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The likelihood ratio ordering has recently been used in economic theory.

This paper examines some of its applications in portfolio theory, auction theory,

and agency theory.

0. Introduction. A variety of familiar stochastic orderings are induced
by classes of real valued functions: the random variable X2 is said to stochas-
tically dominate the random variable Xι with respect to the class of functions
Cif

Eu(X2) > Eu(Xι) for all u e C. (0.1)

In what follows we shall be concerned with sufficient conditions expressed in
terms of densities, so letting X\ and X2 have densities j \ and f2 respectively,
(0.1) becomes

ί u(x)f2(x)dx> I u(x)f1(x)dx for all ueC. (0.2)

It is possible to consider inequality (0.2) a property of a linear transformation
from the function space containing C to functions of the form Tu : {1,2} -* R.
It is required that Tu be increasing, where

Tu(i) = I u(x)fi(x)dx

Widening the enquiry somewhat, it is often of interest to know when a trans-
formation T maps some known class of functions C into some other known
class C1. So, we want conditions on / such that TC C C1 where

Tu(y) = / u(x)f(x I y)dx.

AMS 1980 Subject Classification: Primary 90A05; Secondary 90A09.

Key words and phrases: Total positivity, risk aversion, auction theory, portfolio theory,

principal-agent problem.



L JEWITT 175

It is often useful to be able to verify the desired property after conditioning

on certain sets. Conditioning on a set S corresponds to an operation on the

density of the following form: / - + / * , where

J y 'y>~ Jf(χ\y)g(χ)dχ

and g is the indicator function of the set S. In some economic applications,

a transformation of the form (0.3) occurs but in which g is not the indicator

function of a set, but is some other function - for instance, a marginal utility.

The following simple problem illustrates this. The economic interpreta-

tion is that it is a portfolio problem with one safe and one risky asset. The

problem is to choose s to maximize

u(sx + (1 — s)r)f(x I y)dx,

where x denotes the risky return and r the safe return.

We want to find conditions on / which imply that the optimal choice of

s increases with the parameter y for all increasing concave u. Given sufficient

regularity at the optimum,

/ u\sx + (1 - s)r)(x - r)f(x \ y)dx = 0. (0.4)

By concavity, the left-hand side of (0.4) is decreasing in s therefore if at some

s we have
t

u\sx + (1 - s)r)(x - r)f{x \ y)dx > 0,

then it would be necessary to increase s in order to restore the first-order

condition. In other words, if

(x - r)f*(x I y)dx is increasing in y

where
f(x 1 y)u\sx + (1 - s)r)

/ /(x I y)u'(sx + (1 - s)r)dx

then the optimal s is increasing in y. Since the likelihood ratio is not affected by

the transformation / - + / * , if it is possible to find conditions on the likelihood

ratio which ensure that the distributions are ranked by their means then the

desired result will obtain. It is of course well known that if / has a monotone

likelihood ratio, then the condition is satisfied.

Milgrom (1981) characterizes the monotone likelihood ratio property and

displays its usefulness in a variety of economic contexts including this simple
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portfolio problem. Landsberger and Meilijson (1989) also give a discussion of
it.

It is therefore convenient to be able to deal with a class of densities which
not only have the desired "stochastic ordering" properties, in that TC C C
for the classes of functions C and C' of interest, but which is also invariant
with respect to transformations of the form (0.3).

If x and y are both scalars, then the situation is relatively straightforward,
any property defined by the sign of the determinants

I Ά) Vn)

will be invariant to transformations of the form (0.3).

1. Total Positivity. Karlin (1968) is the major work on this topic, and
the reader is referred to it for further details. We give only a brief outline in
what follows.

DEFINITION. Let X and Y be subsets of the real line IR, the function
K : X x Y —• IR is totally positive of order n (TPn) if x\ < < xn and
2/1 < < Vn imply that

K(xm,y\)

K(xι9ym)

K(xmjym)

> 0

for each m = 1, ,n.

