-white photograph, greatly enlarged. In
both cases, the rain-gauge stations and the photograph, we can ask if there is a pattern
of dependence in the data. We study this question, dependence, using techniques from
statistical inference about Markov chains and the ideas in the pioneering papers of Besag
(1972, 1974) and Pickard (1976, 1982, 1987) as our guide.

We assume the reader is familiar with the notions of Markov chains and their
generalization to spatial variables, Markov fields. Because the literature on chains is
enormous, we give no general references. The terminology we use for Markov fields is
taken from the books by Kindermann and Snell (1980) and Preston (1974). We first
briefly discuss statistical inference about the order of Markov chains, then proceed to
Markov fields. Along the way, we establish a correspondence between minimal sufficient
statistics and nearest neighbor Gibbs potentials, obtaining as a corollary a method for
estimating the cliques in the canonical nearest neighbor potential.

Let Xι, X2>... be a stationary Markov chain with r + 1 states, 1 < r < oo. (With
more notation the results of this section extend to countable-state chains.) If x =
(x\,..., XJV) is a sample of size N then the density is

p(x) = pXlp{\.. .pivpih" • • -ήv •••&• --ply, (i)

where pXχ is the probability of the initial state, the pij are the transition probabilities,
and the fy count the number of times state i is followed by state j in the sample.
The statistic T = (a?χ, {fy : i,j = 0,.. . , r}) is a minimal sufficient statistic if r > 2
(Wright (1980)). Two remarks are in order. If Xi,X2> is a stationary two-state
Markov chain, there exists a complete sufficient statistic (Denny and Wright (1978),
Denny and Yakowitz (1978)), but if the stationary chain has k states, 3 < k < oo,
there exist no nontrivial optimal estimation and confidence interval methods, without
imposing additional structure on the statistical decision set-up. To give an example,
the sample mean from a stationary 3-state Markov chain is not a minimum variance
unbiased estimate of the expected value of the chain. On the other hand, Pickard
(1987) has observed that for some stationary two-state Markov fields, there does exist
a complete sufficient statistic. Recall that the statistic T — {x\,fij : i,j = 0, . . . r )
is a minimal sufficient statistic for a stationary Markov chain with k > 3 states. The
definitions of cliques and potentials are recalled in Section 2.

Theorem 1. The minimal sufficient statistic T determines the cliques in the canonical
nearest neighbor Gibbs potentials, and conversely.

Proof. Let P(x) be a probability determined by a nearest neighbor Gibbs potential V,
so that

\j2Vc(x)\, (2)
c j

where the summation is over all cliques Vc on 1,..., N. In general the Vc are not
unique. We first show that the representation (1) determines a potential V so that (2)
holds and also
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(a) V is a nearest neighbor Gibbs potential: Vc(x) = 0 whenever C is not a clique;

(b) Vc(x) = 0 whenever xt — 0 for at least one / G C.

The representation (1) becomes

p(x) = W p o W ί f W O I ~ " ~ / Γ Γ P 6 Ϊ 1 •••dv
= •P(0)(Px1/Po)(poi/poo)/θ1 (ίVr/Poo)'",

where ϋ = (0,..., 0) and we use f00 +... + frr = N - 1. Let /.,- = £ fij a n d /< = Σ) Λj
• j

Then

ί Π (Λj/Poo)/uJ • ίΠ(Poi/poo)/oM ί Π(P«/Poo)/ioJ

) ( /poo)Λi ) (3)

Let /,. equal the number of Γs in (x2, ,XN-I) Because fc is the number of z's in
(xi,..., XN-I) and f.j is the number of j ' s in (#2, , XN), then f{, /«., and /.2 differ by
at most one. Moreover, (XI,XN) determines whether \fi. — / t | = 1 or 0, and similarly
for the other cases. But (a?i,{/tj}) determines XN (Billingsley (1961)) and since T(=

(ziΛfij : *J > 0})) i s equivalent to 5 = (xi,{fij : hi > ι)Λfi•,/•< : * = l,...,r}), it
follows that S determines x^.

