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This review paper considers a variety of lower bounds to Prob(Xi < c, ,

Xn < c) involving one and two-dimensional marginal probabilities. Some of

these bounds, e.g., Bonferroni-type, do not require conditions on the random

variables. Others of these inequalities, e.g., product-type, require positive depen-

dence conditions on X\, , Xn for the inequalities to hold. Because all of the

two-dimensional bounds depend on the labeling order of the random variables,

various permutation-optimized versions of the bounds are described. Relation-

ships among the various bounds are also considered.

1. Introduction and Overview. In many statistical applications such
as moving window detection and the calculation of the expected stopping time
and its variance in sequential analysis, one wishes to find a constant c such
that

P(c) = Prob(X! < c, , Xn < c) = 1 - α, (1.1)

where X = (Xi, ,Xn) is a vector of dependent random variables and
0 < a < 1 is given. The constant c which satisfies (1.1) is called the mul-
tivariate a-level critical value. Exact calculation of c can entail extensive
computation. Sometimes the calculation of c is intractable (even with the use
of a computer) because it requires iteration and high dimensional multivariate
numerical integration. This is particularly true in the types of applications
noted above. Due to this dilemma, which is known as the "curse of dimen-
sionality," there has been considerable interest in finding easily computable
approximations to P(c) which can be used in an iterative search procedure to
find an approximation to the multivariate α-level critical value.
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While for some applications any good approximation to P(c) is satisfac-
tory, in order to control the experimentwise error rate in multiple hypothesis
testing applications, the approximation used in the iterative search scheme
should be a lower bound to P(c). With a lower bound approximation, the ap-
proximate multivariate α-level critical value is guaranteed to be conservative,
i.e., the experimentwise error rate will be less than or equal to α. For this rea-
son we concern ourselves in this review paper on finding lower bounds to P(c).
Moreover to reduce computational complexity, we want these lower bounds to
depend on "low" dimension marginal distributions of X. In general, we say
that an approximation is of order i if it depends on marginal probabilities of
X of order i or less.

Two popular first-order approximations are based on Bonferroni's in-
equality and a first-order product-type inequality (Slepian (1962), Sidak (1967)).
The Bonferroni inequality always gives a conservative estimate to the multi-
variate α-level critical value, while we can only be sure that the first-order
product bound is conservative if X satisfies positive dependence conditions
(usually, positive lower orthant dependent, (PLOD), see Dykstra et al., (1973)
and the Appendix). However, if these PLOD conditions are satisfied, then the
product-type bound is sharper than the Bonferroni bound (e.g., see Fuchs and
Sampson (1987)). In particular, if X is distributed according JV(0,17), then
|-X"i|, — |-XΛ| are PLOD (Sidak (1967)). Consequently, the product bound
should always be used rather than the Bonferroni bound in two-sided signifi-
cance testing between multivariate normal distributions. Applications of this
result include Games (1977), Rao, Marsh and Winwood (1985), and Rao and
Marsh (1987). An appealing feature of the Bonferroni and first-order product-
type bounds is that other than variances, one does not need to know the
covariance structure of X.

Regardless of the covariance structure, first order bounds are known to be
overly conservative. Holm (1979) developed a sequentially rejective procedure
to be used with the Bonferroni bound which identifies individual hypotheses
to be rejected. This procedure reduces the degree of conservatism of the Bon-
ferroni method yet controls the experimentwise error rate under the complete
and partial null hypotheses when the test statistics are independent. Tabula-
tions aid in the implementation of the Holm sequentially rejective procedure.
Recent modifications of the procedure are due to Shaffer (1986), Simes (1986)
and Holland and Copenhaver (1987). A review of these sequentially rejective
procedures is given by Hochberg and Tamhane (1987).

Several authors have shown that first-order approximations are unaccept-
ably conservative under known strong positive dependence (Glaz and John-
son (1984), Schwager (1984) and Stoline (1983)). Recent approaches utilize
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second-order (and higher-order) bounds which can exploit the strong positive
dependence structure, if it is present, and are consequently much sharper lower
bounds than the first-order bounds. One of the main focuses of this paper is
the review and comparison of these bounds.