1.1. The Variation Diminishing Property. Let K be TPn o n l x F and μ
be a σ-finite measure on X. If the function g : IR —* IR has at most k < n — 1
sign changes, then the function

g*(y) = J g{x)K{χ,y)dμ{x),

has at most k sign changes. Moreover, if g* has exactly k sign changes then g
and g* have the same pattern of sign changes.

We shall give two simple examples of the use of this property. Suppose
f(x I y) is a density with respect to μ for each value of the parameter y, so
/ f(x I y)μ(dx) = 1 for all y G Y and let

g*(y) = J g ( χ ) f ( χ \ y ) d μ ( χ ) , y e Y (1.1)



I. JEWITT 177

It follows directly from the variation diminishing property that

(a) if g is increasing and / is TP2, then g* is increasing.

(b) if g is quasi-concave and / is TP3, then g* is quasi-concave.

By way of illustration, we shall prove (b). Quasi-concavity of g can be
characterized as follows: For each constant c, the function g(x) — c has at
most two sign changes, and moreover if two sign changes occur the first is
from negative to positive. By the variation diminishing property,

J(g(x) - c)f(x I y)dμ(x) = J g(x)f(x \ y)dμ(x) - c

= g*(x)- c

has the same sign change property, hence 5* is quasi-concave.

2. Application.

2.1. Preservation of the Arrow-Pratt Risk Aversion Ordering. The in-
creasing utility u is said to be more risk averse than the increasing utility υ if
u is a concave transformation of v (Arrow (1970), Pratt (1964)). That is, u is
more risk averse than υ if for each α,/3

u(x) - (α + βv(x))

has at most two sign changes and if two sign changes actually occur then the
first is from negative to positive. In other words, u(x) -βv(x) is quasi-concave
for each choice of β. It follows that the transformation g —• g* in (1.1) preserves
the ordering of functions by risk aversion. Some economic applications and
extensions are given in Jewitt (1987).

2.2. Muitivariaίe Total Positivity. There is a multivariate generalization
of TP2. Standard references are Karlin and Rinott (1980) and Fortuin, Ginibre
and Kasteleyn (1971). Let x and y be vectors from R n and let V and Λ be
the usual lattice operations; x V y is the vector with components max{£t ,2/t }
and x Λ y is the vector with components min{zt , yt }.

DEFINITION. A function K : R n —• 1R is said to be multivariate totally
positive of order two (MTP2) if

K(x Λ y)K(x Vy)> K{x)K{y) for all x, y € K Λ

A strictly positive function is MTP2 if and only if it is TP2 in each pair of
its arguments taken separately (see Karlin and Rinott (1980) or Eaton (1987)).

Much of the convenience of MTP2 functions stems from the following
facts:
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(a) The monotonocity preserving property holds for MTP2 densities. Let
x € ]Rn, y € Rm and let f(x \ y) be a density with respect to Lebesgue
measure. If f(x \ y) is MTP2 in (x,y) then

9*(y) = Jg(χ)f(χ\y)dx,

is increasing whenever g is increasing.

(b) If K : IRn -» π is MΓP 2, then so is Z : R n + m -> IR where Έ is the
extension of K defined as

(c) If K : R n + m -> 1R is MΓP 2, then so is the "marginal" function L : R n

defined by

/ K(x,y)dy,/

(d) If K : R n ~> 1R and L : K n -^ 1R are MΓP 2, then so is their product Af,

x G lRn.

(e) Let 1+ be the indicator function of IR+ = {# € IR | x > 0}, then
K : R2 -> R defined by A'(z, 2/) = l+(a? - y) is MΓP 2 on IR2.

