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STOCHASTIC ORDERS AND COMPARISON OF EXPERIMENTS

BY ERIK TORGERSEN

University of Oslo

Exploring criteria for majorization, exact and approximate, univariate and
multivariate, we relate them to criteria for information orderings of statistical
experiments. After providing some basic criteria for comparison of experiments,
we observe their straightforward generalizations to general families of measures.
Thus LeCam's randomization criterion extends to a criterion for comparing fam-
ilies of measures. Reversing the randomizations, we obtain dilation like kernels
mapping densities, exactly or approximately, into densities.

Using this, we derive criteria for comparison of measures in terms of in-
tegrals of given functions. In particular we obtain well-known criteria for one
measure being a dilation of another measure and for stochastic orderings of dis-
tributions on partially ordered sets.

Experiments having two point parameters sets, i.e. dichotomies, enjoy a
variety of striking properties which are not shared by experiments in general.
Dichotomies may be studied in terms of their Neyman-Pearson functions, which
are functions describing the relationships between the probabilities of errors of
the two kinds for most powerful tests. These functions are the inverses of the
Lorenz functions of econometrics. Observing this, we readily obtain various
criteria for one distribution being approximately Lorenz majorized by another.

1. Introduction. Majorization and Comparison Experiments.
The purpose of this paper is to discuss relationships between developments
within the theory of comparison of statistical experiments on the one hand,
and various notions of "stochastic" orders on the other. As we shall see, the
theory of comparison of experiments not only throws light on standard notions
of stochastic order, but also provides interesting generalizations of well-known
results.

The paper provides the required results from the theory of statistical
experiments. However proofs are often incomplete. The reader who wants
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more background might consult e.g. Heyer (1982), LeCam (1986), Strasser
(1985) or Torgersen (1985) and (1991).

In order to indicate that there is a connection, let us begin by considering
the notion of majorization in lRn.

Considering two vectors p and q in TR,d one possible definition proclaims
that p majorizes g, notation p y g, if ΣiPi = Σi Qi a n ( i P{i) + + P(r) <
?(i) + + ?(r)5 r = 1,..., d. Here, X(X) < X(2) < . . . < X(d), for a vector x in
Etd, denotes the coordinates &i, £29 9 £<* arranged in increasing order.

We shall employ the notations and a Λ b and α V 6 for, minimum {α, 6}
and maximum {α,6} respectively. More generally Λ and V may be used to
denote infimum and supremum.

In order to describe other criteria for majorization, we shall need the
following notations for a vector (point) x = (#1, . . . , Xd) in H and for numbers
α and λ in [0,1]:

Ax =the subset of R 2 consisting of all pairs
d

((δ\ + . . . + δd)/dy δ\X\ + . . . + δdxd) = V^

=i
where ί i , . . .,£<* vary independently in [0,1].

6x(λ) = ^ ( C 1 - λ ) / d ) ) Λ ( λ x 0 w h e n χi> 9 a* > !

^ ( α ) = sup{t;: (α, v) € A^}

= sup{v : (w, v) 6 A^ for some u < a}

so that, by Neyman-Pearson's lemma:

βx((d - r + l)/d) = x ( r ) + . . . + £ W ; r = 1,..., d.

We shall also use the notation e = ( l , . . . , l ) . Thus e/d is the probability
vector in H d corresponding to the uniform distribution on {1,.. .,d}.

A selection of majorization criteria are collected in the following theorem.

THEOREM 1.1. (Majorization criteria). The following conditions are
equivalent for vectors p = (p i , . . . ,p d ) and q = (g i , . . . , qd) in ΈLd:

(i) pyq

00 Σ Σ );r = 1 , . . . , < * .
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The inequality for r = 1 is, by the first condition, necessarily an equality,

(in) ΣiiPi - c)+ > ΣMi - <0+; c e JR.

(iv) Σi(Pi - <0" > Σ , (« - c)-; c € R.

(VJ | |p-cβ| | i>| |g-cβ| | i; cGR.

0) Σ.^(P) Σt^ίϊ) 5
(ViiJ ¥>(p) > ¥>(<?) when <p is quasiconvex and permutation symmetric on

(viii) q = Mp for a d x d doubly stochastic matrix M.

(ix) q G ({τr(p) : π € Π}) wiere ( ) denotes convex hull and Π is the
group of coordinate permutations on K Λ

(x) Ap D Aq.

(xi) βp(α)>βq(α); 0 < α < 1.

(xii) r )M = (e^ ) for a (necessarily doubly stochastic) d x d Markov
matrix M.

(xiii) The empirical distribution function based on the observations pi,...,
Pd is a dilation of the empirical distribution function based on the
observations q\,...,%.

Ifp and q are probability vectors then these conditions are equivalent to

(xiv) 6p(λ) < 6ς(λ); 0 < λ < 1.

Criteria (i)-(ix) are well-known and may be found in e.g. Marshall and
Olkin (1979). The other criteria are not so well-known. Criteria (x)-(xii) and
(xiv) are discussed in Dahl (1983).

Criterion (xiv) is only stated for probability vectors p and q. This restric-
tion does not however amount to much. Indeed, for c € H and / > 0, p y q
if and only if \(p — ce) >- \{q — ce). If ΣPi = Σ 9ή ^ e n ̂ e I*8* vectors are
probability vectors provided c < τΩm(p^,q^) and t = ΣiiPi ~~ c )

If the vectors p and q are probability vectors in R r f, then several criteria
of the above theorem have interesting interpretations in terms of statistical
decision theory.

Consider a statistical model obtained by observing a random variable X
whose distribution PQ depends on an unknown parameter θ. Assume for the
moment that we know that θ is one of the numbers 0 and 1 and that X is one
of the numbers 1,2,..., d. Assume also that X is uniformly distributed when
θ = 0, while the distribution of X is given by the probability vector p when
θ = 1. In other words:

i ) = - ; i = l , . . . , r f
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and

An experiment (model) having a two point parameter set is called a dichotomy.
If parameter values are identified with positions of coordinates, then a di-
chotomy may be represented as an ordered pair of probability distributions.

Let Sp be the statistical experiment realized by the observation X. Then
εp is the dichotomy (Po,Pι). For this dichotomy we find that:

Ap is the set of power functions in Ep for testing "0 = 0" against
"0 = 1",

βp{ά) is the power of the most powerful level α test in Ep for the
same testing problem

and

δp(λ) is the minimum Bayes risk in Sp for estimating 0 with 0-1 loss
and for the prior distribution assigning mass λ to the parameter
value 0 = 1.

The interpretations of conditions (x), (xi) and (xiv) follows immediately from
this.

Condition (xii) is just a rephrasing of condition (viii). Its statistical
interpretation is nevertheless fundamental since it says that the experiment ίq

may be obtained from the experiment Zv by a known chance mechanism. This
mechanism is given by the (necessarily doubly stochastic) Markov matrix M.

Proceeding to more general decision spaces we may infer, see e.g. Torg-
ersen (1970), that condition (vi) simply states that maximum Bayes utility in
Zp is always at least as large as any Bayes utility obtainable in Sq. Of course,
we might replace the inequality in (vi) with the reverse inequality for concave
functions g. Doing so we see that (vi) also amounts to the condition that the
minimum Bayes risk in Sv is at most equal to any obtainable Bayes risk in Eq.

Condition (xiii) expresses that under Po, the distribution of the likelihood
dPi/dPo is a dilation of the corresponding distribution in Sq.

By Blackwell (1953) conditions (x)-(xiv) are all equivalent ways of saying
that the statistical experiment ίv is at least as informative as the experiment

εq.
EXAMPLE 1.2. (Monotone likelihood and majorization). Put st(d) =

1* + 2* + . . . + dt and, for each number ί, denote as pt the probability vector
in IR^ whose ith coordinate is i*/st(d). Then, ptl -< pt2 if 0 < t\ < t<ι or if
h < h ^ 0 (see p. 130 in Marshall and Olkin (1979)). From an informational
point of view this may be inferred from the observation that the statistical
model (pt : t £ R) has monotone likelihood in X{ϊ) = i.
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This observation implies that the dichotomy (pUl,Pu2) provides at most

as much information as the dichotomy (pVliPv2) when v\ < U\ < u<ι < V2 If

0 <tχ < t2 then we may choose ^i = υ\ = 0, u<ι = ί\ and v<ι = i<ι and thereby

obtain the desired conclusion. If t<ι < t\ < 0 then we may choose u<ι = V2 = 0,

u\ = t\ and v\ = %2 and we arrive at the same conclusion by reparametriza-

tion. For a model (e/d,p) reparametrization amounts to replacing it with the

reversed model (p, e/d).

Generalizing this idea, we see that p -< q for probability vectors p and q

in R d provided the fraction qi/pi is monotonically increasing in pi as long as
this fraction is defined, i.e. as long as pi + qi > 0. Indeed then the likelihood
ratio of the experiment (e/d,pyq) is monotonically increasing in pi and thus
the dichotomy (e/d,p) is at most as informative as the dichotomy (e/d,q).

The weaker concepts of weak submajorization and of weak supermajoriza-

tion fit nicely into a decision theoretical framework, too. However, before

discussing these ideas we consider approximate majorization.

Recall the notation \\x\\ι = Σ t = 1 \χi\ f° r a vector x € HA The nota-
tion reflects the fact that ||z||i is the L\ norm of x based on the counting
distribution on subsets of { 1 , . . . , d}.

Considering two vectors p and q in Rrf and a constant e > 0 we shall say
that p 6-majorizes q if p majorizes a vector q such that \\q — q\\ι < e. Thus p

majorizes q if and only if p 0-majorizes q. On the other hand, p €-majorizes q
w h e n e v e r e > \\p— q\\χ.

Again there is a variety of equivalent conditions.

Before deriving the analogs of the criteria listed in Theorem 1.1, let us

note some reformulations of 6-majorization. Observe first that p e-majorizes q

if and only if q admits a decomposition q = q + v, where q <p and | |ϋ| | i < ε. It

follows that the support function of the convex set consisting of vectors q which

are e-majorized by p is a —• Vπ Σ t = 1 aπ(i)Pi + e vf=1 lαt|> where π runs through

the permutation group on {1, . . . , n}. Hence q is e-majorized by p if and only

if (q, a) < Vπ(7r(α),p) + e Vt |αt-|; a 6 R r f, where π(α) = ( α π ( 1 ) , . . . , aπ{d)).