We note that a simple method of improving Bonferroni bounds is based on
the well known principle of inclusion and exclusion (see Feller, 1968, Chapter
IV.5). This principle states that by subtracting off all (^-bivariate marginal
probabilities from the usual Bonferroni bound, an upper bound to P(c) is ob-
tained, then by adding all Q) trivariate marginal probabilities, a lower bound
is obtained, etc. This sequence of alternating lower and upper bounds are ap-
plicable regardless of the underlying distributions. See Barlow and Proschan
(1981) for applications of these higher-order Bonferroni bounds to reliability
analysis in engineering. Tong (1980) offers a good review of Bonferonni and
other "distribution free" inequalities such as Chebychev-type inequalities and
Kolmogorov-type inequalities. For recent developments of bounds based on the
inclusion-exclusion criteria, also see Hoppe (1985), Rescei and Seneta (1987)
and Seneta (1988).

There are two reasons for further restricting our attention to second-
order bounds. First of all, the computationally feasible second-order bounds
are often surprisingly accurate, representing a substantial improvement over
first-order bounds. (See Glaz and Johnson (1984), Worsley (1982) and Bauer
and Hackl (1985)). Secondly, the relationships among various bounds are
more easily understood by restricting our attention to second-order bounds,
rather than higher-order bounds. (However, some of the results presented are
extendable to third-order bounds. See Glaz and Johnson (1984), Hoover (1990
a,b) and Glaz (1990).)

We employ the notation B{ = {X{ < c] and A{ = {X{ > c}, for i =
1, ,n, so that

where P(A) denotes the probability of a set A. Consequently, a lower bound
to P(c) is attained by obtaining an upper bound to P (UΓ=i ^t) Second-order
Bonferroni-type lower bounds to P(c) are obtained in this manner. However,
we often express these bounds as lower bounds to P(ΠΓ=i &i) m ^ s P a P e r

in order to compare them to second-order product-type bounds which are
obtained in this fashion. For convenience throughout we assume 0 < P(Ai) <
1.
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While

( Ai ) ^ Σ P(A») " Σ P(A« n A i ) '
\t=l / t=l j

Hunter (1976) used techniques of graph theory to show that an upper bound
to P (UΓ=i Ai) is obtained if n - 1 appropriately chosen bivariate probabilities
are subtracted from Σ™=1 P(A{). We refer to these bounds as second-order
Bonferroni-type bounds.

These second-order Bonferroni-type bounds can be readily compared to
second-order product-type bounds which are generalizations of the Slepian-
Sidak bound. The same relationships hold for these second-order bounds as
the known relationship between the first-order product and Bonferroni bounds.
First, positive dependence conditions must be verified to insure that product-
type approximations are bounds, unlike the Bonferroni-type bounds. Second,
the apparent greater generality of the Bonferroni-type bounds is often vacu-
ous because Bonferroni-type bounds often degenerate, i.e., yield bounds of the
form P(c) > &, where k < 0. In contrast product-type bounds never degener-
ate. (This is particularly relevant when obtaining bounds of high dimensional
probabilities in which marginal probabilities are not small.) Third, if the
bound conditions of the product-type approximations are satisfied then they
are sharper bounds than the corresponding Bonferroni-type bounds. Fourth,
product-type bounds have an advantage in that they are exact under indepen-
dence, unlike Bonferroni-type bounds. The reader is referred to Glaz (1990),
Hoover (1990b), and Kenyon (1986, 1987, and 1988) for a numerical compari-
son of higher-order product-type and Bonferroni-type bounds.

Further development of the Bonferroni-type bounds has been done by
Worsley (1982) and Hoover (1990a). Bauer and Hackl (1985) and Worsley
(1982) consider the application of these bounds to a wide range of multiple
testing problems. Specific applications of these bounds in the applied liter-
ature include flexible sequential monitoring schemes (Bauer 1986), multiple
comparisons (Stoline 1983), stepwise regression (Bjornstadt and Butler 1988)
and multiple forecasts in ARIMA models (Ravishanker et al., 1987).