The preceding facts together with (3) gives us

r

H2(xN) + Σ fijtn(pijPoo/pioPoj)
,j

(4)
where the functions Hi and #2 are obtained by enumerating the different cases for
xι and xN, and i/i(0) = # 2(0) = 0. Then (4) becomes (2) if we define Z~ι =
P(0),F { 1 }(x) = # ! ( * ! ) , V w ( x ) = ίΓ2(aϊN), ^ { 5 }(x) = £n(Piopoi/p2oo) if 5̂ = i for
* = 2,..., ΛΓ - 1 and i = 0,..., r, V{SjS+i}(z) = £n(pijpOo/pioPoj) if xs = i > 1 and
x 5 + 1 = j > 1 or V(5)5+i}(x) = 0 if either x, or xs+χ = 0 for s = 1,..., JVi, and ^(x) = 0
in all other cases. Because T and 5 are equivalent, it follows that 5 determines the
canonical potential V, above, and by reversing the argument, that V determines 5.
This completes the proof.

Corollary. The maximum likelihood estimates of the cliques are obtained from the
above Vc by replacing the pij by their maximum likelihood estimates.

Remarks. Theorem 1 generalizes the discussion, referring to two-state chains, on pages
29 to 31 of Kindermann and Sell (1980). Tanemura (1988) considers questions related
to the Corollary.
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We recall briefly the problem of deciding the order of dependence in a Markov chain
of order s < t, t known. Recall that a process {X» : i = 1,2,...} is a Markov chain
of order s if the process {Y{ : i = 1,2,...} is an ordinary Markov chain of order 1,
where Yi = (X t , X ί + i , . . . £ t + s _ i ) . (Because each chain of order s is of order s + 1 , the
order of a chain is of course the smallest such s.) Perhaps the earliest paper to consider
testing independence (order 0) against an assumed order of at most 1 is that of David
(1947), who developed the run test. David considers two-state stationary chains. Using
the relation between similar tests and complete sufficient statistics, one can show that
there are tests for independence against the alternative P(X{ = l\Xi~ι = 1) > P(Xi =
l\Xi-i = 0) which are, for suitable levels of significance, uniformly most powerful among
the class of unbiased tests (Lehmann (1986)). As soon as one tries to generalize this
result to fc-state chains or chains of order s > 2, one encounters the difficulty that there
is no complete sufficient statistic for such stationary chains. (See above.) Nevertheless,
by assuming the initial state is fixed (the initial state is (a?χ,... ,a?t) if the order is
assumed to be less than or equal to t), one obtains the result that all admissible level a
tests for the hypothesis that the order is s < SQ against so < s < t are Bayes tests based
on the transition count statistic. Other facts about tests for dependence in chains may
be found in the survey article by Denny (1985).

2. Markov fields

In this section we recall definitions and properties of Markov fields, mostly following
the paper of Besag (1974), but also touching on ideas in Kindermann and Snell (1980).
We give a version of the Hammersley-ClifFord theorem, again following Besag, which
is useful for statistical problems. A reader familiar with the basic definitions may
want to proceed to Section 3. Let 5 be a countable set and let {Xs : s G S} be
a collection of random variables. We say that elements s,t G S are neighbors if the
random variables Xs,Xt are not conditionally independent given {Xi : i G S,i φ s,t}.
Recall the definition of a clique: a non-empty subset C C S is a clique if either (a) C
is a singleton {s}, or (b) each element of C is a neighbor of every other element of C.
Assume that each I 4 , S G S , can take at most a countable set of values, say {0,1,...}.
Because we appeal to the Hammersley-Clifford theorem (Besag (1974)) we assume that
P(XS = 0, s G S) > 0. Let x = (xs,s £ S) denote a particular realization of {Xs, s G S}
and assume that S is finite, relabeling x = ( # i , . . . ,XN)- Let X denote the set of all
realizations x, so that X can be identified with a product of N copies of the nonnegative
integers. If Q is an arbitrary function on X with Q(0) = 0, then it is elementary to
show that Q has a unique representation

Q(χ) = ^jΓ XiGi(Xi)+Σ XiXjGij(XiXj) + . .+ ̂  X\X2 ZjvGi,2,...,iv(zi, X2, . . , ZJV),
Λ(l) A(2) A(N)

where A(k) is the set of all ordered fc-tuples, 1 < j \ < 32 < > jfc < N Recall the
definition of a Markov field: the process {Xs : s G S} is a Markov field if P(XS =
xs\Xt = xut G S,t φ s) = P(XS = xs\Xt = xut G N8), where N8 is the set of
neighbors of s, this holding for all s £ S. Additional requirements may be needed if
S is not a finite set, and to simplify we will hereafter assume S is finite. Here is a
version of the Hammersley-Clifford theorem, not as Hammersley and Clifford stated it,
but adequate for our purposes. We omit a proof; but see Besag (1974).