Observe next that it suffices to consider vectors a such that Vt |α;| < 1.
Furthermore, a vector a satisfies this condition if and ony if it is of the form
26 - e, where 0 < 6t < 1; i = 1,.. .,cf. Thus q is €-majorized by p if and
only if Vπ(π(6),p) > (b,q) - \ X).(g, - p{) - e/2; 0 < b < e. Now the set of
extreme points of the order interval [0, e] consists precisely of the vectors b

whose coordinates are 0 or 1.

It follows that q is e-majorized by p if and only if V ^ T Γ ^ ) , p) > (Vτr(π(6), q)-

\ Σiίi — Pi) ~~ £/2 for all vectors b whose coordinates are 0 or 1. By Neyman-

Pearson's lemma this amounts to the condition that Σ ? = r P(i) ^ Σf=r 9(0 ~~
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| ( Σ i L i (ft - Pi)) - € /2 ; r = 1, . . . , d + 1, where we put Σ ? = d + 1 = 0.

If d < 2, as observed by Dahl (1983) when Σpi = £ # , then the last
condition may be reduced to 0-majorization (i.e. majorization), since it says
that pc y g, where:

Pi = P(i) - ψ + 2

and

Pd = P(d) + 2C + g
t

Listing the analogs of the criteria for majorization we obtain:

THEOREM 1.3. (Criteria for e-majorization). The following conditions are
equivalent for vectors p and q in TR,d:

(iι) : p e-majorizes q.

(h) : (α,q) < V π (x(α), j>)+ e V. |α, |; α G H d .

(" i^ P(r) + ••• + P(d) > ?(r) + + ί(d) - «/2 - § Σ,(?« -Pi), r = l,...,d

and Σi(Pi ~ Qi) < «•

c)+ - | c - \ Σ<(« - Λ);
 c € R.

Civ; Σ ( « - c ) - > Σ ( « - c ) - - i € - | Σ , (P, - « ) ; ce R .

(v) \\p - cellx > | | 9 - cellx - c; c € R.

(wi) ΣP(P«) > Σflr(?») - [l5'(-°°)l V |</'(oo)|]e, when ^ is convex on 1R.

(yh) Σrtft) > Σff(?,) - iI/(-oo) + s'(°o)]Σti(?. - A ) - ifoV) -
'̂(-"(X))]^, when 5 is convex on IR and the quantities g'(—00) =

liπLp^-oo 5'(x) and ^'(oo) = lim^oo g\x) are both finite.
(vii) g(p) > g(q) - sup{[fif(tf) - g(q)] : ||g - g||i < e}, when g is Schur

convex on IR (i.e. g is monotonically increasing for the ma,joriza,tion
ordering.)

(viii) IIq — Mp\\χ < e for a doubly stochastic matrix M.

(ix) The II ||i distance between q and the convex hull of points obtained
by permuting the coordinates ofp is at most e.

(x) Ap + {0} x [-|e, \e] + (0, \ Σ ? = 1 ( « - Pi)) 2 Aq.

(xi) βp(α) > βq(α) -\e-\ Σ? = i (« - Pi)\ 0 < α < 1.

(xii) eM = e and \\pM—q\\ι < c for a Markov (necessarily doubly stochas-
tic) matrix M.
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(xiii) The empirical distribution function Fp based on the observations
Pii iPdisa (Fqje/dy dilation of the empirical distribution function
Fq based on qu...,%• Here a (Fq,β) dilation is a Markov kernel D
such that J \JxD(dx\y) - y\Fq(dy) < e.

Ifp and q are probability vectors, then these conditions are equivalent to:

(xiv) 6p(λ) < bq(X) + ieλ; 0 < λ < 1.

REMARK 1. Dahl (1983) established the equivalence of conditions (i)-(xii)

and (xiv) when Σί>t = Σ ίί

REMARK 2. By the terminology of Torgersen (1985) these conditions
amount to the condition that the measure pair (e/djp) is (0,c) deficient w.r.t.
the measure pair (e/d, q). The equivalence of the above conditions follows then
from the general theory of measure familes. It may however be instructive to
consider first the direct proof given here.

PROOF OF THEOREM 1.3. We have observed above that conditions (ii)-
(U2) were all equivalent. By Theorem 1.1 these conditions are also equivalent
with conditions (viii), (ix) and (xii).

If (ii) holds, then ||g — <f||i < e for a vector q such that p y q. Then
II? - ce||! - \\p - cell! < | | 9 - ce||i - \\q- ce\\x < \\q - ψ < e. Thus (h) =»(v).
Furthermore, by the identities z± = \{z ± |z|), conditions (iii) and (iv) are
both equivalent to condition (v).

If condition (vii) holds and if the convex function g is such that the
quantities #'(±00) = lim^ioo g\x) are finite, then we may replace g in the
inequality in (vi) with the function x —• g(x) - ^[^'(-oo) + g'(oo)]x. This
shows that the inequality in (VI2) holds for g.

Applying (vi2) to g{x) = (z-ce)+ we see that (iii) holds. Letting c -• ±00
in (iii) we find that | Σ p i ~ Σ 9 i | < €. If so and if (vi2) holds for g, then the
quantity

1 d 1
-[(/'(-oo) + 0(00)] ] Γ > - Pi) + -[g'(oo) - </'(-oo)]e

is between ^'(oo)^ and -^ '(-oo)^ Thus (vi2) implies that the inequality in
(vix) holds when the quantities g'(±oo) are finite. If, however, one of the
quantities #'(±00) is infinite, then (vi) is trivial for 5, unless c = 0. By
the above observation, (vi2)=*(iii) and by Theorem 1.1, (iii) amounts to the
condition that p X g , when e = 0. Thus, by Theorem 1.1 again, (vi2) always
implies (vii). This shows that conditions (vix) and (vi2) are equivalent and
that these conditions imply conditions (iii)-(v). On the other hand, if (iii)
holds, then condition (vi2) holds whenever g is of the form g{x) = l(χ) +
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Σi=i b%(x - *i)+, where / is linear and &i,.. .,6S > 0. Any polygonal convex
function g is of this form and thus (vi2) follows by approximation. Altoghether
this shows that conditions (Hi)-(vi2) are equivalent.

Note next that the support function of the planar convex set Ax =
{l/dfa +... + δd),ΣUSiXi) :0<δ<e}iS(ξ,η)-> Σi(t/d + ηxi)+,

while the support function of the segment {0} x [—e/2,e/2] is (f, η) -+ \\η\e.
Thus condition (x) may be expressed as

Σc w+^/d)++\w*+\v Σ > -«) * D w + W " ? *» *€ R

We may here assume that η φ 0 and thus that 17 = ±1. Replacing ξ/d with f,
the last set of inequalities reduces to:

* ± o + +1* ± J Σ(« - «) * Σ(*
It follows that condition (x) is equivalent to onditions (iii)-(vi2). Condition
(x) implies also that (α, βq(a)) = (tι, υ) + θ(0, e/2) + (O, \ Σΐ(ft - Pi)) for some
point (uy υ) £ Ap, whenever 0 < α < 1. If so, then u = α and t; < /Jp(α), so
that 0g(α) < i8p(α) + e/2 + \ Σ?=i(ft - ft)»0 < α < 1. Thus (x)=Kxi) and,
substituting α = rf""j+1, r = 1,..., d, by Neyman-Pearson's lemma, (xi)=Φ-(iii).
However, we observed above that (ii) (which is equivalent with (ϋi)) implies
condition (v).

It follows that conditions (i)-(vi2) and (viii)-(xii) are all equivalent.

If p y q and g is Schur convex, then g(p) = g(q) - (g(q) - g(p)) >

9(Q) — (9(9) "~ 9(9)) a n ( i ^ u s ( O ^ ί ^ ) - ^ n *^e °ther hand, if (vii) holds for

t - c) - sup { Σ l«* ~ c| - 5^ |gi ~ c
l

Hence condition (vii) is equivalent to the other conditions treated so far. Fur-
thermore, if p and q are probability vectors, then condition (xiv) is just a
reformulation of conditions (iii)-(v).

It remains to consider condition (xiii).

Assume first that p €-majorizes q. By (viii) \\q - Mp\\ι < e for a doubly
stochastic matrix M. For each ye {91,...,%}, let D(-\y) be the probability
distribution which assigns mass Σ{M(j | i) : pi = x,qj = y}/#{j : qj = y}
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to x e {p\,.. .,Prf}. Then D is a Markov kernel such that Fp = D Fq and,

putting q = Mp, we find:

1
= d

so that / I JxD(dx\y) - y\Fq(dy) < e/d.

The proof is now completed by checking that if Fp = DFq for a ( i^ , e/d)

dilation Z), then | |pM - q\\ι < £ for the doubly stochastic matrix M given by:

M(j\i) = D(Pi\qά)l#{k : pk = Pi}; i = 1,.. .,<f, j = 1,.. .,d. I

Consider now the particular case where p c-majorizes q for e = Σt(ϊ«~~P«')

By Theorem 1.3, this amounts to the condition that

P(i) + + P(r) < 9(1) + + ?(r)? r = 1, . . . , d.

By the terminology in Marshall and Olkin (1979) this is precisely the condition

that p weakly supermajorizes q.

Consider next the case where e = Σ t (Pt-<7i). Again by Theorem 1.3, this
amounts to the condition that p(r) + . . . + p^) ^ 9(r) + + 9(d)? r = 1, . . . , <f
and this is the condition that p weakly submajorizes q.

We state this as a corollary.

COROLLARY 1.4. (Weak majorization). Let p and q be vectors in IRA

Then:

(ϊ) p weakly submajorizes q if and only ife = Σ ί Λ ' — Σ i Qi ^ 0 a n ( ί P
e-majorizes q.

(ii) p weakly super majorizes q if and only ife = Σ% Qi — Σ t Pi ^ 0 and
p e-majorizes q.

Thus Theorem 1.3 furnishes equivalent criteria for weak majorization.

By Torgersen (1985) these concepts of weak majorization extend naturally

to general measure familes.

Theorem 1.3 provides several expressions for the smallest quantity e such

that p 6-majorizes q. Denoting this quantity by ^(p, q) we obtain from criteria



E. TORGERSEN 343

(iii), ( v) and (xi) the expressions:

r = l

= 2 V

.Trivially, 0 < δ(p,q) < \\p - q\\ι and δ(p, q) = 0 if and only if p majorizes q.