Glaz and Johnson (1984) and Block, Costigan, and Sampson (1988 a,b)
(alternately BCS), develop higher order product-type bounds. Specific appli-
cations of these bounds in the applied literature include approximating the
operating characteristics of sequential monitoring schemes (Glaz and Johnson
(1986) and Kenyon (1988)), multiple comparisons (Kenyon (1986)), moving
sums (Glaz and Johnson (1988)), group sequential analysis of litter matched
data (Milhako (1987)), and ordered multivariate exponential distributions
(Sarkar and Smith (1986)).

Chhetry, Kimeldorf and Sampson (1989), recently developed second and
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higher-order setwise bounds. These bounds are a different type of extension
of the first-order product bounds than the product-type bounds considered by
Glaz and Johnson. In fact, setwise bounds can be viewed as a compromise
between Bonferroni-type bounds and product-type bounds in the following
sense. Setwise approximations require positive dependence conditions (unlike
Bonferroni-type bounds), but these conditions are weaker than the required
product-type positive dependence bound conditions. Consequently, setwise
bounds are applicable in more general situations than product-type bounds.
However, Glaz and Johnson product-type bounds yield less conservative esti-
mates than setwise bounds under weak positive dependence conditions (e.g.,
pairwise PQD (Lehmann 1966) and the Appendix) of certain bivariate sub-
vectors. In particular, product-type bounds are sharper than setwise bounds
whenever product-type bound conditions are satisfied. Advantages which
both setwise bounds and product-type bounds share over the Bonferroni-type
bounds are their nondegeneracy and exactness under independence.

This paper reviews and compares second-order product-type bounds,
Bonferroni-type bounds and setwise bounds. Bound conditions are developed,
relative efficiences of the bounds are defined and situations where the various
bounds are most appropriate are listed.

A discussion of other uses of probability bounds concludes this paper.

2 Standard Second-Order Bonferroni-Type Bounds. Writing

UΓ=i «̂ a s ^ e disjoint union

we have

ΐ=2

which yields

Ή
\t=l /

t = l

An equivalent way of writing this bound

p(c)i
n

t=2

- έ p ( ' 4 ' n

t=2

is

n-1

i=2

(2.2)
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We refer to expressions (2.1) and (2.2) as the standard second-order Bonferroni-
type bound. As will be shown in the following sections, this bound is optimal
among other types of second-order Bonferroni-type bounds in most applica-
tions involving repeated significance testing.

3 Standard Second-Order Product-Type Bounds. It is easy to
see that

n

P(c) = P(X1 < c)l[P(Xi <c\X1< c,.. .,X t-_i < c).

By conditioning on the immediate predecessor rather than all predecessors one
obtains the conditional approximation

n

P(c) » P{Xλ < c) JI P(Xi < c I Xi.x < c)

W (31)

We refer to (3.1) as the standard second-order product-type approximation
and view this approximation as a second-order generalization of Slepian-Sidak
bounds, which we denote by

Glaz and Johnson (1984) introduce these second (and higher order) product-
type bounds /?2(<0 (and /?3, , βn-i) (see Glaz and Johnson for the definitions
of /?3, , βn-ι) They prove the following theorem.

THEOREM 1. Let X = (Xχ,« ,Xn) be an &τbitτa,τy random vector. If
X has a density which is multiva,ria,te totally positive of order 2 (MTP2) (see
Karlin and Rinott (1980) and the Appendix), then

P(c) > /J»-i(c) > > &(<0 > βι(c)-

For X distributed according to JV(O, Σ), MTP2 is equivalent to either of
the following equivalent conditions

(i) σ υ < 0 for 1 < i < j < n, where Σ " 1 = (σ u) (Barlow and Proschan
(1981))

(ii) σij. > 0 for 1 < i < j < n, where σt j . is the partial covariance of
Xi and Xj given the other n - 2 components (Bolviken (1982) and
Karlin and Rinott (1983)).
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BCS (1988a) obtain substantially weaker positive dependence conditions
based on conditional setwise dependence which guarantee that P(c) > β2 > β\.
These conditions do not require that the distribution of X be MTP2. BCS
(1988a) show, for example, that the multivariate exponential distribution of
Marshall and Olkin (1967) satisfies their conditions for upper orthant proba-
bilities but is not MTP2.