A useful consequence of properties (a)-(e) is the following (e.g. Karlin and
Rinott (1980), Milgrom and Weber (1982)). Let (Xi, ,Xn) be a random
vector with MΓP 2 density, then for any increasing function Φ : lRn —• IR,

£[Φ(Xi, , Xn) I αt < Xi < δt ; i = 1, n] is increasing in α, 6. (2.2.1)

2.3. Application to Portfolio Theory. Given a concave increasing (utility)
function v : lRn —* IR and an endowment α G lRn we can ask what prices
p £ !Rn support α as a demand. The prices determine a hyperplane which
separate the α's which are better from those which are cheaper. We want to
find p such that

α maximizes v(α) on {α | pα < pα}.

Many models of asset pricing in economics are essentially of this form. We
suppose the economy to be inhabited by a single consumer who nevertheless
sets himself prices at which he can trade freely. Equilibrium prices are then
determined where supply equals demand for all commodities.

The assumption of a single representative consumer is not as capricious
as it might first appear but can be regarded as a corollary of a very old idea
which is that individuals acting in their own self interest leads to the common
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good. The name of Adam Smith is most closely associated with this but

Hirschman (1977) traces it back further to Montesquieu albeit in a slightly

different context (Montesquieu thought that having individuals seeking glory

for themselves was for the good of the state).

Economists have now put the old idea into a more precise form. This is

the statement that a competitive economy achieves an efficient allocation of

resources. "Efficient" here is used in the sense attributed to Vilfredo Pareto,

that it is not possible to make anybody better off without making someone

else worse off. It follows from this that in a market equilibrium there exists

a "representative consumer" in the sense that prices support the aggregate

consumption as best in this consumer's preferences. Constantinides (1982)

takes this perspective in an intertemporal asset pricing model.

Suppose that there are n risky assets with asset i yielding a random liq-

uidation value of Xt , i = 1, ,n, and one safe asset yielding Xo = r. For

notational convenience, we normalize so that r = 1. The assets are divided

into shares, and equilibrium prices are those for which it is optimal for the rep-

resentative consumer to have a shareholding of 1 in each asset. That is, we look

for prices p such that Si = 1, i = 0, , n solves the following maximization

problem:

maximize Eu(ΣsiXi) subject to Σpiβi = Σp t .

Since the set of feasible st 's is not altered by, say, a doubling of all prices,

equilibrium prices are only determined up to a scale factor and only relative

prices matter. It is convenient to normalize so that the price of the safe asset

is equal to 1 and thereby measures the prices of the risky assets in terms of

that of the safe asset.

Given concavity of the utility function u, the maximum will be charac-

terized by the first order conditions, it follows that the prices p satisfy

Eu'(ΣXj)Xj _

It is of interest therefore to explore conditions under which

j

Eu'iΣXj) ~ Eu'iΣYj) ' ί - 1 ' ' n I2-3-1)

Let (Xi, , Xn) have the density f\ , and (Yi, , Yn) have the density

/2, then inequality (2.3.1) can be written

/ Xifi(x)dx > / Xif2(x)dx, i = l, ,n,



180 LIKELIHOOD RATIO ORDERINGS

where
u'(ΣXj)fi(x)

If U'(ΣXJ) is MTP 2 in z, and /t is MTP2 in (a?, t), then it follows that fi(x) is
MTP2 in (a:, i) and the desired result follows from the monotonicity preserving
property of MTP2 densities.

The condition that uf(Σxj) be MTP2 is equivalent to u\x) being log
convex. Since v! is positive by assumption, MTP2 is equivalent to U'(ΣXJ)

being TP2 in each pair of x's taken separately and therefore it suffices to
consider the case n = 2. The condition reduces to u\x\ + 2/1) u\x2 + 2/2) >
u'(x\ + 2/2) u\x2 + 2/1) for xι < x2j 2/1 < y2. Evidently, ((#i + 2/1), (x2 + 2/2))
majorizes ((#1+2/2)5 (#2+2/1))? hence the equivalence. The condition is actually
a very natural one in this context, it corresponds to the utility function u being
decreasing absolute risk averse. Let A(y) be the set of gambles, X, that would
be acceptable to an individual with utility u, and initial wealth y € R, so

then A(y) being increasing in the sense of set inclusion is equivalent to υ! being
log convex, Arrow (1970), Pratt (1964), Dubins and Savage (1965). Hence, log
convexity of v! corresponds to reduced risk aversion at higher levels of initial
wealth.