Furthermore δ(p',p'") < δ(p',p") + δ(p",p'") for any three vectors p1 ,p"
and p"1 in IRA

Symmetrizing, we obtain the majorization pseudo metric Δ on 1R defined
as follows:

d+i

V
r=l r<i<d

= 2 V
0<α<l

(α) - βq(a) -

EXAMPLE 1.5. (Majorization between vectors of possibly different dimen-
sions). Let p = (pi,.. . ,pm) and q = (gi,..., qn) be probability vectors in lRm

and lRn, respectively. For k = 1,2,..., let t*W denote the probability vector
Λ

By sufficiency the dichotomy (u(m\p) is at least as informative as the
dichotomy (u(n\ q) if and only if the product dichotomy (v,(m\p) x (u(n\ u^)
is at least as informative as the product dichotomy (u^m\u^) x (u(n\q). In
other words (u^m\p) is at least as informative as (u^n\ q) if and only if the m n
dimensional probability vector (pi/n : i = 1,..., m, j = 1,..., n) majorizes the
m n dimensional probability vector (qj/m : i = 1,..., m, j = 1,..., n).

The underlying idea is the obvious fact that information is not altered
if we supplement our observations with ancillary observations which are inde-
pendent of the original observations.

Turning to multivariate majorization, consider for a fixed set Γ a family
V = (pt : t € Γ) of vectors in IRA Extend T by adding a point θ0 not
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belonging to T and take Θ = Γ U {θ0} as a parameter set. Let μβ0 be the
uniform probability distribution on {1,..., d} given by the probability vector
uW = (1/d,..., 1/d). If θ € T, then let μβ be the measure on the subsets of
{1,.. .yd} which assigns mass po(i) to the point i.

In this way we assign to the family V a family V of measures on {1,..., d}.
If the vectors pt; t G T are all probability vectors then V is a statistical
experiment. In general V is a measure family as defined in Section 3.

Considering two families V = (pt : t € T) and >V = (qt : t G Γ) of
probability vectors we may consider the impact of the requirement that the
statistical model V is at least as informative as W. By Blackwell (1953) this
amounts to the condition that qt = Mpt for a doubly stochastic matrix M. In
the same paper he proves that this is equivalent to

t = l t = l

whenever tχ9..., tr € T and ψ is convex on Etr. Actually it suffices to consider
functions ψ which are maxima of at most d affine functions on Πtr.

The above inequality may be written

/ Φh, ,Ptr)dFp > I φ(qtl,..., qtr)dFq

where Fp is the empirical distribution function based on the function valued
observations p.(l), . . . ,p.(d) and Fq is the empirical distribution function based
on the observations g.(l),...,g.(<f). We may infer from this that the equiv-
alence of these conditions is a very special case of the dilation criterion in
Strassen (1965).

Appealing to the results of Section 3 we see that the condition that the
vectors are probability vectors does not play any essential role. This yields
the following result of Dahl (1983).

THEOREM 1.6. (Multivariate majorization). The following conditions are
equivalent for families (pt'.te T) and (qt :t e T) of vectors in ΈLd:

(i) qt =t Mpt for a doubly stochstic matrix M.

00 Σ?=iV(Λi(*)»•• »ftr(0) > Σ , ! i V(fti(θ» >ftr(θ) whenever t u

. . . , tr € T and ψ is convex on R r . (Actually it suffices to consider
functions ψ which are maxima of at most d linear functionals.)

(Hi) The empirical distribution function Fp based on the observations
p.(l), . . . , p.(d) is a dilation of the empirical distribution function Fq based on
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the observations g.(l),..., q.(d). (The observations are all real valued functions
onT.)

Proceeding to c-deficiency, see Section 3, this extends as follows:

THEOREM 1.7. (Approximate multivariate majorization). Let (pt :t G T)
and (qt : t G T) be two familes of probability vectors in ΈLd.

Consider also a family e = (et :t G T) of nonnegative numbers. Then the
following conditions are equivalent:

(i) \\qt — Mpt||i < S-u * € T f°r a doubly stochastic matrix M.

00 I Σift(0 - Σ , ft(OI <tt\i£T and

t = l

t = l

ι/=i Lt=i

whenever tfi,...,/r G Γ and φ is sublinear on R r + 1 . Here ev =
(0,.. . 1,... 0); v = 1,..., r is the vth unit vector in R r .

(Hi) The empirical distribution function Fp based on the observations
jp.(l),..., p.(d) is a (Fqje/d) dilation of the empirical distribution
function Fq based on the observations g.(l),..., q.(d). Here a Markov
kernel D is called a (Fq, e) dilation iff \ J XtD(dx\y) — yt\Fq(dy) < et

when t G Γ.

The analogous results for infinite populations will be consided in Section
5. Before doing so, however, we shall provide some useful tools from decision
theory and in particular from the theory of statistical experiments.

2. The Framework of Decision Theory. A nonsequential statistical
decision problem is defined by a statistical model (experiment) along with a
loss function defined on some decision space. The problem is to select an
appropriate decision rule. Adopting the point of view, as we shall, that the
quality of a decision rule resides in its risk function, the problem amounts to
make a choice within the set of available risk functions.



346 COMPARISON OF EXPERIMENTS

For a given decision rule the decision taken is a random variable. The
distribution of this random variable as a function of the unknown parameter is
the performance function of the given decision rule. The loss, being a function
of this variable, is also a random variable and its expectation as a function of
the unknown parameter is the risk function of the given decision rule.

Let us describe these objects within the standard measure theoretical set
up.

A statistical experiment (model) is a family of probability measures on a
common measurable space called the sample space of the experiment.

The indexing set is the parameter set of the experiment. Thus an ex-
periment E having parameter set Θ and sample space (X,A) is a family
(Pθ : θ G Θ) of probability measures on (X,A). This experiment may be
denoted as ί = (X, A', PΘ : θ G θ) or just as S = {Pθ : θ G Θ).

It may be desirable to permit more general objects as statistical experi-
ments. Thus we may omit any requirement of σ-additivity of the set functions
PQ. Even more generally we may consider experiments € = (PΘ : θ G Θ) where
the Pfl's are nonnegative normalized elements of abstract Z-spaces. Although
these creatures may appear strange, they do not represent anything radically
new from the statistical point of view. Indeed LeCam (1964) showed that any
experiment is statistically equivalent to an experiment in the traditional form.

Mathematically it is often convenient to replace the sample space of £ =
(Pθ : θ G Θ) with the vector lattice of finite measures which are dominated
by countably infinite convex combinations of the measures PΘ. Equipped with
the total variation norm || ||, this space becomes a Banach lattice L(S) having
the additional property that the norm is additive on the cone of nonnegative
elements. A Banach lattice having the latter property is called a L-space and
L(S) is called the L-space of €.

Equipped with the dual ordering, the conjugate space M(£) = £(£)* of
the Banach space L(S) becomes another Banach lattice. The additivity prop-
erty of the norm on £(£) implies that the norm of a maximum of nonnegative
elements of M(E) equals the maximum of the norms of these elements. A Ba-
nach lattice having this property is called a M-space and M(€) is called the
M-space of S. Each bounded real variable on £ defines an element of M(S)
and together these elements axe dense in M(S) in its £(£)-topology. The el-
ements of M(S) may be regarded as generalized bounded random variables.
If the conclusion of the weak compactness lemma is valid for £ then M(€)
is the space of (equivalence classes of ) bounded random variables equipped
with a modified supremum norm which takes into account that certain sets
are ^-negligible.
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Consider e.g. the situation where ί = (P$ : θ G Θ) is dominated by a
convex combination π = Σ ^ i c Λ ; Thus Ci,C2 > 0 and Σ S i c% = l
Then L{S) is just the space of finite π-absolutely continuous measures. By the
Radon-Nikodym theorem this space may be identified with the i-space i i (π) .
Since the M-space M(S) is the conjugate of £(£), it may be identified with
£00(71") = i i(π)*. It follows that if we disregard π-null sets, then M(S) is the
space of bounded random variables equipped with the π-essential sup norm.

Just like sample spaces, decision spaces come with their measurable sub-
sets. Mathematically, a decision space (T,<S) is just a measurable space.
We shall find it convenient to write | |/| | for the supremum norm supt \f(t)\
of a real valued function / on Γ. Considering the finite decision spaces
Tk = {1, ...,&}; k = 1,2,..., it is tacitly assumed that all subsets are mea-
surable.

We shall admit as possible loss functions L on a decision space (T,«S)
any family L = (LQ : θ G Θ) of real valued measurable functions on (T,«S).
In order to ensure existence of expected loss we shall here assume that the
functions LQ : θ G Θ are all bounded from below.

Within this set up, a decision rule in an experiment ί = (/V, Λ\ PQ :θ G Θ)
is just a Markov kernel from the sample space (X,A) to the decision space
(T,S).

Since decision rules are Markov kernels, they transport distributions for-
wards and functions backwards. Thus if p is a decision rule from S to the
decision space (T, S) and μ is a finite measure on the sample space (X,A) of
£, then μp is the measure on S assigning mass /p(S\ )dμ to a set 5 in S. It
is also convenient to have the notation μx p for the unique measure on A x S
assigning mass JA p(S\-)dμ to A x S when A G A and S G <S.

The decision rule p transports a bounded measurable function g on (Γ, S)
into the bounded measurable function pg = J g(t)p(dt\-) on the sample space
of£.

Assume now that, in addition to the decision rule />, we are given both a
finite measure μ on (X, A) and a bounded measurable function g on (T, S). It is
a fundamental fact that the three integrals / gdμp, J(pg)dμ and / gd(μxp) are
all equal and thus that we may write this quantity as μpg without ambiguity.

As a function of the pair (μ,ί/), where μ G L(€) and g is bounded mea-
surable on (T, S) the quantity μpg is bilinear and this functional describes p
up to equivalence.

Considering the map μ —• μp as a map from the X-space of finite measures
on A to the Z-space of finite measures on S we observe that it is linear,
nonnegative (images of nonnegative elements are nonnegative) and preserves
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total masses. A map from one £-space to another having these properties
is called a transition. Thus the decision rule p defines a transition from the
Z-space L(S) of S into the Z-space of bounded additive set functions on S.

Just as the concept of a bounded random variable, also the concept of a
decision rule is too narrow for many purposes. We shall here admit any tran-
sition p from Z(£) to the X-space bα(T,S) of bounded additive set functions
as a generalized decision rule. As the class of decision rules (of the Markov
kernel type) is dense within the class of generalized decision rules for pointwise
convergence on Z(£) x bα(T,S) this is not a dramatic extension. Permitting
generalized decision rules, we are however able to provide smoother statements,
which otherwise would require cumbersome reqularity conditions.