For the multivariate normal case the BCS conditions reduce to the fol-
lowing.

THEOREM 2. Let X = (Xi, ,Xn) be distributed according to JV(0,Σ)
with σα = 1 for i = 1, ,π. Tien P(c) > β2(c) > βι(c) iί the following
conditions are satisfied:

(i) Σ > 0 (3.2a)

(ii) σij.j-i > 0, for i < j - 1, j = 3, , n, (3.2b)

where A = {atj} > 0 denotes αij > 0,1 < i, j < n and σ^ .j_i is the conditional
covariance of Xi and Xj given Xj-i.

We note that condition (3.2a) alone insures that P(c) > βι(c). Also the
conditions of Theorem 2 are weaker than the MTP2 condition of Theorem 1
(Karlin and Rinott (1983)). For instance, (3.2a) and (3.2b) are satisfied when
group sequential analysis is applied for bivariate normal response, although
the test statistic is not MTP2 (see BCS (1988a)).

The conditions of Theorem 2 are sufficient but not necessary for P(c) >
/?2(c) ^ βi(c) BCS (1988b) employ techniques of graph theory to develop
other conditions. Also Glaz (1990) computationally verifies that P(c) >
/?2(c) > βι(c)y for moving averages of order 10, yet none of the sufficient
bound condition of BCS (1988a, 1988b) are satisfied.

4. Second-Order Setwise Bounds. Chhetry, Kimeldorf and Sampson
(1989) develop second-order setwise approximations of the following form:

Π™ 1 P(X2i-i < c, X2i < c), if n = 2m (4.1a)

P{XX < c) Uti P(*2i < c, X2i+i < c), if n = 2m + 1. (4.1b)

For simplicity we restrict our attention to the case n = 2m.

Chhetry, Kimeldorf and Sampson introduce a concept called setwise PLOD
and show that if (Xu X2), (X%, X4), , (X2771-1, XΊW) are setwise PLOD then

P{c) > r2(c).

For the multivariate normal case this reduces to the following theorem.
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THEOREM 3. Let X be distributed according to JV(O, Σ). If σ^ > 0 for
\j — i\ > 2, and σ2i,2i+i = 0 for i = 1, , m — 1 then P(c) > T2(c).

Note that one may have σ2i-\y2i < 0 for i = 1, ,ra and still have
P(c) > τ2(c).

5. Relationships Among Standard Second-Order Bonferroni,
Product and Setwise Bounds. We note the following important properties:

(1) one does not have to verify bound conditions for b2 to hold, unlike
β2 and τ2;

(2) the bounds β2 and τ2 are never degenerate, unlike 62;

(3) the bounds β2 and τ2 are exact under independence, unlike 62.

The following theorem is proved by BCS (1988b), Hoover (1990b), and Glaz
(1990).

THEOREM 4. β2(c) > b2(c).

It follows from Theorem 4, that when second-order product-type bounds
are applicable, (i.e., when Theorem 1 and 2 are satisfied so that P(c) > β2(c) >
/?i(c)), they are superior to second-order Bonferroni-type bounds.

Hoover (1990b) defines ^44 as a measure of efficiency of β2 relative to
62. The ratio is only slightly larger than 1, for moderate n, large c and strong
positive dependence. However, if n is large, β2 can be considerably sharper
than 62? even for large c. This is true in a moving window detection application
considered by Glaz (1988) in which b2 often degenerates.

We now consider the relationship between setwise and product-type bounds.
We first note that both of these approximations can be viewed as alternative
generalizations of Slepian-Sidak bounds, and both behave similarly in terms
of the preceding properties (1), (2), and (3). BCS (1988b) show the following.

THEOREM 5. Let X = (Xi, ,X2m) be an arbitrary random vector. If
(X2ij X2. +i)) is PQD, for i = 1, , m - 1, then β2(c) > τ2(c). If(X2i, X2i+i),
i = 1, , m, are NQD (see Lehmann (1966) and the Appendix), then τ2(c) >

A(c).
In the multivariate normal case, Theorem 5 reduces to the following:

THEOREM 6. Let X = (Xi, , X2m) be distributed according to iV(0, Σ).
Then β2(c) > (<)r2{c) provided σ2ι , 2 t + i > (<)0, ΐ = 1, ,m - 1.