The conditions are not necessary ones and other convenient sufficient
conditions have been derived for the case where there is only one risky asset.
In this case, the question is equivalent to identifying the distribution changes
of the risky asset which will encourage investors to hold more of the risky asset,
which we touched on briefly in the introduction. Other conditions are derived
by Landsberger and Meilijson (1989) and Black and Bulkley (1989). One is
that the two distributions have the same means and a unimodal likelihood
ratio. Whitt (1985) also discusses this relation but in a different context.

2.4. Application to Auction Theory. Different institutional arrangements
often exist for selling different objects such as works of art, boxes of fish, cut
flowers, mineral rights, houses, etc.

Dutch auctions are commonly executed with the aid of a clock, the single
hand of which sweeps down from higher to lower prices until one of the partic-
ipants stops the clock and is awarded the object at the price shown. (This is
a common method of selling cut flowers in the Netherlands.) Vickrey (1961)
had the insight that this way of disposing of an object is essentially equivalent
to a sealed bid mechanism whereby the potential buyers all write their bids on
pieces of paper and submit them to the auctioneer under the following rules:
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the person who bids highest wins the object and pays the amount of his bid,
nobody else makes any payment.

In an English auction increasing bids are solicited by the auctioneer until
no one is willing to bid any further. The last person to bid is awarded the
object at the price bid. This also has a sealed bid version which is conducted
with written bids as before except now the highest bidder wins the object but
only pays the amount of the second highest bid.

Evidently it would be possible in theory to design any number of sealed
bid mechanisms in which the winner is charged some other statistic of the bids,
e.g. the third highest bid, or the mean, or the median. Another variant has
actually been used in practice in nineteenth century England. Each bidder
submits two numbers, the bidder whose numbers contain the largest of those
submitted wins the object but only pays the lowest of his numbers which is
greater than all the numbers submitted by his competitors. One could try
selling an object by a similar method but in which participants submit, say,
four numbers. Another fairly common way of selling an object is by lottery.
One well known race track gambler sold his Irish mansion by lottery and
reputedly got a very good price, but some form of auction is a more common
method.

It is of interest to analyze the performance of different auction mech-
anisms, in what follows, we shall concentrate on the criterion of expected
revenue to the seller and we shall restrict attention to the sealed bid versions
of the English (second price) and Dutch (first price) auctions.

In order to analyze the problem, it is necessary to cast it in game theo-
retic terms and adopt some notion of equilibrium. The Nash noncooperative
equilibrium seems to be the most acceptable solution concept. In a Nash equi-
librium each player's strategy maximizes his payoff given the strategies of the
other players.

From a certain viewpoint, the game is one of incomplete information -
for instance, if all the bidders know their own valuations for a work of art but
do not know the valuations of the competing bidders. Vickrey (1961) made
the important suggestion that the game of incomplete information should be
treated as a game of complete information in which the first move is nature's
choice of individual valuations. Vickrey likened the situation to a parlor game
in which the game commenced by each player drawing his valuation from a
"pack of cards".

2.5. The General Symmetric Model (Milgrom and Weber (1982)). There
are (n + 1) random variables Yi, , Yn, S with the following interpretation.
Bidder i observes Y{ and this comprises the information on which he must
formulate his bid. S is another random variable which might contribute to
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the value of the object to the bidders. In Vickrey's independent private values
models, the Y{ are simply individual valuations. In the common model of
Wilson, S is the common value of the object to the individuals. A concrete
example would be that of an auction for mineral rights. S is the actual size of
the deposit and the Yi are the results of geological surveys. The value of the
object to the n bidders is given by