If the set-functions Pep : θ £ Θ are all σ-additive, if (Γ, S) is Euclidean
and if £ is dominated, then the generalized decision rule p is definable in
terms of a decision rule p from £ to (T,«S). If p is a generalized decision rule
and Q is a bounded measurable function on (7,5), then pg is the image of
g by the conjugate map />*, which will also be denoted as p. If in addition
μ € Z(£), then the fundamental identity / gdμp = J(pg)dμ may be expressed
as (μp,g) = (pyμg) and again this number is written μpg.

Whether p is a decision rule (of the Markov kernel variety) or a generalized
decision rule, it defines a family Sp = (P$p : θ G Θ) of probability set functions.
This family is the performance function of the decision rule p. If p is an
ordinary decision rule, then the performance function is an experiment and
Pep is the distribution of the random decision when p is used and θ prevails.
If a loss function Z = (LQ : θ G Θ) on (T,<S) is given and if all the functions
LΘ are bounded then the risk function of the generalized decision rule p is the
function θ —• PepLe In the general case the risk function of p may be defined
as the function θ —• limw-,.00 P$pmm{Lo,N). If Pep is σ-additive or if LQ is
bounded, the latter quantity is the integral

Many important functionals of experiments are expressible as integrals
of homogeneous functions on the likelihood space. Those among them which
appear in this paper may be described as follows:

Consider a family μe : θ € Θ of finite (possibly signed) measures on
a common measurable space (X,A). Let h be a homogeneous measurable
function on the product space R Θ .

Then there is a countable subset Θo of Θ such that h(x) depend on x only
via the restriction #|Θ0. Let σ be a nonnegative measure on A such that μe has
a density fθ w.r.t. σ, when θ 6 Θo. The crucial point to be noted is that neither
the existence nor the value of the integral / h(dμo/dσ : θ £ Θ)dσ depend on
how σ otherwise is chosen. We may therefore supress σ in the notation of the
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integral and, without ambiguity, we can write it as J h(dμ$ : θ G Θ), provided
it exists.

As a particular case consider probability measures P and Q on a common
measurable space. Then / \dP — dQ\ is the statistical distance between P and
Q while f y/dPdQ is the affinity between P and Q

3. Comparisons of Experiments and Measure Families. Consid-
ering statistical experiments ί = (Pβ : θ € Θ) and J 7 = (Qo : 0 G Θ) there

are many possibilities for appealing definitions of S being at least as informa-

tive as F. With most of these definitions, it is typically the case that two

experiments are not comparable. One may however always ask for numbers

quantifying how much we lose by relying on the experiment Z rather than on

the experiment T. The scope of the early comparison theory was therfore

vastly extended when LeCam (1964) provided a theory of approximate com-

parison. This theory is expressed in terms of a notion of c-deficiency of one

experiment w.r.t. another. Here e = (e$ : θ € Θ) is a family of nonnegative

numbers.

Again there is a great variety of appealing, and apparently different, ways
of expressing that one experiment is c-deficient w.r.t. another. Thus one might
e.g. base oneself on pointwise comparison of risk functions, on comparison
of Bayes (or weighted) risks or on the natural extension of the operational
definition of sufficiency. Perhaps the most important aspect of LeCam's theory
is that his notion of e-deficiency is very natural from any of these points of
view.

Considering first a fixed finite decision space, this may be expressed as

follows:

THEOREM 3.1. (Deficiency for fc-decision problems). Consider the set

Tk = {1,2,..., k} as a decision space.

Let e = (e# : θ G Θ) be a nonnegative real valued function on the param-
eter set Θ.

Then the following conditions are equivalent for experiments ί = {X,A :

PQ : θ £ Θ) and T = (y,B : QΘ : θ € θ ) :

(i) Pointwise comparison of risks:

To each loss function L (fa,mily LQ : θ € θ of real valued functions
on Tk) and eacΛ decision rule (Markov kernel) σ from T toT there
corresponds a generalized decision rule (transition) p from E toT so
that:

< QβσLβ + €Θ\\Le\\\ θeθ.
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(ii) Comparison ofBayes risks:
To each finite subset Θo of Θ and to each loss function L (family
LΘ : θ e Θ of real valued functions on Tk) and each decision rule
(Markov kernel) σ from T to T there corresponds a decision rule
(Markov kernel) p from Z toT so that:

<
Θo θ 0 Θo

(Hi) Comparison of maximum Bayes utilities. The sublinear function

criterion:

J φ(dPθ : 0 <E Θo) > / Φ(dQθ :θeθ0)- Σ Θ 0 Cθ[Φ(-e9) V φ(eθ)] for

each finite subset Θo ofΘ and for each function φ on RΘ° which is

a maximum ofk linear functionals.
ύ

Here eθ = ( 0 , . . . , 1,..., 0) denotes the θth unit vector in RΘ°.

(iv) Comparison of performance functions:

To each decision rule (Markov kernel) σ in T corresponds a gener-

alized decision rule p in S so that:

\\Pθp-Qθσ\\<eθ; 0GΘ.

PROOF. The implications (iv)=Φ>(i)=s>(ii) are all more or less immediate.
Replacing the loss function L with the utility function U = —L the inequality
of (ii) may be written:

Maximizing first w.r.t. p and then w.r.t. σ it may be seen that (iii) is essentially
a reformulation of (ii). The implication (ii)=^(iv) follows by standard minimax
theory (see e.g. Torgersen (1970)). I

The theorem is stated in order to make the generalization to general mass
distributions more or less obvious. Knowing however that the distributions
PQ and QΘ have the same total masses the deficiency term Σ&0 cβ[Φ(-eθ) V
φ{eβ)] in (iii) may be replaced with the linear (in φ) term \ Σ®0 €$[φ(—e$) +
φ{ee)]. Actually we may in this case restrict attention to functions φ such
that φ(—e$) =0 φ(e$) and then both expressions reduce to Σ@o

 €θΦ(eθ) This
is also so for general measures provided we supplement (iii) with the condition
that \Pφ(X)-Qθ(y)\ <eθ:θeθ. This amounts to require that the inequality
in (iii) holds for linear functions φ.
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If the equivalent conditions of the theorem are fulfilled, then we shall say
that € is e-deficient w.r.t. T for k-decision problems. If € is β-deficient w.r.t.
T for 2-decision problems, then we shall also say that S is e-deficient w.r.t. T
for testing problems. If S is 6-deficient w.r.t. T for A -decision problems for all
k = 1,2,3,..., then we shall just say that £ is e-deficient w.r.t. T.

The smallest constant e > 0 (it exists) such that Z is 6-deficient w.r.t.
T (for fc-decision problems) is the deficiency of ί w.r.t. T (for k-decision
problems). This number is denoted as b(k)(S,T). The deficiency distance
between ί and T (for k-decision problems) is the quantity

The deficiency distances Δi = 0, Δ2, Δ3, . . . and Δ are all pseudomet-
rics. The nontrivial ones, Δ2, Δ3, . . . and Δ, all determine the same notion of
equivalence. In other words the requirements Δ2(£,.F) = O^A^ε^J7) = 0,...
and A(εjJ

:) = 0 are the same for experiments ε and T. Experiments ε and
T such that Δ(β,T} = 0 are called equivalent and we may express this by
writing ε ~ T.

The collection of experiments which are equivalent with a given experi-
ment ε is called the type ofε. Although types are not well defined sets it may
be argued that there is a well defined set containing all types of experiments
having the same parameter set Θ.

If #(*;)(£, .T7) = 0 then we shall say that ε is at least as informative as T
(fork-decision problems) and write this ε >(*.) T. The relations >i, >2, >3, . . .
and > are all partial orderings. Here is LeCam's fundamental randomization
criterion for ^-deficiency:

THEOREM 3.2. (The randomization criterion for ^-deficiency). The exper-
iment ε = (PQ : f i 6 θ ) is e-deficient w.r.t. the experiment T = (QΘ : 9 ζ θ ) if

and only if \\PΘM - Qθ\\ < eθ; θ € Θ for a transition M from I ( £ ) to L{F).

REMARK. If, say, ε admits the conclusion of the weak compactness lemma
and if the sample space of T is Euclidean, then M may be chosen as a Markov
kernel.

PROOF OF THEOREM 3.2. The "if" is immediate. Using the previous
theorem the "only if" may be argued by approximation from the "finite" case,
as in Torgersen (1985). I

This is not the place to dwell on the many statistical interesting implica-
tions of the above theorems. We shall instead proceed by observing that the
theorems remain valid if we permit the distributions PQ and QQ to be finite
(possibly signed) measures.
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It is then however not clear what meaning should be attached to sta-
tistical concepts as sample space, decision space, loss function, decision rule,
performance function and risk. Thus conditions (i)-(iv) of Theorem 3.1 should
be read without the headings but with the parenthetical insertions.

The concept of a statistical experiment Z = {PQ : θ G Θ) has to be
replaced by the concept of a measure family consisting of a family (P# : θ G Θ)
of finite measures on a common measurable space. Doing that, the other
comments and definitions remain valid except that the equivalence induced by
the deficiency distance Δ2 is no longer the same as the equivalences induced
by the deficiencies Δ3,Δ4,... and Δ. The latter are however still the same.
Of course it may not make much sense to interpret the orderings >i, >2,. . .
and > as information orderings.

We summarize these observations with the following theorem.

THEOREM 3.3. (Comparison of measure families). Theorems 3.1-3.2 re-
main valid for general measure families Z = (Pβ : θ G Θ) and T = (Qβ 0 G Θ)
provided they are read as explained above.

The sublinear function criterion, condition (iii) of Theorem 3.1, may be
linearized by adding the requirement that e$ > |P (̂/V) — Q^(3^)|; θ £ Θ and
then replacing the deficiency term Σθ €$[φ(—e$) V φ{e$)\ by

\ Σ ί κ ) + * ( ) ] + \
Θ Θ

As remarked before, we may then even restrict attention to sublinear functions
φ such that φ(-e$) =Θ Φ(CΘ) and then the deficiency term in both cases
reduces to ^2

Let us conclude this section with some remarks on functionals of experi-
ments having a common finite parameter set Θ.

We observed at the end of the previous section how we might construct
an integral h(E) = / h(dP$ : θ G Θ) for an experiment Z .= (PQ : θ G Θ) and
for a homogeneous measurable function on [0,00 [Θ. If h is nonnegative or if h
is bounded on bounded sets then h(S) is defined this way for all experiments

ε.
In both cases the functional S —> Λ(£) behave as an affine function for

the operation of mixing experiments according to known mixing distributions.