We note that the positive dependence condition of Theorems 5 and 6
are relatively weak. Clearly, they are satisfied whenever X is MTP2 or the
bound conditions for P(c) > β2(c) > βi(c) given in Theorem 2 are satisfied.
When these strong positive dependence conditions are satisfied, then β2(c)
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is sometimes much sharper than τ2(c). This can be seen by examining

which measures the efficiency of β2 relative to τ2. Specifically,

m-
When P(X2* < c, X2i+i ^ c ) » P ( χ 2 i < c)P(X2i+i < c), the ratio in (5.1)

will be much larger than 1, indicating that the product-type bound is much

sharper than the setwise bound. Of course, under the corresponding negative

dependence conditions the ratio in (5.1) is less than 1.

BCS (1988a) demonstrated that setwise positive dependence concepts

play a key role in obtaining weak conditions for P(c) > β2(c) > βi(c)- I*1

fact, we believe that higher order setwise and product-type bounds can be

combined to achieve the most accurate bounds in applications involving the

multivariate normal with empirical covariance matrices.

Neither the setwise nor the Bonferroni-type bounds dominate the other.

It is apparent from the preceding properties (2) and (3) that τ2 > b2 for large

n and that τ2 > b2 when the components of X are independent. On the other

hand, under certain notions of strong positive dependence b2> τ2, because τ2

does not fully exploit the dependence structure.

6. General Second-Order Bonferroni-Type and Product-Type

Bounds. Hunter (1976) and Worsley (1982) further developed second-order

Bonferroni-type bounds, by defining a bound for each spanning tree T cor-

responding to the "bivariate probability structure." We denote these bounds

by b2(T) and describe them below. See Worsley (1982) for some interesting

applications of these bounds. See both of the preceding papers for suitable

background on the use of graph and spanning trees for this type of problem.

Corresponding to the sets A\, , An, we identify the complete n-vertices

graph, i.e., all the vertices are connected by edges, and with vertex i corre-

sponding to set Ai. A spanning tree, T, is a subgraph of this complete graph

satisfying: (a) no cycles are present in the graph, and (b) there is a path from

any vertex to any other. To develop the bounds b2{T), Worsley (1982) uses the

notion of an increasing representation of a spanning tree. For every spanning

tree, T, there exists at least one permutation P = (Pi, , Pn) of (1, , n)

such that

T={(P?,Pi),i = 2,-..,n} (6.1)

where P* ζ {Pi, , P«_i}, and T is described by the set of connected vertices,

i.e., edges. In this case call the permutation P an increasing representation

and (6.1) an increasing representation for T.
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1

Figure 6.1
Complete Graph for Ai, ^2, A%, and

Figure 6.2
A Spanning Tree for Graph in Figure 6.1

For example, for sets Λi, A2, A3, and A4, Figure 6.1 gives the corre-
sponding complete graph and Figure 6.2 gives a spanning tree for this graph.

Two possible increasing representations for the spanning tree T = {(2,4),
(3,4), (1,4)} are the permutations (4,2,3,1) and (4,1,2,3). However, (1,3,2,4)
is not an increasing representation because no predecessors of 3 are connected
to 3 by edges in this particular spanning tree.

Using the increasing representation and arguments similar to those em-
ployed in Section 2, it follows that

L J A ' -/
n

i = l

This bound is independent of the specific increasing representation and can be
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expressed as

p (U A ) Ϊ Σ p(A«) - Σ p ( A ' n A>)
i=l / t=l

Equation (6.2) is known as Hunter's inequality (1976). An equivalent repre-
sentation of (6.2) is

P(c)> ]Γ P(Xi<c,Xj<c)^Y/(di^l)P(Xi<c) = b2(n (6.3)
t=i

where d{ is the degree of vertex i within the tree (i.e., the number of vertices
connected to A{ by edges in T).