where Y_t is the vector (Yi, , Yn) with the ith element deleted, and u is an
increasing function. The analysis will rest heavily on symmetry so it is as-
sumed that for each bidder i = 1, , n, u{y^ j / _ ; , s) is symmetric in y_t . The
random vector (Yi,..., Yn, S) has a density /(2/1, , yn^s) which is assumed
to be symmetric in (j/i, , yn). It is natural to think of the j/ t 's as estimated
valuations of the object, so we want E[V{ \ Y{ = y] to be increasing. This is
ensured by the assumption that (Yi, , Yn, S) are affiliated, to use the termi-
nology introduced in Milgrom and Weber. A collection of random variables is
said to be affiliated if their joint density is MTP^ Moreover, if (Yi, , Y )̂
are affiliated, then for any increasing Φ

is increasing in y. Also, since the indicator function for the set max{j/2>
< x is decreasing in (j/2, , 2/n)>

Prob[max{Y2,...,Yn}<a;|Y1 =

is decreasing in y.

At the time of bidding, the only information that bidder i has is his
estimate yt , a realization of Y{. The amount he bids in a given auction form will
therefore, in general, depend on the yι observed. Hence restricting attention
to pure strategies, bidder i's strategy will be a function 6; mapping from the
support of Yi which we take to be [0, oo) to [0, oo).

Since the situation is symmetric between the bidders, it is natural to
suppose that in equilibrium they all adopt the same strategy. So we look for
a function b which is a best response when played against itself.

Take the first bidder as representative and let Z = max{Y2, , Y^}. If
the function bD : R+ -+ Et+ is an equilibrium strategy for all the bidders
in the first price auction (D stands for Dutch), then when bidder one has a
valuation yi, it is optimal for him to bid bD(yι), and it is not generally optimal
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to bid bD(x) for x ψ y. Hence,

E[{VX - bD(x))l{bD(Z) < bD(x)} I Yx = Vl]

x - bD(yi))l{bD(Z) < bD(yi)} I YX =

for all z, 3/1 G R+. It is natural to suppose that in an equilibrium higher
estimates lead to higher bids and given affiliation, this can indeed by proved
(Milgrom and Weber (1982)). Hence, l{bD(z) < bD(x)} = \{z < x} and
therefore in a (symmetric) equilibrium it must be the case that for each y\ G
[0,oo), choosing x = t/i, maximizes

uD(x,yi) = E[Vxl{Z < x} I Y1 = yx] - E[bD{Z)l{Z < x} | Yx = y, ].

uD(x,yι) is the payoff that player 1 would get if everybody plays their equi-
librium strategies but player 1 bids bD(x) when his estimate is y\ rather than
bD(yi) i.e. if player 1 "pretends" to have a valuation x instead of y\. uD(x, y\)
comprises two terms, one corresponds to the anticipated valuation of the object
A(x,yi), and the other is simply the expected payment C^(xyyι).

In the sealed bid version of the English auction the payoff to bidder 1 of
bidding β when he has an estimate y\ and everybody else adopts the strategy
6E is

E[(VX - bE(Z))l{bE(Z) <β}\Y1 = y,}.

Taking for granted that the equilibrium strategy is increasing, it follows as
before that for bE to be an equilibrium strategy it must be the case that for
each y € R+, choosing x = y maximizes

uE(x,yi) = E[Vλl{Z < x} I Yx = yi) - E[bE{Z)l{Z < x} \ Yx = yx).

Since for any j/i, both vP and uE are maximized at x = j/χ, the partial
derivatives vanish there,

Ai(2/i,yi)-Cf(ί/i,t/i) = 0

the 1 subscript represents differentiation with respect to the first argument of
the function.

Hence,

C?(», y) = CE(y, y) for all y € B.+ . (2.5.1)

The identity (2.5.1) is useful in that it considerably simplifies analysis of the
derivative of CD(y, y) - CE(y,y).