If, in addition, h is continuous, then h is continuous in the topology of
the deficiency distrance Δ. Indeed, by Torgersen (1991), any affine continuous
functional of experiments is of the form Z —* h(Z) for a continous homoge-
neous function h on [0, oo[Θ. If, furthermore, h is sublinear on R Θ , then by
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Theorem 3.2, this functional is monotonically increasing. Conversely any con-
tinuous afϊine monotonically increasing functional is of this form for a sublinear
function h on EtΘ.

EXAMPLE 3.4. (Mulivariate Gini index). Consider measure families Z =
(μβ :θ £ Θ) having a common finite parameter set Θ.

An interesting set valued functional of measure families is the functional
which to a given measure family assigns the convex hull τ(£) of the range of
the vector valued (i.e. R Θ valued) measure Z = (μβ : θ € Θ). This set defines
Z up to Δ2 equivalence and, for experiments, Δ2 equivalence is the same as full
equivalence i.e. Δ-equivalence. It follows that any functional of experiments
which respects equivalence, i.e. is defined for types, is a functional of these
sets.

For a given experiment £, the set τ(Z) consists precisely of all available
power functions of tests in Z. It follows readily that r is monotonically in-
creasing for the information ordering and also that it behaves affinely under
mixing. If Θ contains at most two points then r actually determines the defi-
ciency ordering i.e. then Z > T if and only if τ(Z) D τ(T). If #Θ > 3, then,
however, the set inequality τ(Z) D τ(T) does not imply that Z and T are
comparable.

A particularity interesting real valued functional is the functional G which
to a measure family Z assigns the volume G(Z) of τ(Z). The functional Z —•
G(Z) = Volume τ(Z) may appropriately be considered as a multivariate (at
least if #Θ > 3) Gini index.

This index provides a monotonically information increasing functional of
experiments. Furthermore, by the Brunn-Minkowski theorem, its nth root is
concave for mixing.

For a given measure family Z = (μi,.. .,μn) the multivariate Gini index
may be expressed as:

G(Z) = Volume τ(Z)

n\

where || || denotes total variation and where TΓ runs through the set of all
permutations of {1,..., n}.

The structure of this formula may become more apparent if we write it
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as:

1
'μi,...,μn\

det

κμi,...,μn/

lί μι,μ2,.. .,μn are dominated by the nonnegative σ-finite measure σ and if
/t = dμi/dσ; i = 1,..., n then G(S) may be computed as the integral:

The formula:

Volume r(£) = τr)μπ(1) x . . . x μπ(

may be established by verifying that:

(i) If T = (£tffc; i, fc = 1,..., n) is a nonsingular n x n matrix and if we
replace μi , . . . , μn with 1/1 = ^ *uμλ:,..., vn = Σ * tnkμk, respec-
tively, then both sides of the equality are multiplied by |det Γ|.

(ii) If X = {1, , r} and μ%(j) = αtj; i = 1,..., n, j = 1,..., r then the
identity reduces to:

(*) Σi<j1<-..<j»<r I d e t ( α Ji» i α Jnl) = Volume((0, α.fl>+.. .+(0, α,r})
where ( ) denotes convex hull.

If the vectors α.tχ,..., α.)7l are linearily dependent then both sides of
(*) are zero.

If r = n and α.^i,..., α...?n are linearily independent then, by (i), (*)
may be reduced to the statement that the volume of a cube is the
product of the lengths of its sides.

The validity of (*) follows now by induction on r. (Using (i) we may
assume that αt>r = 0 or = s > 0 as i < n or i = n.)

(iii) Both sides of the desired equality are continuous for weak conver-
gence of standard measures. (These measures are defined in the
next section.) It suffices therefore, since the set of finitely supported
standard measures is dense, to consider the finite case.

4 Comparison in Terms of Densities. Dilations. By the random-
ization criterion, Theorem 3.3, the measure family ί = (X^A μβ : θ G Θ)
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is e-deficient w.r.t. the measure family T = (yyB;ve : 0 € Θ) if and only if
\\μeM — ve\\ < ee] 0 € Θ for some transition M from Z(£) to L(!F).

Before applying this, note that most of the measure families encountered
in Section 1 admitted a particular parameter value 0 = 0Q such that the dis-
tributions for this parameter value was uniform. Furthermore the concepts of
approximate majorization required that approximation should be exact when
this parameter value prevailed. Within the context of Section 1 this amounted
to the condition that certain Markov matrices were doubly stochastic.

Generalizing this, let us assume that there is a distinguished parameter
value 0 = 0o such that the measures μe0 and ue0 are nonnegative and dominate,
respectively, £ and T. Assume also that ee0 = 0. Then £ is c-deficient w.r.t. T
if and only if ue0 = μβ0M for a transition M such that ||μ^M — VQ\\ < €#; 0 E Θ.

In order to escape difficult technical problems, let us assume that the
underlying measurable spaces {X,A) and (y,B) are both Euclidean. Then
the transition M may be represented by a Markov kernel which, by abuse of
notation, also will be denoted by M. The joint distribution μe0 x M on Ax B
may be factorized as μe0 x M = D x ve0 for a Markov kernel D from T to £.
This implies in particular that μeQ = Dveo

The basic property of the kernel D is that it, for each 0, within an error
of at most €e maps the density fe = dμe/dμeQ in £ into the corresponding
density ge = dve/dve0 in T. Indeed dμβM/dve0 = / fe{x)D(dx\ ) and thus
\\μeM - vθ\\ = / I / fe(x)D(dx\y) - ge(y)Wθo(dy). Hence, by c-deficiency

fe{x)D{dx\y) - ge(y)Wθo(dy) <€θ:θeQ.

Regarding the likelihood functions f(x) and g.(y) as markings of positions of
the points x and y, we may interpret the last set of inequalities as saying that
the Markov kernel D behaves c-approximately as a dilation.

If, conversely, the Markov kernel D has these properties then the last
equality holds for any Markov kernel M from (X,A) to (y,B) such that D x
vθo = μe0 x M. This proves the following theorem.

THEOREM 4.1. (Deficiencies, ^-dilating kernels and densities). Assume
that the nonnegative finite measures μe0 and ue0 dominate the measure familiy
£ = (X,A;μe : 0 € Θ) and the measure family T = (y,B]Ve θ € Θ),
respectively.

Assume also that the underlying measurable spaces (X,A) and (y,B)
are both Euclidean. Let ee : θ £ Q be non negative numbers such that ee0 = 0.
Put, for each θ, fe = dμe/dμe0 and ge = dve/dve0-
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Then S is e-deficient w.r.t. T if and only if μe0 = DvβQ for a Markov

kernel D such that:

J I J fΘ{x)D{dx\y) - gθ(y)Wθo(dy) <eθ;θe Θ.

The theorem furnishes alternative proof of several well-known existence
theorems. Perhaps the most famous among them is the dilation criterion
for probability distributions on R* of Blackwell (1953) and LeCam (1964).
In Strassen (1965) this is generalized to probability distributions on convex
compact metrizable subsets of of locally convex topological vector spaces.

If P and Q are probability vectors on the same finite dimensional linear
space V and if both their expectation vectors exist in V then a slight gener-
alization of this criterion states that P = DQ for a dilation D from V to V if
and only if / φdP > J ψdQ^ when φ is real valued and convex on V.

Here a dilation from V to V is a Markov kernel D such that, for each
y G V, the expectation vector of M( |y) is y. In order to see how this result
fits into the framework used here we shall incorporate it into the following
theorem.

THEOREM 4.2. (Dilations of distributions on finite dimensional spaces).
Let P and Q be probability distributions on the same finite dimensional linear

space V.

Let also υ[J...,v'k be a basis for the algebraic dual V1 ofV. For i =

l,...,fc denote by Pt and Qt the distribution on V which have density v[

w.r.t. P and Q, respectively.

Let Φ be t ie set ofP + Q integrable convex functions and for each ψ G Φ,
let the quantity J ψdP - / φdQ be denoted as eφ.

Then the following conditions are equivalent:

(ii) JφdP>fφdQ; φζΦ.

(Hi) P is a dilation ofQ.

(iv) The measure family {ψP : ψ G Φ) is (eφ : φ G Φ) deficient w.r.t. the
measure family (φQ : ψ G Φ).

REMARK 1. The distributions Pi, ,Pfc and Qi,•••,<?* are not neces-

sarily probability distributions. They may be nonnegative, non positive or

neither. In any case " > " in (i) is in the sense of the left hand side being

O-deficient w.r.t the right hand side.
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REMARK 2. If μ is a measure and h is a measurable function, then hμ
denotes the measure (if it exists) having density h w.r.t. μ.

PROOF. By Theorem 3.3 condition (i) amounts to the condition that
$ φ(\,v'λ, ...,υk)dP > J φ(l,v'v...,vk)dQ, when φ is sublinear on B* + 1 .
Putting ψ{x) = ψ(l>v[(x),...,v'k(x)) when x G V, this inequality may also
be written / ψdP > J φdQ. As ψ is convex, it is clear that (ii)=Φ>(i). The
converse implication is a consequence of the fact that a convex function ψ
on V which is a maximum of a finite set of affine functional is of the form
x —• ̂ (1, v[(x),..., v'k(x)) for a sublinear function φ on R*+ 1 .

On the other hand condition (i) is, by Theorem 4.1, equivalent to the
condition that P = DQ for a Markov kernel D such that / vf

i(x)D(dx\y) =
vt (y); i = l,...,fc when y € V. As any linear functional on V is a linear
combination of ι?ί,...,t;j^ the last requirement on D expresses that D is a
dilation. Thus also conditions (i) and (iii) are equivalent. Furthermore the
very statement of condition (iv) implies that the quantities eφ : φ G Φ are
nonnegative i.e. that (ii) holds.

Assume finally that conditions (i)-(iii) are satisfied. Let y>i,.. .,φs G Φ
and let φ be a maximum of a finite set of nonnegative linear functionals on
1RΛ Then φ(φu..., φ8) € Φ so that

J φ(d(φP),...,d(φsP)) = J φ(φi,...,φs)dP>

J φ(φl9..., φ8)dQ = j φ(d(φiQ),..., d(φaQ)).