For the string-like tree Tλ = {(i - 1 , i)i = 2, , n}, (6.2) and (6.3) reduce
to (2.1) and (2.2), the standard second-order Bonferroni-type bound. If one
substitutes the star-like tree Γ* = {(ί,i),j = 1, ,n; j ^ i} in (6.2), one
obtains

p ( U ^') ^ Σ p ( A i ) - ί > ( A < n Ai)'
\t=l / j=l i=i

which is an inequality due to Kounias (1968). Averaging over i one obtains a
bound due to Kwerel (1975).

BCS (1988b) use graph theory techniques similar to those used by Hunter
(1976) and Worsley (1982) to obtain general product-type bounds correspond-
ing to each spanning tree, T, of the bivariate probability structure, denoted
by β2{T). Modifying the Glaz-Johnson technique, BCS estimate P{Xp{ < c \

i <ί c> * * 'iXPi-x < c ) by P(Xpi < c I Xp* < c). One obtains the bound

p; <

BCS (1988b) rewrite this expression as

and call /?2(Γ) the second order product-type bound corresponding to Γ.

For the string like tree β2{T) reduces to β2(c) defined in (3.1).

For the star-like tree T% = {(i, j ) , i = 1, , n\ j φ i}, we have
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which is the product-type analogue of Kounias' (1968) bound.

General Bonferroni-type bounds b2(T) are always lower bounds to P(c),

while positive dependence conditions must be satisfied for P(c) > β2(T).

THEOREM 7. Let X = (Xi, ,Xn) be a random vector. If X has a

density which is MTP2 then

P(c) > /32(Γ) > βx{c).

Positive dependence conditions of BCS (1988a) can be modified to obtain

weaker positive dependence conditions which guarantee that P(c) > β2(T) >

βι(c). We now state these conditions for the multivariate normal case.

THEOREM 8. Let X = (Xi, ,Xn) be distributed according to iV(0, Σ).

Let T be a spanning tree for the probability graph with an increasing repre-

sentation T = {(P?, Pi), i = 2, , n}. Then

P(c) >

provided the following two conditions are satisfied

(i) Σ > 0 (6.4a)

(ii) Cov(XPh,XPi I Xp*) > 0, i = 3,- . , n , Λ < i, h φ i\ (6.4b)

Again, these conditions are substantially weaker than the MTP2 condition.

For the string-like tree with the usual increasing representation T\ = {(i — 1, i),

i = 2, ., n}, the conditions in (6.4) reduce to (3.2).

Interestingly, different increasing representations for the same tree T can

yield different conditions of the form (6.4). BCS (1988b) exhibit all increas-

ing representations of the string like tree ϊ i , to obtain a variety of bound

conditions for P(c) > β2(c) > β\(c) other than those presented in (3.2).

For the star-like tree T% = {(i, j) , j = 1, , n, j φ i}, bound conditions

corresponding to all increasing representations reduce to the following two

conditions:

(i) Σ > 0

(ϋ) Vhj-i > 0, for 1 < h< j < n, h,j φ i.

If the bound conditions for P(c) > β2(T) > /?i(c), are satisfied then β2(T)

is superior to b2(T) by the following theorem which is proven in BCS (1988b).

THEOREM 9. Let X = (Xi, ,Xn) be an arbitrary random vector. For

any spanning tree T of the probability graph, β2{T) > b2(T).

We consider finding optimal β2{T) and b2{T) in the next section.
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7. Optimized Bounds. Seneta (1988) uses optimization arguments
similar to those used in Section 2 and concludes

which reduces to

Maximizing (7.1) over all permutations P = (Pi, ,P n) of the orderings of
the components yields

P \ίlA': <
\ί=i

(7.2)

where maxp denotes the maximum over all permutations.

This will clearly yield an improvement of the bound given in (2.1), but
(7.2) apparently requires extensive computation. We observe that Seneta
(1988) apparently fails to notice that (7.2) coincides with the maximal Hunter
bound of the form (6.2) which can be obtained with much less computa-
tion. Hunter (1976) shows that b2(To) > b2(T) for all spanning trees T,
where To is obtained by applying Kruskal's (1956) maximal spanning tree
to the network function f((ij)) = P(Xi > c,Xj > c) = P(Ai Π Aj). The
Kruskal algorithm is easy to compute. For instance, in the multivariate
normal case with equal marginals, To is calculated from examination of the
covariance matrix, without evaluating marginal probabilities. Alternatively
b2(To) > b2(T) where To is obtained by applying Kruskal's algorithm to
t((i AX\ __ pt v. <- n Y < n\ P( Y < A P( Y' < A

