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EXPECTATION INEQUALITIES FROM CONVEX GEOMETRY

BY RICHARD A. VITALE*

University of Connecticut

By making use of ideas from convex geometry, it is possible to derive novel
inequalities for certain expectations. This is illustrated with reference to the
Brunn-Minkowski inequality and the theory of zonoids.

1. Introduction. Among the various aspects of convex geometry, one
which has a long and rich history is the study of inequalities. For a survey and
an extensive bibliography, see Burago and Zalgailer (1988). Besides being of
idepenent interest, many of these inequalities have been applied elsewhere. It is
worth recalling that the second volume of Beckenbach and Bellman (1961) was
to have been based on certain of these inequalities involving so-called mixed
volumes. There have not, in fact, been many applications to probability and
statistics, although there have been notable exceptions. The application of the
Brunn-Minowski inequality to multivariate densities by Anderson (1955) is one
example. Similarly, the fifty year old van der Waerden permanent conjecture
was resolved by Egorychev (1981) by means which were originally developed by
Alexandrov (see Burago and Zalgailer) (one should note the related, but ad hoc
attack by Falikman, 1981). These tools have also been used by Stanley (1981)
to resolve certain combinatorial questions. As indicated by these successes,
it seems worthwhile to look for other connections between convex geometry
and problems of a stochastic nature. The purpose here is to survey some
possibilities, the very last section of the paper devoted explicitly to a novel
stochastic ordering. We shall keep the discussion informal and largely omit
proofs, which appear elsewhere.

In the next section we present notation and preliminaries. Section 3 is
devoted to a general form of the Brunn-Minkowski inequality and its relation
to Anderson's inequality. Section 4 discusses inequalities for random determi-
nants. The last section treats an open question on the nature of a certain class
of convex bodies.
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2. Notation and Preliminaries. The setting will be d-dimensional
Euclidean space Rd equipped with its usual inner product ( , ), iiorm || ||,
closed unit ball J3, and unit sphere 5C*~1. /C will stand for the class of non-
empty compact, convex subsets of Rd\ we call such figures bodies. Distance
between bodies is given by the Hausdorff metric

p(K,L) = inf{e > 0 | K C L + eB,L C K + eB}.

Here "+" means vector addition of sets, and we mean by ax the set {ax \ x €
K}.

Associated with each K € K, is its support function hjζ : S*'1 —• R1

given by
hκ(u) = max{(tt,j/> | y e K).

The following properties hold:

haK( ) = ahκ( ), a > 0

hK < hL & K C L

p(K,L) = max{ |M«) - ΛL(ti)| | ||«|| = 1}(= \\hκ -

Accordingly, h,κ may be regarded as an analytical surrogate for K. For further
background, see Eggleston (1969) and Guggenheimer (1977).

A random set X is a (Borel measurable) map from a probability space
(Ω, A, P) to /C. Its norm ||X||, volume vol(X), and other common functionals
are usual random variables.

The expectation of a random set X is defined under the assumption
E\\X\\ < oo. In this case, E\hχ(u)\ < oo for each u G Sd~x and EX e K is
then given implicitly by

hEX(u) = Ehχ(u) ueS*-1.

This set-valued expectation has appeared in different settings, as for example,
in a strong law of large numbers (Artstein and Vitale, 1975): if Xi, X2, is an
iid sequence of random sets with i?||Xi|| < 00, then the sequence of averages
Xn = ^(Xι + ••• + Xn) converges a.s. in the Hausdorff metric to EX\.

3. Brunn-Minkowski Inequality. The classical Brunn-Minkowski
inequality asserts that for two bodies K and L and 0 < λ < 1

+ (1 - \)L) > λ voli(ϋΓ) + (1 - λ)voli(X) (3.1)
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(Eggleston, 1969). It figured in the original proof of Anderson's (1955) in-
equality and in turn can be reinterpreted in probabilistic terms. We shall
recast Anderson's result in these new terms.