Consider any maximum φ of a finite set of linear functionals on 1RΛ Putting
(i)

φ{z) = φ(z) + ΣUi V>(0,..., ~ 1,.. .,0)zi when ^ = (^i,.. .,za) € lRfc, we see
that V7 satisfies the above requirements. Furthermore / φ(d(ψ\P),..., d(φsP)) •

(i)
/ ^(y>i,..., v?5)dP + ΣUi Ψ(°> » - 1, ? 0) / wrfP, where P throughout
may be replaced by Q. Thus

φ(d(ΨlP),...,d(ψ3P)) > J φ ( d ( φ i Q ) , . . . , d { Ψ s Q ) )

Condition (iv) follows now by Theorem 3.3. I

A measure family S = (μe : θ e Θ) is e = (e* : 0 6 Θ) deficient w.r.t.
a measure family T = (VQ : θ € Θ) if and only if (μ# : θ G Θo) is (e# :
θ G Θo) deficient w.r.t. (P* : 0 € Θo) for every finite subset ΘQ of Θ. Thus
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comparison problems may be reduced to the case of measure families having
finite parameter sets. Very useful tools in the finite case are the concepts of
standard measure families and of standard measures.

For a measure family E = (Λ*, Λ\ μβ] 0 G Θ) having a finite parameter set
Θ these concepts are defined as follows.

Let /#, for each θ G Θ, be a version of the density of μe w.r.t. μ = Σθ \μ$\.
Then Σθ \fe\ = 1 a.e.μ. For each point x G X, let () denote the vector
(fθ(x) 0 G Θ) in H Θ . Thus / = (f$ : θ G Θ) is a measurable map from

(x,A)tone.
With these notations the standard measure family of Z is the measure

family {μβf1 : θ G Θ) on R Θ . The measure Sε = (]£* l ^ l ) / " 1 = Σ * Iμ*/""1!
is the standard measure of £.

By sufficiency, any measure family is equivalent to its standard measure
family (S$ : θ G Θ). This measure family is uniquely determined by the
standard measure S since the projection onto the 0th coordinate space is the
density of SΘ w.r.t. S. For statistical experiments Theorem 4.2 yields the
following dilation criterion of Blackwell (1953) and LeCam (1964):

COROLLARY 4.3. (The dilation criterion for "being at least as informative
as"). Let 8 = (Pθ : θ G Θ) and T = (QΘ : θ G Θ) be experiments having
standard measures S and T on R Θ , respectively.

Then S>T if and only if S is a dilation ofT.

Here a dilation D on H Θ is a Markov kernel D from R Θ to 1RΘ such that
J xD(dx\y) = y for all points y G H Θ .

Another application of Theorem 4.2 is to the theory of local comparison
of experiments. In order to indicate this, consider experiments whose common
parameter set Θ is a subset of K, . If θo is an interior point of Θ and if the
map θ —* PQ from Θ to L(€) is Frechet differentiate at θ = θo then we shall
simply say that ί is differentiate atθ = θo. If this is the case, then the partial
derivatives P^0|t = [dP$/dθi]β=$0\ i = l,...,fc are well defined. It turns out
then that the local behaviour of £ around θ = ΘQ is to a first approximation
completely described by the measure family (PθOiPθOti, ? Pθo,k)- The char-
acteristic property of this measure family is that the "first" member PΘ0 is a
probability distribution while the other distributions have total mass zero and
are dominated by P$o.

If F(-\θo,ε) is the joint distribution under θ = θo of the differentiated
likelihood ratios dPθθyi/dPθo i = 1,..., fc, then / φ(dP$0, dPθoΛ,..., dPθθik) =
J ψ(l,x) F(dx\θo,ε) for each sublinear function φ on R f c + 1. Thus first order
local behaviour is determined by the distribution function JF( |0o?£).
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If T = (QΘ : θ G Θ) is also difFerentiable at θ = #o then we may compare
the local behavior of risk functions around θ = θ$. Then locally, around
θ = 0O > S is at least as informative as T if and only if the measure family

Λo.i, > Pθo,k) is O-deficient w.r.t. the measure family (Qθo, Q0o,i> »
(Torgersen (1985) and (1991)).

By Theorem 4.2 this amounts to the condition that -F( |0o> £) is a dilation
ofF( |0o,n

Condition (iv) of Theorem 4.2 permits interesting generalizations and
variations. An immediate generalization is obtained by replacing the prob-
ability distributions P and Q by nonnegative finite measures μ and i/ona
measurable space (X,A) and by replacing the class Φ of convex functions
by a convex set H of μ + v integrable functions. Looking over the proof of
the theorem we see that we needed some additional structure of Φ. We shall
here assume that H shares with Φ the properties that it contains the null
function and that hi V h<ι G H whenever h\ G H and h*ι G H. Under these
conditions, we may derive a characterization in terms of transitions of the sit-
uation where J hdμ > J hdv when h G H. Indeed, if this is the case, and if
eh = J hdμ — j hdv when h G H, then the measure family {hμ : h G H) is
(eh:he H) deficient w.r.t. (hv : h G H).

In order to see this consider functions h\,..., h8 in H along with a sublin-
ear function φ on I t 5 which is a maximum of a finite set of nonnegative linear
functionals. If z -* Σ i = i a%z% 1S o n e °f these functional then αi, . . . ,α s > 0
and thus, by convexity, ^ £ J = 1 a{hi = (1 - jj £ ? = 1 αt )0 + Σϊ=i(ai/N)hi € #
when JV is suficiently large. It follows that also jξψ{h\,..., Λ5) G if, when N
is sufficiently large and thus / φ(hχ^.. .,hs)dμ = N f[ψ(hι,.. .,h8)/N]dμ >
N J[ψ(h1,...,h9)/N]dv = Jφ(h1,...,h.)dv.

As in the proof of Theorem 4.2, we derive from this the asserted statement
on deficiencies.

By the randomization criterion this amounts to the conditions that
\\(hμ)M — hv\\ < J hdμ — / hdv\ h G H for a transition M from L\(μ) to
L\{y). Now the total variation ||σ|| of any finite measure σ may be expressed
as H I = ||σ+|| + IMI = ||σ+|| - ||σ-|| + 2||σ-|| = 2||σ-|| + / Ida. Applying
this to the measures (hμ)M — hv and utilizing the equality / \d[{hμ)M —
hv] = / ld[(hμ)M] - / ld{hv) = / ld(hμ) - J ld{hv) = / hdμ - / Mi/, we
find that the last inequality may be written [{hμ)M — (hv)]" = 0 i.e. that
(hμ)M > hv\ h G H. The last ">" then simply indicates that the measures
(hμ)M - hv, h € H are all nonnegative.

Assume now that 1 G H and that the measures μ and u have mass
i.e. that ||μ|| = \\v\\. Inserting h = 1 above, we find that μM > v and
hence, since | |μM|| = \\μ\\ = ||ι/||9 μM = ί/. In the Euclidean case this
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yields the factorization μ x M = 2 ) x ί / f o r a Markov kernel D. Now the

density of (hμ)M w.r.t. v = μM may be specified as / h(x)D(dx\ ) and thus

the above requirement in terms of densities is expressed by the inequalities:

/ h(x)D(dx\y) > h(y) for v almost all y, whenever h € H.

We summarize these considerations in the following theorem.

THEOREM 4.4. (Transition criteria for the ordering of measures by inte-
grals of given functions). Let H be a convex family of real valued measur-
able functions on a measurable space (X,A). Assume that 0 € H and that
hi V h2 G H when huh2 € H.

Let μ and v be nonnegative finite measures on A such that each function
h € H is μ + v integrable. Put en = / hdμ — J hdv; h € H. Then the following
conditions are equivalent:

(i) eh>0;heH.

00 £h > 0, h € H and the measure family (hμ : h £ H) is (eh : h £ H)
deficient w.r.t. the measure family {hv : h € H).

(Hi) There is a transition M from Lχ(μ) to L\(y) such that all measures
(hμ)M — hv\ h € H are nonnegative.

If(XyA) is Euclidean, if\\μ\\ = |M| and if 1 6 if then these conditions are
equivalent to:

(iv) μ = Ώv for a Markov kernel D such that J h(x)D(dx\y) > h(y) for
v almost all y, whenever h 6 H.

REMARK 1. If H is sufficiently separable then the exceptional set in (iv)

may be chosen independently of H and then D may be modified in such a way

that/ h(x)D(dx\y) > h(y) for all y 6 X and for all h e H.

REMARK 2. Assuming that if is a set of continuous functions on a compact

metric space and that the constant functions are in if the theorem may be

modified in order to provide criteria for the condition that / hdμ > J hdv for

all nonnegative functions h in if (Torgersen (1985)). Besides Karlin (1983)

this result was inspired by Fisher and Holbrook (1980).

EXAMPLE 4.5. (Stochastic ordering of distributions). Assume that P and
Q are probability measures on a partially ordered measurable space (X,A).

By partial integration P(A) > Q(A) for every monotonically increasing mea-
surable set if and only if / hdP > J hdQ for each function h belonging to the
class H of monotonically increasing functions h which are P + Q integrable.
By the theorem this is the case if and only if (hP)M > hQ for a transition
M. As 1 € H it is clear that PM = Q.
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If (X,A) is Euclidean this shows that P = DQ for a Markov kernel
D such that f h(x)D(dx\') > h a.s. Q whenever h is measurable bounded
and monotonically increasing. In particular D(A\ ) > I A a.e. Q when A
is monotonically increasing and measurable. Assume now also that there is a
countable class Ao of increasing measurable sets such that for any point a £ X
the set {x : x > a} is the intersection of a decreasing sequence of sets from
Ao. Then we may modify D so that D(A\-) > I A everywhere when A € AQ
and then D{{x : x > a}\y) = 1 whenever y € X, a £ X and y > a. Putting
y = α this yields i?({x : x > y}\y) = 1; y e X.

It follows that there are random variables X > Y having, respectively,
distributions P and Q if and only if P(A) > Q(A) for each increasing measur-
able set A.

Using the theory of comparison of statistical models we have thus ob-
tained this important particular case of a very general existence result of
Strassen (1965). We may however proceed the other way around and de-
rive the latter result from the theory of comparison of measure families (see,
e.g. Torgersen (1985)).

5. Dichotomies, Lorenz Functions and Neyman-Pearson Func-
tions. Experiments having two point parameter sets, i.e. dichotomies, enjoy a
variety of striking properties which are not shared by experiments in general.

Thus comparison of dichotomies may be expressed solely in terms of
testing problems and the information ordering is in this case a lattice ordering.
The crucial property of dichotomies is that they all have monotone likelihood
in some statistics. Indeed, by Lehmann (1988) and Torgersen (1989), many
properties of dichotomies extend, properly formulated, to such experiments.

We shall here present some of the basic properties of dichotomies. A
discussion of the more general case of measure pairs, i.e. ]R2-valued measures,
will appear in Torgersen (1991).

The basic assumption in this section is thus that the parameter set is a
two point set and we shall proceed assuming that this set actually is Θ = {0,1}.
Thus a dichotomy V is an ordered pair V = (Po, Pi) of probability distribution
on a common measurable space. Convenient tools are then:

(i) The relationship between level of significance and maximum power
for testing, say, "θ = 0" against "θ = 1".