Although the maximization approach of Seneta is unnecessary for second-
order bounds, it can be applied to obtain an optimal third-order /3, product-
type bound. However, the maximization is often computationally infeasible.
BCS (1988b) show that β2{T£) > β2(T) for any spanning tree T where To* is
attained by applying Kruskal's maximal spanning tree to the network function

/((*, j)) = P(Xi < c,Xj < c)/(P(Xi < c)P(Xj < c)).

In the equal marginal case, TJ = To so that the optimal product-type
bound and optimal Bonferroni-type bound occur at the same spanning tree.
Suppose for a moment that we have equal marginals. In light of Theorem
9, the optimal product-type bound β2(T0) will be superior to ^(To) if X is
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MTP2 or if the conditions of (6.4) are satisfied in the multivariate normal
case.

For many applications involving equal marginals the string-like tree or
the star-like tree yield the optimal Bonferroni-type and optimal product-type
bounds. The following theorem gives conditions under which string-like and
star-like trees yield optimal bounds (Worsley (1982), BCS (1988b)).

THEOREM 10. Let X = (Xi, ,Xn) be a random vector satisfying

(a) β2(Tι) > β2(T) and b2(T1) > 62(Γ), for all spanning trees if

i-! < c,Xi <c)> P(Xh < c,Xi < c)

for all h < i — 1, i = 3,4, , n.

(b) β2(Ti) > β2(T) and 62(T1) > 62(Γ), for all spanning trees T if

P(Xi < c,Xj < c) > P(Xh < c,Xj < c)

for j = 1, , n, j φ i, for all h φ i, j .

In the multivariate normal case the conditions of the previous theorem
can be interpreted in terms of correlations.

THEOREM 11. Let X = (Xχ, ,Xn) have a multivariate normal distri-
bution with σu = 1 for i = 1, , π.

(a) β2(Tx) > β2(T) for all trees T if σt fl -i > σhi for h < i - l,i =

( b ) β 2 { T ) > β 2 ( T ) for all trees T , ifσij > σjh for all j , h φ i y l < j <

h < n .

In the unequal marginal case the maximal spanning tree will not neces-
sarily be a string-like or a star-like tree. When applications based on empirical
data such as when n measurements are collected on a number of individuals,
the optimal bound will often not correspond to a string-like tree due to the lack
of covariance structure. In such applications lacking covariance structure, such
as when some correlations are small but others involving non-adjacent compo-
nents are large, the optimized bounds β2(To) and 62(^0) will be considerably
sharper than the standard second-order bounds, β2(T\) and b2(T\).

There has been virtually no development of optimized setwise bounds,
where we define an optimized setwise bound as

P i
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where n = 2m, P = (Pi, ,Pn) is a permutation of (l, ,π), and the
maximization is over all permutations.

Use of this bound is not always apparently computationally feasible and
further development is necessary for its use. However, for moderate n, it is
sometimes possible to calculate this bound by inspection of the correlation
structure.

8. Discussion. The results of the preceding Sections also hold for
finding lower bounds to upper orthant probabilities. These results also apply
to bounding P(X\ < Ci, , Xn < cn) where the ct 's are unequal.

Second-order product-type and Bonferroni-type probability bounds can
be applied to |XL|, , \Xn\ to obtain estimates of multivariate α-level critical
values in two-sided testing applications. In our view, a useful extension of
the current theory would be to obtain results similar to Theorems 2 and 8 for
two-sided testing.

Under strong negative dependence conditions, it follows that β\(c) >
/?2(c) > P(c) > &2(c) > δi(c) so that product-type bounds complement
Bonferroni-type bounds (Glaz and Johnson (1984)). One such application
of this result is to multinomial probabilities (Glaz (1990)).

Another useful extension of the current theory would be to obtain weak
bound conditions for P(c) > /?2(c) > βi(c) m applications involving the multi-
variate ^-distribution, such as multiple comparisons. Simulation results on the
feasibility of the use of product-type bounds for multivariate ^-distributions
would also be helpful. Such research may lead to the use of product-type
bounds in applications in which Bonferroni-type bounds are currently em-
ployed (Bjornstadt and Butler (1988) and Stoline (1983)).