Anderson's result can be understood as a multivariate generalization of
the following observation for a symmetric unimodal density on the line: one
maximizes the integral of the density over all intervals of a fixed length by
choosing that interval which is centered at the origin. In Rd, a density is
unimodal if {x € Rd \ f(x) > z) is convex for each z.

THEOREM 3.1 (ANDERSON, 1955). Let f : Rd -> R1 be a symmetric
unimodal density on Rd, and suppose that A is a symmetric, convex set in Rd.
Then for any fixed xo Φ 0

/ f(x)dx (3.2)
JA+θxo

is a decreasing function of the positive parameter θ.

This can be proved as follows from a somewhat more general framework.
First, observe that (3.1) can be regarded as inequality regarding expectations,
set-valued on the left, scalar on the right: let X be a random set which takes
the values K and L with probabilities λ and 1 - λ respectively. Then (3.1)
can be rewritten

γoύ(EX)>Evol*(X). (3.3)

In fact, the following holds.

THEOREM 3.2 (Vitale, 1990). Let X be any d-dimensional random set
with E\\X\\ < oo. Then (3.3) holds.

PROOF. We use the strong law of large numbers. Note that, by induction,

(3.1) can be extended to any finite number of summand sets. Suppose then

that Xi,X2> is an iid sequence with each X, distributed like X. Then

-(Xi + . + xΛ > i
n J

By the Kolmogorov strong law, the sum on the right converges a.s. as n —* oo

to E vol^(X). On the left, the argument set converges a.s. to EX by the

strong law for sets and, by the continuity of the volume functional, the entire

expression converges to vόl*(EX).

A second, auxiliary inequality for which we omit the proof is also of
interest.



R. A. VITALE 375

THEOREM 3.3 (Vitale, 1990). Let X be a, random d-dimensional set and
let K e)C with X Π K φ φ a.s. Then

woύ(EX ΠK)>E voU(X Π K). (3.4)

To argue Anderson's inequality, observe that it is enough to do it for
/ = /β, the indicator function of a symmetric convex set, in which case (3.2)
is equivalent to

vol(j? Π (A + θxo)) is a decreasing function of θ. (3.5)

Let Y be a random set which takes the (non-empty) values B Π (A + xo) and
B Γ\(A — xo) with probabilities λ and 1 — λ respectively. Then (3.3) reads

voU(EY) > E woU(Y) = λ voύ(B Π (A + x0))

or
vol(J5Y) > vol(5 IΊ (A + xo)). (3.6)

Observe as well that Y = X Π B where X is a random set which takes the
values A + XQ and A — XQ with probabilities λ and 1 — λ respectively. Note
that EX = X(A + xo) + (1 - λ)(A - x0) = A + θxo where, without loss of
generality we assume θ lies in (0,1). By (3.4) we have

or
vol((A + θxo) ΠB)> vol(EY). (3.7)

Together with (3.6) this implies that

vol( 1? Π (A + θx0)) > vol(B Π (A +

for arbitrary θ € (0.1), which is equivalent to (3.5).

The same machinery can be used to derive Mudholkar's (1966) general-
ization of Anderson's inequality. For this and discussion of the non-convex
case (motivated by Eaton, 1984), see Vitale (1990).

4. Zonoids and Random Determinants. Random determinants arise
in a variety of areas and are extensively surveyed in Girko (1988). In that
reference, some eight methods are described for treating moments of random
determinants. To that list, one can add an approach from convex geometry
for expected absolute determinants (eads).
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The point of departure is the observation that a zonotype, or sum of line

segments, say
d d

has volume given by

2 \det[yil, ,yid]\. (4.1)
*1<»2 <•"<«<*

Using this and the strong law for random sets, it is possible to deduce the

following representation (see Vitale, 1991, for this and other results of this

section).