(ii) The relationship between prior distribution and minimum Bayes risk
for testing "0 = 0" against "θ = 1" with 0-1 loss.

(iii) Variations of standard measures and Blackwell measures,

(iv) The Hellinger transform.



362 COMPARISON OF EXPERIMENTS

The relationship (i) is given by functions which, in one form or another,
appear to play important roles at the most diverse occasions, not all of them
in statistics. Although not widely recoqnized, even among statisticians, their
genesis may be regarded as rooted in the Neyman-Pearson lemma. We shall
here say that a function is a JVeyman-Pearson function (N-P function) if it is a
continuous concave function from the unit interval [0,1] into itself which leaves
1 fixed. Of course concavity ensures continuity on the open interval ]0,1[ and
if, in addition, it is assumed that 1 is a fixed point then it is automatically
continuous on ]0,l]. Thus a function β from the unit interval to itself is a N-P
function if and only if it is concave, β(0+) = β(0) and β(l) = 1.

In statistics N-P functions arise in testing theory in many situations which
are not directly related to the Ney man-Pearson lemma. Thus e.g. the maximin
level a power defines a N-P function β of a provided we ensure that β(0+) =
β(Q). [If the weak compactness lemma holds then this is automatic. In general
we may just define β(0) as /3(0+).]

More generally we may consider maximin level a power for test functions
belonging to a given convex class of test functions containing the constants in
[0,l]

In particular if V = (Po,Pi) is a dichotomy, then the N-P function of
V is the function β( \V) which to each a € [0,1] assigns the power β(a\V)
of the most powerful level a test for testing "0 = 0" against "θ = 1". When
convenient, this function may also be denoted as /?( |Po,Pi).

The N-P functions and their close relatives appear in abundance in statis-
tics and in econometry. For instance, in econonometrics spread is frequently
described in terms of Lorenz functions (see e.g. Arnold (1987)). The relation-
ship between Lorenz functions and N-P functions may be described as follows:

Let F be any distribution on [0,oo[ having finite positive expectation
μF = j χF(dx) = JQ F~x(p)dp. The Lorenz function of F is the function LF

on [0,1] defined by:

LF(P) % /
Jo

F-\t)dtlμF.

Put Fo = F and let Fι have density x —• x/μF w.r.t. Fo. Let K be
the distribution of dFι/dF0 under Fo. Then K~ι = F'ιjμF and LF(p) ΞΞP

1 - β(l - p\VF) where VF in the dichotomy (Fo,

It is easily inferred that a function L is a Lorenz function if and only if it
is of the form L(a) = 1 - β(l - a) for a N-P function β such that β(0) = 0. If
L has this form where β is the N-P function of the dichotomy (Po, Pi), then L
is the inverse function of the N-P function of the reversed dichotomy (Pi, PQ).
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It follows that a function is a Lorenz function if and only if it is a contin-
uous convex function from [0,1] onto [0,1] having the origin as a fixed point.

Considering two probability distributions F and G on [0,oo[ with finite
positive expectations, following Arnold (1987), we may say that G Lorenz

msijorizes F if Lp > LQ- By the results described here, this amounts to the
condition that VQ > Vp where VQ is defined in terms of G as Vp above was
defined in terms of F.

Another notion related to the N-P functions is the total time on test

(TTT) transform in reliability theory. These are, see Klefsj0 (1984), the func-

tions of the form a -> l - / ? ( l - α ) + ( l - a)β'(l - a) for a N-P function

β

EXAMPLE 5.1. (Double dichotomies and triangular N-P functions). If

β is a N-P function, then a < β(a) < 1 for all a € [0,1]. The lefthand
side corresponds to the N-P function of a totally noninformative dichotomy
(P, P) while the right hand side corresponds to a totally informative dichotomy
(Po,Pi) with Po and Pi being mutually singular.

An interesting family of N-P functions (which include the above men-
tioned) are the triangular ones. These are the N-P functions of the double di-
chotomies. Thus the N-P function of the double dichotomy ((1— p,p), (1 — ?, q))
with p < q is the upper boundary of the triangle ((0,0), (p, g), (1,1)).

The functions α—• α p; 0 < p < 1 are N-P functions. If p = 0 or p = 1
then we have just seen that they arise from dichotomies. The reader might try
to figure out which famous model (related to income distributions) provides
these functions.

Any N-P function is the N-P function of a dichotomy and, as we shall

explain soon, any dichotomy is defined up to equivalence by its N-P function.

Accepting this for the moment, we realize that operations on dichotomies and

on N-P functions are the same thing.

Thus if V\ and V2 have N-P functions β\ and β2 , respectively, then the

mixture (1 — p)V\ + pΊ>2 and the product V\ x Ί>2 have, respectively, N-P

functions β and 7 given by:

β(a) = sup {(1 - p)βi(otι) + pβ2(θί2) : (1 - v)^ι + Pa2 = «}

and

7 ( α ) = sup{ / β1(a(x))β2(dx) : / a(x)dx = a}.
Jo Jo

It is not immediate from these formulas that products are distributive w.r.t.
mixtures. This is however clear from the fact that the Hellinger transform,
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which is defined for dichotomies later in this section, is multiplicative for prod-
ucts and affine under mixtures.

Proceeding the other way around, we find that the class of N-P functions
is closed for several standard operations on numerical functions. Thus convex
combinations of N-P functions are themselves N-P functions. It follows that
if X>i and Ί>2 are dichotomies having N-P functions β\ and β<ι and if p is a
number in [0,1] then there is, up to equivalence, a unique dichotomy V having
(1 — p)β\ +pβ2 as its N-P function. This dichotomy is at most as informative
as (1 - p)T>ι + pΊ>2, and generally it is less informative than this mixture.

By Torgersen (1970) any dichotomy has an essentially unique decompo-
sition as a mixture of a totally ordered family of double dichotomies.

Other interesting operations are the lattice operations derived from the
information ordering and the operation of functional composition of N-P func-
tions.

Consider a family (X\ : i € / ) of dichotomies. If βi is the N-P function of
Ί>i then the pointwise infimum iηf/?,- is also a N-P function. Any dicholomy

t

22 having this function as its N-P function possesses necessarily the following
properties: Firstly P < £\ for all i € / . Secondly: If V is any dichotomy such
that V < Ί>i for all i e I then V < V_. Thus V_ is a greatest lower bound
(infimum) of the family (V{ : i € / ) .

It follows that the collection of dichotomies is order complete for the
informational ordering. Note, however, that the sup operation expressed for
N-P functions is not the pointwise supremum. It corresponds of course to the
supremum operation on N-P functions for the informational ordering.

Monotone likelihood experiments are very naturally represented as fam-
ilies of N-P functions (Torgersen (1989)). These families are characterized by
being closed for the "natural" functional compositions. In general if 2?i and
X>2 are dichotomies having N-P functions β\ and /?2, respectively, then the
composed function β\{β<ι) = β\ oβ2 is also a N-P function. If V is a dichotomy
having β\{β2) as its N-P function then V is at least as informative as the prod-
uct dichotomy V\ xT>2- Indeed if η is the N-P function of V\ x Ί>2 then, for
any α € [0,1], η{a) = sup{//?i(α(:r))/?2(<fa) : JjJ a(x)dx = α} < (by Jensen's
inequality) s u p ^ / a(x)β2(dx)): £ a(x)dx = a} = βι(β2(a)).

As mentioned above, any N-P function arises from a dichotomy. In fact
a N-P function β is also a cumulative distribution function of a probability
distribution on [0,1] which is absolutely continuous on ]0,1]. In fact it may
be checked that β is the N-P function of the pair (iί(0,1),/?) where i2(0,1)
denotes the rectangular distribution on (0,1).
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The N-P function of a dichotomy V = (Po,Pi) is usually found by first
finding a real valued sufficient statistic X, e.g. X = dPι/d(Po + Pi), such that
F\ = £(X|Pi) has a monotonically increasing density w.r.t. FQ = £(X|Po).
By the Neyman Pearson lemma /3(α|Po,Pi) = 1 — F\(FQ1{1 - α)) for any
α €]0,1[ such that FQ^FQ1^! — α)) = 1 — α. In general this formula holds for
any α €]0,l[, provided we permit a random mass in FQΎ{1 — α) distributed
uniformly on [0,ra(α)]5 where m(a) is the FQ mass in F^ζl — α)

All dichotomies having the same N-P function /? are statistically equiva-
lent with the dichotomy (12(0,1),/?). Using the terminology of LeCam (1986)
we may express this by saying that β(\V) defines the type of the dichotomy
V. In fact if α is the observed significance level for testing uθ = 0" against
"θ = 1" in V = (Pi,P0) then C(a\P0) = Λ(0,1) and £(α|Pi) = /?.

The dual of a N-P function β is the function b on [0,1] given by:

6(λ) = λ mm[(l - λ)α + λ(l - β(a)]

The function β may be recovered from b by:

/ ? ( α ) = α i n f l [ ( l - λ ) α + λ-&(λ)]

The function b is clearly also concave and nonnegative and δ(λ) < min(λ, 1-
λ) < \. If β = /3(.|P0,Pi) for a dichotomy V = (P0,Pi) then 6(λ) =
fe(λ|Po,Pi) = ||(1 - λ)Po Λ λPi|| is the minimum Bayes risk in the above
testing problem with 0 - 1 loss and prior distribution (1 — λ, λ).

The dichotomy V = (Po,Pi) is, up to equivalence, completely character-
ized by the distribution K( \Po, Pi) ofdPi/dPo under Po The probability mea-
sure K may be probability distribution K on [0,oo[ such that J xK(dx) < 1.
In fact if this condition is satisfied then K = if ( |UTo? Kι) where KQ = K and
K\ is the unique probability measure on [0,oo] having density x —> x w.r.t.
K. Thus K, assigns mass 1 - / xK(dx) at oo.

Furthermore, if K = K( \P0, Pi) for a dichotomy (Po, Pi) then Ki\ i = 0,1
is the distribution under P t of the Pi maximal version of dPχ/dPo. Thus, since
dPi/dPo is sufficient, the dichotomies (Po,Pi) and (Ko,Kι) are equivalent. It
may be checked that:

/ ? ( α | P 0 , P i ) = α l - / K-\l-p\Po,Pi)dp
Jot

and

δ(λ|p0, Pi) = λ J[(i - λ) Λ λ4fir(<fo|Po, Pi)
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and that
K = C(β'{U)) when C(U) = £(0,1).