9. Other Probability Inequalities. In this review paper we concen-
trate on certain probability approximations which are expressed in terms of
lower dimensional marginal probabilities and for which sufficient conditions
for the approximations to be bounds involve positive dependence concepts.

For the reader who wishes to become more familiar with the more general
subject of probability inequalities, see the book by Tong (1980) and the survey
articles of Eaton (1982) and Block and Sampson (1982).

With regard to specific topics, there is an extensive literature on inequal-
ities on a symmetric convex set (Tong (1980; Chapter 4) and Eaton (1982)).
The better known results in this area are due to Anderson (1955), Sherman
(1955) and Pitt (1977). There is also an extensive literature on inequalities by
mixture (see Shaked (1977, 1979)). Chhetry, Kimeldorf and Sampson (1989)
utilize notions of positive dependence by mixture in their study of setwise
positive dependence.
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Many probability inequalities are based on majorization (see Tong (1980;

Chapter 6) and Eaton (1982)). Primary sources for majorization are Marshall

and Olkin (1974, 1979). Among other areas, majorization is useful in obtain-

ing monotonicity results. It is also applicable in situations in which multiple

hypotheses are tested, as are the probability bounds presented in this paper.

For example, Gail and Simon (1985) recently develop tests for prespecified

treatment covariate interactions in clinical trials by using the basic theory of

majorization.

Other probability inequalities based on positive dependence are reviewed

in Block and Sampson (1982) and Tong (1980). Many of these inequalities

are based on the parametric form of the density, e.g., multivariate normal, tf,

chi-squared, and F, as well as multinomial.

Das Gupta et al. (1972) provide inequality results for spherically sym-

metric distributions. These authors also derive some bounds for spherically

symmetric distributions with non-zero means. They also derive upper as well

as lower bounds. The most important results of Das Gupta et al (1972) are

contained in Tong (1980) for the special case of multivariate normal distribu-

tions.

Appendix:
Definitions Pertaining to Positive Dependence Concepts

DEFINITION A.I. (Xι,X2,-
 #

 ΊXΠ) is positive (negative) lower orthant

dependent, PLOD if for all real numbers c\, c2, , cn

n

P(X1 < CUX2 < C2, •••,*» < Cn) > (<)Y[P(Xi < Ci). (A.I)
t = l

DEFINITION A.2. (Xι,X2, " > ^ n ) is positive (negative) upper orthant

dependent if for all real numbers C\, C2, , cn

P(X1 > cuX2 > c2,.. ,Xn > cn) > (<)Y[P(Xi > * ) . (A.2)
i = l

For bivariate distributions Definitions A.I and A.2 are equivalent and the term

positive (negative) quadrant dependence, PQD, (NQD) is used.

DEFINITION A.3. A function / : R2 —> R* is totally positive of order 2,

ΓP2, if whenever x' > x, y' > y

/(* ' , y')f(*, y) > /(*'> y)f(χ, y')> (A.Z)

DEFINITION A.4. A function / : Rn —> i2+ is totally positive of order 2

in pairs, TP2 in pairs, if f(X\, , Xn) is a TP2 function of Xt and Xj in the
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sense of (A.3) while the other variables are held fixed for 1 < i < j < n. A

random vector (Xi, X2, > Xn) is TP2 in pairs if it has a joint density function

which is TP2 in pairs.

DEFINITION A.5. A function / : Rn -+ R is muitivariate totally positive

of order 2, AfTP2, if for all x,y e Rn

f(χΛy)f(χVy)>f(χ)f(y), (A.5)

where xΛy = (min(zi,2/i), min(a;2,2/2), * ,min(zn,yn)) anda Vy = (max(zi,

2/χ), max(x2,y2), * * #>inax(:rn,2/n)). A random vector is MTP2 if its density is

MTP2.

A density which is MTP2 is also TP2 in pairs. In fact, MTP2 and ΓP 2

in pairs are equivalent when the support of / is a product space.
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