184 LIKELIHOOD RATIO ORDERINGS

Now

CD(x,y)-CE(xyy)

= E[bD(x) - bE(Z) I Z < x,Yλ = y] Prob[Z < a: | Yx = y] ^ ' '

It follows from affiliation that as a function of y, the expression in (2.5.2) is the
product of a decreasing positive function and a decreasing function, it follows
that it is decreasing whenever it is positive. That is,

CD(x,y) > CE(x,y) =* Cξ{x,y) < Cξ(x,y).

Since C®(y, y) = Cf{y, y), this implies that

CD(y,y) > CE(y,y) =• γyC
D{y,y) < ^CE(y,y).

Hence, CD(y, y) - CE(y, y) is decreasing wherever it is positive, since CD(0, 0)
= CE(0> 0) = 0, it follows that CD(y, y) < CE(y, y) for all j / e E + . If he has
an estimate Y\ = j/i, the expected cost to player 1 in the first price auction is
CjD(yi, 2/1), so his expected payment is ECD(Y\,Y\). Since expected payments
by bidders are expected revenues for the seller, it follows that the second price
auction yields a higher expected revenue.

2.6. Application to Agency Theory. A franchise contract, say for a fast
food restaurant, could take a variety of forms. At one extreme the franchisee
would take all the profits and pay a fixed sum for the operating license. At the
other extreme, the franchisor could take all the profits and pay the franchisee a
fixed wage. The disadvantage of the first system is that the franchisee bears all
the risks of the enterprise. This is not efficient if the franchisee is risk averse.
The disadvantage of the second arrangement is that, since the franchisee gets
paid the same whatever the profits are, he has no incentive to work hard. There
is therefore a conflict between risk sharing and the provision of incentives. It is
likely that similar conflict occurs rather widely. Crop-sharing arrangements in
rural India are presumably an attempt to strike some sort of balance between
incentives and risk sharing. The phenomenon has long been recognized in
insurance circles where it is known as moral hazard: supplying people with
insurance may mean that they take less care so the occurrence of the insured
event becomes more frequent than an actuarial study of frequencies would
have suggested prior to the introduction of insurance. A remarkable example
arose when Japanese insurance companies started providing coverage against
the eventuality of scoring "a hole in one" at golf (the custom is to stand a
substantial round of drinks, plant a tree, and generally become out of pocket as
a result of the good luck). Not surprisingly, the insurers noticed a remarkable
increase in the frequency of reported "holes in one". A benign government
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faces something of a similar problem in designing a progressive tax system -
there is a conflict between redistributing income to the poor and maintaining
incentives for work.

The simplest version of the moral hazard problem can be formulated as
a maximization problem. The principal cannot observe the action α taken by
the agent but can observe the "output" x resulting from it. Given an action α,
revenue is a random variable with (known) density /. The principal chooses a
wage schedule s : 1R —• IR and an action α for the agent to maximize expected
profit subject to the incentive compatibility constraint that the level of effort
is optimal for the agent given s, and the participation constraint, that the
expected utility attained by the agent is at least as great as some reservation
utility - what the agent could get in an alternative occupation.

The problem is,

maximize / (x - s(x))f(x,α)dx
θ,α j

subject to

/ u(s(x))f(x, α)dx - c(α) > ί u(s(x))f(x, αf)dx - c(α') for all α' (IC)

u(s(x))f(x, α)dx - c(α) > R. (PC)

This is an awkward problem to analyze under general conditions. A consider-
able simplification of the problem would occur if it were admissible to replace
the constraint (IC) with the weaker one that the agent's expected utility be at
a stationary point in effort. The problem is that there may be more stationary
points than global maxima and so replacing the (IC) constraint in this way
might well enlarge the principal's choice set in a way which affects the solution
to the problem. If it is admissible to replace (IC) with

u(s(x))fα(x,α)dx = c'(α) (IC')

where the subscript α denotes the partial derivative with respect to α, then a
standard variational argument leads to

tφ(x)) ""V(x,α)

Given (IC),

S\'E))~~T} \~ J \ 9 Cί )Q'X — C yd J S U.