The observed significance level a for a dichotomy (Po,Pi) for testing "0 = 0"
against "0 = 1" may be expressed in terms of K by:

a = KQdP^dPo, oo[) + CΛfif ({</Pi/dP0})

where J7 is independent of dPi/dPo and uniformly distributed on [0,1].

Putting δa = 1 or = 0 as α < α or a > α, we obtain a right continuous
(in α) monotonically increasing family of test functions ί α : α 6 [0,1] such
that

Eoδa = a while £i£ α = β(a\POjPι).

Of course we do not need the random variable U. Conditioning on the sufficent
statistic dPi/dPo we may ensure that δa is the unique most powerful level a
test which is functionally dependent on dPi/dPo. If so, then there are constants
ca and 7α such that

1 for dP1/dP0 > ca

ηa for dPi/dPo = ca

0 for dPx/dPo < cQ.

δa =

More generally if 7 is any N-P function such that 7(0:) < /?(α|Po,Pi) for all
a £ [0,1], then there is a right continuous monotonically increasing family of
test functions ψa : a € [0,1] in V = (Po,Pi) such that

£Ό<Pα = α while E\ψa = 7(α).

If e.g. 7 is given as the upper boundary of the convex hull of points (0,6), (pi, 91),
(#2,92) and (1,1) where 0 < px < p 2 < 1 and 7(0) = 6,7(p, ) = ft;« = 1,2,
then we may construct the family φa : a € [0,1] in the following steps:

(i) Let δa : a € [0,1] be given as above,

(ii) ?utφQ = [b/β(0\Po,P1)]δo.

(iii) Let ot\ be the smallest number a\ > 0 such that the graph of
/3( |Po, Pi) intersects the line through (0, b) and (jpi, gi) in the point
(aιJβ(aι\POjP1)). Define ψa so that y>α = (1 - θ)φ0 + θδai when
a = (1 - 0)0 + 0αi is in [0,pi].

(iv) Let c*2 be the smallest number α 2 > αi such that the line through
(ply 9i) and (p2j ft) intersects the graph of/?( |P 0 , Pi) in (a2,β(a2\Po,
Pi)). Define ψa so that y>α = (1 - θ)φPl + θδa2 when a = (1 -
0α2 is in \pi,p2].
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(v) Put ¥>« = ( ! - O)<PP2 + 0 1 for α = (1 - θ)p2 + θ 1 in [p2,1].

It may be checked that δo > ^o^αi > Ψvi^a2 > <£p2

 a n (^ ^^a^ Ψo < <£pi <

^ 2 — I? s o ^ a ^ Ψot '• a € [0,1] satisfy our requirements.

Proceeding by induction, we obtain for any polygonal 7 < /?( |P0,Pi)
a representation y>α : a € [0,1]. By compactness this extends to any N-P
function 7 </?(.|P0,Pi).

This procedure is closely related to the procedure whereby we may pass
from a vector p to a vector q which is majorized by p by a finite number of
"decreasing" steps, each modifying only two coordinates.

Suppose now that Ί( \QOIQI) < β(-\Po,Pi) for a dichotomy (Qo>Qi)
Then 7(α|Qo,Qi) = EiVa where a = Eoφa for an increasing right continuous
family φa : 0 < a < 1 of test functions in V = (Po, Pi). Let Λf( |a:), for each x
in the sample space of V be the measure on [0,1] having distribution function
OL —> φa{%)' Letting iZ(0,1) denote the uniform distrubution on (0,1) we find
for any Borel set B C [0,1] that:

£(0,l)(i?) = J M(B\x)P0(dx)

7(2?|Po,Pi) = J i(dx\P0,Pi) = J M(B\x)Pι(dx)

Finally, the conditional distributions (which may not be regularizable), given
the sufficient statistics dQi/dQo in (Qo> Q\), provide a transition from (i?(0,1),
7) to (Qo?Qi) Combining these constructions we obtain a transition T such
that PiT = Qi, i = 0,1.

This establishes the transition criterion for comparison of dichotomies.
It follows that comparison of dichotomies may be completely decided by test-
ing problems (see Blackwell (1953)). The general transition criterion for e-
comparison of statistical experiments is established in LeCam (1964).

Some other basic comparison rules for dichotomies are collected in the
following theorem.

THEOREM 5.2. (Approximate comparison of dichotomies). Let V =
(Po,Pi) and V = (Po,Pi) be dichotomies. Then the following conditions
Sire equivalent for nonnegative numbers €Q and €χ:

(i) β(α + co/2|£>) + € l /2 > β(α\V); 0 < α < 1 - ±e0.

(ii) b(X\V) < b(\,V) + (1 - λ)£0/2 + λ€i/2; 0 < λ < 1.

(Hi) JΊ(dP1/dP0)dP0 < SΊ(dQ1/dQo)dQ0+le0[Ί(oo)-Ί(0)]^e1y(0),
when 7 is a concave function on [0,oo[ such that η(x)/x —> 0 as
x —• 0 0 .

while:
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(iv) \\PiT - Qi\\ < £t ; i = 0,1 for a transition T from V to V.

If €o = €i = 0 this reduces to:

THEOREM 5.3. (Comparability of dichotomies). With notations as in
the previous theorem for dichotomies V and V, the following conditions are
equivalent:

(i) β(.\V > β( \V).

(ϋ) K |2>) < K-\V).
(Hi) Assuming Po » Px J ψ(dPι/dP0)dP0 > J φ(dQι/dQ0)dQ0 when

ψ is convex on [0, oo[.

(iv) PiT = Qi\ i = 0,1 for a transition T.

(v) Assuming Po » Pi C(dPι/dP0\P0) = £>£(dQi/cfQo|Qo) for a dila-
tion D on [0, oo[.

These conditions imply all

(vi) f[dP1/dPo]
tdPo < JldQ^dQoYdQo; 0 < ί < 1.

REMARKS. The equivalent conditions (i)-(v) all express that V is at least
as informative as V. A dilation on [0, oo[ is a Markov kernel D from [0, oo[ to
[0,oo[ such that J xD(dx\y) = y\ y > 0.

The integral J(dPi/dPoydPo for a dichotomy V = (Po,Pχ) is, as a func-
tion of t 6 [0,1], the Hellinger transform ofV. It defines V up to equivalence.
However, the ordering described by (vi) does not imply that V is at least
as informative as V (see Torgersen (1970)). Within the theory of statisti-
cal experiments the Hellinger transforms have a similar role as characteristic
functions have in probability theory.

In terms of the N-P function β of V the Hellinger transform may be
expressed as:

Jo Jo
where

K = C(dPλldPQ\Po).

Turning to econometric applications we obtain the following well-known
characterizations of the Lorenz ordering:

COROLLARY 5.4. (The Lorenz ordering). Let X and Y be nonnegative
random variables having finite positive expectations.

Let F be the distribution of X and let G be the distribution ofY.
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Let Fι be the distribution having density x —> x/EX w.r.t. F and let G\
be the distribution having density y —> y/EY w.r.t. G.

Then the following conditions are equivalent:

(i) F Lorenz majorizes G.

(ii) E(X - cEX^/EX > E(Y - cEY^/EY; c € R where the ± signs
in exponential position may either both be replaced by + or both
be replaced with - or both be deleted provided (X — c) and (Y — c)
are replaced by, respectively, \X — c\ and \Y — c\.

(iii) Eφ(X/EX) > EψiY/EY) when φ is convex on [0,oo,[.

(iv) G = FM and Gι = FXM for a Markov kernel M.

(v) There are random variables X and Y having distributions F and G,
respectively, such that:

E((X/EX\Ϋ) > Ϋ/EΫ.

Consider now nonnull observation vectors p = (pi,.. .ypd) and q = (?i,...,
qd) having nonnegative coordinates. Letting Fp and Fq be the empirical dis-
tribution functions based on, respectively, p and q we find that Fp Lorenz
majorizes Fq if and only if p/ Σpi majorizes q/ Σ <H-

Proceeding to approximate majorization, we say that a distribution func-
tion F having Lorenz function Zj?, e-Lorenz majorizes the distribution function
G, having Lorenz function LQ, if Lp < LQ+ \t> Theorem 5.2 yields then:

COROLLARY 5.5. (Approximate Lorenz ordering). With the notations of
the previous corollary the following conditions are equivalent:

(i) F e-Lorenz majorizes G.

(ii) E(\X - cEX\/EX) > E(\Y - cEY\/EY) - 6 ; c 6 R.

(iii) Eφ(X/EX) > Eφ(Y/EY) - |€[φ'(oo) - V'(O)] where φ is convex
on [0,oo[ and the quantities φ'(0) = lim^-.ol^i^) ~" ψ(fi)]/x a n c^
y?'(oo) = lim^-.oo ψ\x) are both unite.

(iv) \\Gι - FλM|| < € for a Markov kernel M such that G = FM.

(v) There are random variables X and Y having, respectively, distribu-
tions F and G such that:

E\E((X/EX)\Ϋ) - (Ϋ/EΫ)\ < e.

Consider again nonnull observation vectors p = (pi,...,Pd) and q =
(gi,...,ςy) having nonnegative coordinates. Then the empirical distribution
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function Fp based on p e/d-Lorenz majorizes the empirical distribution func-
tion Fq based on q if and only if the probability vector p/ Σ Pi e-majorizes the
probability vector qj Σ (ft-

Schur convex functions of probability vectors in R d are information in-
creasing functionals of those /^-functions which are linear on intervals f1^, j]
i = 1,..., d. In general a functional of types of dichotomies is monotonically
increasing if and only if it may be represented as a monotonically increas-
ing functional of N-P functions, i.e. if and only if it may be represented as a
monotonically decreasing functional of Lorenz functions.

EXAMPLE 5.6. (The Gini index). If V = (PQ,PI) is a dichotomy then the
area

G = ||(Po x Pi) - (Pi x Po)||/2 = 1 - | |(P 0 x Pi) Λ (Px x P o) | |

of the convex hull of the range of the vector valued measure (Po, Pi) depends on
V only via its type. If V has Neyman-Pearson function /?, then it is equivalent
to (IR[0,l],/3) and thus | |(PoxPi)Λ(Pi xP 0 ) | | = J J[β/(a2)Aβ/(a1)]da1da2 =
2 / Ia1>a2^(a2)da1da2 = 2 £ ( 1 - flαi))^. Hence

G = 2 / β{a)da - 1 = 1-2 / L(a)da,
Jo Jo

where L{ά) =a 1 — β(l — α) is a Lorenz function provided Po >> Pi.
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