Theorem. Let {Xs : s G S} be a process, with S a finite set. Assume a repre-
sentation P(x) = P(U)e<K*),Q(0) = 0, with P(ϋ) > 0, so that £><?(*) < oo,P(0) =
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(Σx6^)'1- 1{{χs ' « € S} is a Markov ήeld then (a) if a function Gij^kixi^Xj^.^Xk
in the representation ofQ is not identically zero then (i,j,... ,k) is a clique, and (b) for
fixed (i,i), ifGM(k) is identically zero for all k-tuples M(k), k > 2, containing (i, j) then
(i,j) is not a clique. Conversely, assume {Xs} is a process with the above representa-
tion. Then {X5} is a Markov field with a neighborhood system {Ns : s £ S} defined as
follows: for each s 6 S,NS = {t : there exists a k-tuple M(k), k > 2, containing {s,t}
so that Gjvf(t) is not identically zero}.

We digress to rephrase the above in the language of Kindermann and Snell. Assume
that Gibbs measure representation

(5)

the summation over all non-empty subsets of S. The potential V, a function of C and s
satisfies: if C = {ί, j , . . . , k} then Vc(x) is a function of (xi,Xj,..., #*). A potential V is
called a nearest neighbor Gibbs potential if Vc(x) is identically zero whenever C is not
a clique, and is called the canonical potential if Vc(x) = 0 whenever xt — 0 for at least
one * € C. Clearly, if each Vc(x) = a?ι a?j .£*£;,./,...,*(£;, £/, .. ,Xjb),C = {i, j , . . . ,fc},
then V is a canonical nearest neighbor Gibbs potential, is unique, and Z~ι = P(0).

3. Markov fields - parametric Bayesian inference

In this section we propose some natural Bayes estimators of the extent (order) of
the dependence in Markov fields, assuming the densities of the fields to be a fc-parameter
exponential family. One result uses the theorems of Pickard (1982, 1987), which prove
consistency of the maximum likelihood estimators (avoiding phase transitions), and
theorems of Le Cam (1958, 1986) about asymptotic properties of Bayes procedures.

Because we follow Pickard, we use his assumptions. To begin, let Z denote the
integers and let Zd, d> 1, denote the product of d copies of Z. We introduce a simple
graph Goo on Zd, requiring that there exists a finite upper bound on the distance
between two vertices joined by an edge. Let S C Zd be a finite subset whose boundary
δS satisfies \δS\ = O(\S\1"1^d)} so that the dimension of δS is essentially smaller than
that of 5. Let G denote the subgraph oί Goo inherited by S. Recall that a simple graph
is complete if each pair of vertices is adjacent. If C\ and C2 are complete subgraphs of
G, then C\ and C2 are said to be equivalent if C\ is a translate of C2. Let Ci,..., Cj.
denote the equivalence classes of complete subgraphs of G with the above equivalence
relation, where C\ is the class of singletons. With each s £ S associate a random variable
Xs which takes values in {0,1}. We define a statistic T o n A ' r {0,1}5 (the set of all
functions from S into {0,1}),T" = ( Γ l f . . . ,T*), by

For each α £ Rk,αf = (αi,. . . ,αjk), define a probability Pα on X by

Pα(x) = c(α)eα>τ. (6)

In particular, Pα(0) = c(α). If for α G Rk the distribution of {Xs} is given by Pα(X =
x) = Pα(x) then by the Hammersley-Clifford theorem {Xs} is a Markov field with



IV - Inference About The Shape of Neighboring Points in Fields 51

a neighborhood system {Ns : s G S} defined by Ns = {t : t belongs to a complete
k

subgraph C G (Jc* containing s}.
2

The representation (6) of Pa(x) gives a correspondence between complete sufficient
statistics and the canonical nearest neighbor Gibbs potential. The situation is simpler
than the case of Markov chains, for there is no transition count statistic. The following
theorem, whose proof is immediate, holds for Markov fields with Xs taking values in
{0,1,...}.