THEOREM 4.1. Let Y, Yi, , Yd beiid random d-vectors with E\\Y\\ < oo,

and let My stand for the matrix with respective columns lχ, Y2, , Yd- Then

E\det Mγ\ = d\ vo\(EOY). (4.2)

The expected set EOY is a zonoid in that it is a limit (in the Hausdorff

metric) of zonotopes. Its support function is

hE-δ7(u) = Ehoy{u) = E(u, Y)+ (4.3)

(α+ = max{0,α}). The theory and applications of zonoids are extremely

far-ranging. Bolker (1969) and Schneider and Weil (1983) are two excellent

surveys.

By examining EOY\ it is possible to use (4.2) to produce a bound for

E\det Mγ\. The classical Hadamard determinantal inequality provides

(4.4)

from which

By making use of the Urysohn inequality from convex geometry (Burago and

Zalgaller, 1988), this can be improved.

THEOREM 4.2. Let Y be a random d-vector with E\\Y\\ < 00. Then

E\detMγ\<αd(E\\Y\\)d (4.5)

where ctd d = 1,2, is a sequence of universal constants such that (αd)1 —•

The improvement over the Hadamard bound is due in part tq the fact

that (4.5) does not rely on an a.s. bound such as (4.4). A further improvement

is possible by making use of an inequality of Lutwak (1975):
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THEOREM 4.3. Under the same conditions as the last theorem,

E\detMγ\ <dlβdw-d

where βd is the volume of the d-ball and W-j is the (-d)-mean width of EOY

(w-d = E{E[\(U,Y)\ I Y]-*}-1*, where U is uniform on S*-1).

In another vein, (4.2) can be used to provide comparison results, which
rely on comparing the bodies EOY and EOY for random variables Y and Yf

of different distribution.

The following result reflects an examination of the support functions of
EOY and EOY under the condition that the first body is contained in a
translate of the second.

THEOREM 4.4. For two random d-vectors Y and Y' of finite mean,

E\άetMγ\ < E\detMγt\

if there is some vector α € Rd such that E\(u,Y)\ < E\(u,Y')\ + (u,α), Vw €

sd-\
A second result shows that spreading out a distribution in a certain way

increases the ead.

THEOREM 4.5. IfY and Yf are two independent random d-vectors ofήnite
mean, EY' = 0, then

E\άet Mγ\ < E\άetMγ+γι\.

This is reminiscent of a corollary to Theorem 2 of Anderson (1955) which
asserts a similar property of densities.

Finally, we mention a result which seems to be a direct analogue of An-
derson's result discussed in Section 3.

THEOREM 4.6. Suppose that XQ G Rd, xo Φ 0, is fixed and that Y is
a random d-vector symmetrically distributed about 0 and with -EĤ H < oo.
Then E\det Mγ+θXQ\ is an increasing function of the positive parameter θ.

This result suggests a definition of a spatial median which may have
interesting properties.

4 ^Generalized Zonoids. An open question, which is important to sev-
eral branches of mathematics, is the extent of the class of so-called generalized
zonoids (Schneider and Weil, 1983). Loosely speaking, a generalized zonoid
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K* is the "difference" of two ordinary zonoids K and i , or, more precisely, in
terms of support functions

hκ*{u) = hκ{u) - hL(u) u e 5d""1.

Every zonoid is a generalized zonoid since one can take L = {0} and observe
that then Jί* = K. The question is, what other bodies can arise? By making
use of the defining properties of support functions (extending their domain to
all of Rd) and the representation (4.3), the question can be reformulated as
follows:

Open Problem. For which pairs of random vectors Y\ and Y<ι in Rd is it
the cast that

is a convex function of # € RdΊ

Evidently this condition can be thought of as an ordering of random vec-
tors (which apparently has not been investigated previously). Certain easy
examples (e.g. Y<ι = ΘY\ \θ\ < 1) can be read off, but an alternate characteri-
zation which holds generally does not seem to be easily available.
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