(2.6.1)
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It follows from this that s cannot be a decreasing transformation of fa/f for
then we would have

/ ujfdx < ί ufdx / jfdx = 0 < c\a).

The first term above is the covariance of u and /α//, if s is a decreasing
transformation of /α//, then the covariance must be negative, but by (IC) it is
equal to c\a) which is positive by assumption. Hence, μ > 0 in (2.6.1). Given
μ > 0 we see (2.6.1) implies that the optimal payment schedule is increasing if
/α(a:,α)//(x,α) is increasing in x. Given the assumed differentiability, this is
equivalent to /(x,α) having the monotone likelihood ratio property. In which
case, we have the result that the monotone likelihood ratio property implies
that the agents remuneration is increasing in output.

In order to justify the replacement of (IC) by (IC), it suffices to show
that at the choice of s solving the problem with constraint (IC),

U(a) = ί u(s(x))f(x, a)dx - c(a)

is quasi-concave. To establish this for arbitrary convex increasing c, it is
necessary and sufficient that / u(s(x))f(x1a)dx be concave.

Given the assumed monotone likelihood ratio property u(s(x)) is known
to be increasing at the solution to the problem with the relaxed constraint (IC)
so the desired conclusion will follow if the transformation φ —• φ* defined by:

φ*(a)= I φ(x)f(x,a)dx

maps the class of increasing functions into concave functions. A necessary and
sufficient condition for this is that the distribution function F(x,a) be convex
in a for each value of x. This condition, together with the monotone likelihood
ratio condition, is due to Mirrlees (1976). This is perhaps too strong an
assumption to make, and so it may be preferable to weaken it. It is possible to
make assumptions on u and / which ensure that (2.6.1) implies that u(s(x)) is
concave (Jewitt (1988)). Hence it becomes of interest to establish conditions on
/ such that the transformation φ —> φ* defined above maps concave functions
into concave functions. It is sufficient that /(x,α) be TP$ and f xf(x,a)dx
be concave. Since ΓP3 densities preserve the risk aversion relation, it follows
that assuming /(#, α) to be ΓP3, and in addition that / x/(x, ά)dx is concave
suffices for / u(s(x))f(x, a)dx to be concave whenever u{s(x)) is concave. The
assumption that / xf{x,ά)dx be concave is a fairly natural assumption of
decreasing returns.
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The assumption that /(#, a) be TP3 can be utilized in this problem more
directly.

Rather than set the problem up with continuous variables we follow
Grossman and Hart (1983) and formulate a discrete version. There are m
possible levels of effort: αi, , am and n possible outcomes x\y , xn. The
probability of outcome xt occurring when effort level a,j is adopted is τrt j > 0.
If it is optimal for the principal to implement effort level fc, say, then it is
optimal to do so as cheaply as possible and so the optimal payment schedule:
pay S{ if xt occurs must minimize Σπ{kSi subject to

] u(si)πik - c(ak) > ] Γ uis^πij - c(dj) j = 1,. •, nj φ k (IC)
i

and
Σu(si)πik-c(ak)>R. (PC)

t

This is a standard programming problem for which the Kuhn-Tucker condi-
tions hold at the optimum. Hence, at the solution there are non-negative
numbers λ and μi, ,μ n -i such that

Consider the function i —• Σ j V^iVi "~ c$jk) where δjk = 1 if j = k and 0
otherwise.

For non-negative μ and fixed fc, μj — cδjk has at most two sign changes
and when two occur, the first is from positive to negative. Since πij/π{k is
TP3 in (i, j) if πt j is, the variation diminishing property ensures that

j π i k

inherits the sign change property and therefore J ^ ̂ μj is quasi-convex. Since
l/u'(s) is an increasing function, it follows that the mapping i —• Si is quasi-
concave. Hence, if the density is ΓP3, then the optimal payment schedule is
quasi-concave. This is perhaps rather a weak result, but general results have
proved hard to come by in this model, and our main intention is to illustrate
the applicability of total positivity arguments to economic problems.
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