Theorem 2. The representation (6) in terms of the complete sufficient statistic T
implies the representation (5) with the canonical nearest neighbor Gibbs potential Vc
denned by Vc{x) = α» Π χj> f°Γ α» corresponding to T{.

jC

We briefly describe the decision problem, our methods being standard. As already
indicated, the parameter space is Rk, with α' = (αi, . . . , α*) denoting a parameter point.
We will decompose Rk in order to decide on the extend of the dependence. Let A(0) =
0 G Rk, and for each non-empty subset {zΊ,..., ip} C {1,..., fc} let A(ι'i, , ip) —
{(αi,...,αfc) : [α̂ .̂| > 0 for only i i, . . . , i p }. We let the set Δ of decisions be the 2k

sets A(iι,..., ip). Choosing A(0) is equivalent to agreeing that α — (0,..., 0) and that
the random variables Xs are independent, and choosing the other A(iχ,..., cp) is to be
interpreted similarly. We introduce the remaining (familiar) elements of the decision
problem. Let W(α,'s) denote a bounded loss function, α G Rk,~s G Δ, and let a decision
rule ? associate with each i G ^ a distribution Fx on Δ. Let

let

' W(a,s,x)Pa(dx);

and let

= f
Jx

r(μ,s) = / R(α,s)μ(dα),

the Bayes risk, where μ is a probability on Rk, the prior probability. Let δ(μ,s) =
r(μ,5')--inf{r(/i,5/)}, the inf being taken over all decision rules s*. If {SN} is a sequence
of decision rules, then {SN} is said to be asymptotically Bayes with respect to μ if
<5(μ,~sn) —»• 0. Let μ be a probability on Rk. Then there exist probabilities μt satisfying
μi(A(i)) = 1 and nonnegative τrt ,^7Γz = 1, so that μ(B) = Y^τriμi(B)J Borel B C Rk.
By the usual argument,

P(A(ι)\x) = c(x)π< Jc(α)eα'τ^μi(dα),

where P is the probability induced by μ and the Pα. Assume now that W(α,s) = 0 if
α belongs to the subset of Rk identified with the decision, and W(α)s) ^ 1 otherwise.
Then clearly the Bayes decision rule Ί minimizing the Bayes risk is: ~s(x) = that i
maximizing P(A(i)\x).
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We turn to the question of the dependence of ? on a particular prior μ. Theorem
3 shows that for a class of priors avoiding phase transition the above decision rule is
asymptotically Bayes. This fact, a consequence of theorems of Pickard (1982) and Le
Cam (1958, 1986), may turn out to be useful, for finding computationally feasible Bayes
procedures has eluded us in the general case. We now follow the assumptions of Pickard
(1982). Let A C Rk be a compact set, disjoint from T, the set of phase transitions.
Recall that c(a), a G Rk, denotes the constant term in the probability Pa on X, and note
that X and c(a) depend on S C Zd, the set of sites. Consider an increasing sequence of
5, ordered by inclusion and satisfying the above boundary conditions, and let N = \S\.
In this section we write c(a) = CN(CL). Assume there is a function H defined on A so
that uniformly for a £ A

(i) N-HncN{a) -> Jϊ(α),

a\* . . . dar

k

k - * dar

1

1...dar

k

h '

for Γi -f ... + Γfc < 3, and H satisfies

(iii) The Hessian of H is positive definite.

Theorem 3. With the above assumption on A and c/v(α)> α G A, let μ be a probability,
μ(α) = 1. If ι/ is a probability absolutely continuous with respect to μ and {SN} i S a

sequence of decision rules asymptotically Bayes for μ, then {SN} is asymptotically Bayes
for v.

Proof. From Theorem 1 of Pickard (1982) it follows that the maximum likelihood
estimates α of α G A are consistent. The assertion follows from Proposition 2 and
Theorem 1 of Le Cam (1958).

We specialize the decision problem to obtain computationally feasible methods
which are applicable in some generality. Looking at the parametric Markov fields defined
by (6), one sees that the extent of the dependence involves the shape of the cliques, the
size of the cliques, and the weighting of the cliques - the parameter α G Rk • Notice that
in such a parametric statistical problem, the statistician chooses the shape, size, and
number of the cliques, and only the weighting remains unknown. We need not elaborate
on the perils of the doubtful path. Nevertheless, that is the path we have taken.

We first consider only two C, , one being Ci, the equivalence class of singletons. Let
then C2 denote the equivalence class of a specific complete subgraph on a finite subset
S C Zd, C2 Φ Cγ. In the notation of (6), we have α = (αuα2),T/(x) - (T1(x),T2(x)),
wheτeT1(x)=:Σxj,T2(x)= £ Π xhx = (*i> >*N) € X.

C j C

To simplify notation, we assume hereafter that the Xj take only the values {0,1}.
The results extend at once to countable-valued Xj provided that ^ ( Π ^ ) 2 < °°>

j

C G C2. In general Pα(x) = c(o)eαiTl^+α2T2(<x\ and the Xj are in independent if and
only if α2 = 0.

The uniformly most powerful unbiased tests of the hypotheses that α2o < α2 < α2\
are given by: reject the hypotheses if T2(x) < cι(Tι(x)) or T2(x) > c2{T\(x))) with
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randomization on the boundary, where of course the constants Ci(Tι(x)) depend on
a prescribed level of significance. If α2o = a>2i — 0, then the above test is a test of
independence against a dependence described by C2. If the parameter space is compact
and α20 = α2i = 0, then such tests, being admissible, fall in the class of Bayes tests
described earlier.

We assume hereafter that α2 = 0. The remaining problem is to find the values
c\(T\{x)) and C2(T2{x))^ and to tie these values to the prior probability μ. But in this
paper we sidestep the choice of the actual prior and will simply point out a choice of c\
and c2 based on hypothesis testing considerations. (Thus, the actual decision rule, the
choice of the prior or the level of significance, is left to "the reader", as is often the case.)
Because a2 = 0, the statistic T, suitably normalized, has the asymptotic distribution of a
normal vector Z, as N = \S\ —* 00. The asymptotic normality is immediate since T\ is a
sum of independent random variable and T2 is a sum of ^-dependent random variables;
the asymptotic normality is also a consequence of Theorem 1 of Pickard (1982). So
if (μ(αi),Σ(αi)) is the mean and covariance of Z, familiar methods approximate the
constants cχ(Tι(x)) and c2(Tχ(x)).

It may be suggestive to describe the problem in terms of pixels. Imagine a rectangle
S C Z2 with m rows and n columns, where each site in the rectangle corresponds to
a pixel which is either on or off. Let us agree that 1 corresponds to a pixel being
on, 0 to a pixel being off. Then Tι(x)/mn is the proportion of pixels which are on.
In addition , T2(x) is the sum of ^(ra, n) products, where £(m,n) is the number of
cliques. A particular product is 1 only when all pixels in the corresponding clique
are on. Therefore T2(x)/£(m,n) is the proportion of cliques which are totally lit up.
We reject independence of the pixels against to an equivalence class of cliques if the
proportion of totally lit up cliques is large or small relative to the proportion of turned
on pixels.

As an example, assume that C2 is the class of cliques equivalent to a star -
an element of C2 is a translation of {(0,0),(l,0)(0, -l)(-l,0),(0,1)}. We have that
T\(x) = Σxi and T2(x) = Σ Π xh w n e r e C G C2. Assume the rectangle S has

c jec
m rows and n columns, and that m and n are large. Recall that the conditional
distribution of T2 given 2\ does not depend on αi, when α2 = 0. with N = mn,
T2 = T<ιl{m — 2)(n — 2), we have asymptotically that Ni(t2 — p5) is normal with mean
0 and variance ^ ( 1 + 9p3 + 4p* - lβp5), where p = Tλ/N.
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