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Abstract

In the supercritical branching random walk an initial person has children

whose positions are given by a point process 7^\ Each of these then has chil-

dren in the same way, with the positions of children in each family, relative to

their parent's, being given by independent copies of zP\ and so on. For any

value of its argument, λ, the Laplace transform of the point process of n Λ

generation people, normalized by its expected value, is a martingale, the usual

branching process martingale being a special case. Here it is shown that under

certain conditions these martingales converge uniformly in λ, almost surely and

in mean. A consequence of this result is that the limit is, in an appropriate re-

gion, analytic in λ.

1. Introduction. This paper considers the one dimensional supercritical

branching random walk. The process starts with a single initial ancestor at the

origin. She has children, forming the first generation, with their positions on the

real line, Λ, being given by a point process Z ^ . Each of these children then has

offspring in a similar way, with the positions of each new family relative to their

parent being given by independent copies of zίι\ This gives the point process

of second generation individuals, denoted by T^λ Subsequent generations are

formed similarly, yielding Z ( n ) as the n Λ generation point process. Let {zr

(n): r]

be an enumeration of the positions of the n Λ generation people.

Let μ by the intensity measure of 7^ then, as is well known, μn* (the n-fold

convolution of μ) is the intensity measure of Z^n\ As the process is supercriti-

cal we have μ(R) > 1. Let m(k) be the Laplace transform of μ. Then

m(λ) =j

JλxZ™ (dx)

and hence
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{dx)

We will adopt the convention that the real and imaginary parts of λ are θ and η

respectively, so that λ = θ + ίη e C, where C is the complex numbers.

The description of the process given above implies that, for any set A,

(1.1)

where {z^\ : r) are independent copies of zP* with z^\ giving the relative po-

sitions of the family of zr

(Λ). Let F^ be the σ-fleld containing all information

about the first n generations. Then (1.1) implies that

Therefore, if m(λ) is finite and non-zero,

Win) (λ) = m(λ)'nje'λxZin) (dx)

is a martingale with respect to F^n\ These martingales and variants of them for

similar processes have been considered often, for example, by Watanabe (1967),

Joffe et al. (1973), Kingman (1975), Biggins (1977), Wang (1980), Uchiyama

(1982) and Neveu (1988).
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Notice that W^ (θ) is a non-negative martingale and so converges almost

surely for all θ. However only when it converges also in mean can we be confi-

dent that the limit is not trivial. In particular W^ (0) is the classical branching

process martingale, for which the condition

is necessary and sufficient for convergence in mean. Let Ω° be the interior of

{λ : m(θ) < <*>} we will assume throughout that Ω° is non-empty. Then, if

θ e Ω°, it is shown in Biggins (1977) that the conditions

EW^φ) log* (W^θ)) < - (1.2)

and

θe {θ :-log(m(θ))<-θ/n'(θ)/m(θ)} (1.3)

are necessary and sufficient for EW(Θ) = 1, and hence for W^ (θ) to converge in

mean.

The set described by (1.3 ) is actually an interval and, to avoid complica-

tions with end points, we will let T be its intersection with Ω°, so that T is an

open interval. Hence

Γ= {θ : θe Ω°,-log(m(θ)) <-θ/n'(θ)/m(θ)}. (1.4)

The main results here concern the convergence of W^ (λ) or W^ (θ) as a

sequence of functions. Under suitable conditions there is an open set Λ* in C,

containing Γ, with W^ (λ) converging uniformly on any compact subset of Λ* ,

almost surely and in mean. A consequence of this is that the limit, W(k), is actu-

ally analytic on Λ* . Under a rather weaker moment condition, a slightly differ-

ent approach yields the uniform convergence of W^ (θ) to W(θ) on compact

subsets of Γ, implying that W(θ) is continuous on T.

Joffe et al. (1973) give a result on the uniform convergence of W^ (ίη) for a

particular case of the process considered here. They adopt an elegant approach

through results on convergence of martingales taking values in a Banach space,

with a vital step in the proof being the verification that the limit W(ix\) is contin-

uous. In contrast here the convergence of W^ (λ) to W(λ) will be tackled di-
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rectly, yielding the convergence of the appropriate Banach space valued
martingale and the properties of the limit as consequences.

A more detailed study of the convergence of W^ (λ) to W (λ) is contained

in Biggins (1989). There a uniform convergence result is obtained for the

branching random walk on Rp both in discrete and continuous time. An applica-

tion of these results is also given, large deviation results for zfi* being obtained

using them.

2. The Main Results. We consider first the convergence of W^ (λ) in a

suitable region of C.

Theorem 1. If for some γ > 1

EW{1) ( θ ) γ < o o far all Q e T (2.1)

and Λ* is defined by

Λ* = {λe Ω° : m(αθ)/ |m(λ)|α < 1 for some α e (l, γ] }

then Wn' (λ) converges uniformly, to W (λ), on any compact subset of Λ* , al-

most surely and in mean.

It is not too hard to show that

Λ* = U int{λeΩ°: m(αθ)/|m(λ)|α< 1 } (2.2)

so Λ* is open. Furthermore computing the derivative of m(αθ)/m(θ)α with re-

spect to α and setting α = 1 confirms that the set T, defined at (1.4), is the inter-

section of Λ* with the real axis.

I fF is a compact subset of Λ* the assertion of the theorem is that

SUp{ \W(N) (λ) - Ψ ( Λ ) (λ)| :λeF,N>n }

converges to zero almost surely and in mean as n -> ~. It will then follow that

W(K) exists on F and that

( ) | : λeF }

also converges to zero in both senses.

The approach we will take to this result relies heavily on Cauchy's integral
formula and so does not lend itself to considering convergence for θ e T alone.
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Furthermore, with this approach, I can see no way to escape from the rather

strong moment condition (2.1). A weaker moment condition suffices in consid-

ering the convergence of W ^ (θ) on T to which we now turn.

Theorem 2. If

+GvW (θ)))3/2 < - for all θ e T (2.3)

then W^ (θ) converges uniformly to W (θ) on compact subsets ofT, almost sure-

ly and in mean.

The two moment conditions (2.1) and (2.3) are easily seen to be equivalent

to the alternatives resulting if W ^ (θ) is replaced by Jc" θ xz ( 1 ) (dx). Now, if g is

any convex function, Eg (^e~*xZ{X) (dx) ) is convex in θ and so its domain of fi-

niteness must be an interval. Furthermore it must be uniformly bounded on

compact subsets of the interior of this interval. The conditions (2.1) and (2.3)

simply insist that, for particular g, this interval of finiteness should include all of

T.

Differentiation of EQ/fo+ι)φ) I F<n)) = W<n)(θ) shows that W(n) (θ)'' is also a

martingale, as are all higher derivatives. The proof of Theorem 2 yields, in the

course of its proof, the following result about this martingale.

Theorem 3. If Be T with

EW^^iθ) (tog+(lV(1)(θ)))3/2 < - (2.4)

and

EIW^ (Θ)Ί log+OW^ (Θ)Ί) < oo (2.5)

then v/n) (θ)' converges almost surely and in mean.

At the end of section 4 it is indicated how the method of proof extends to

higher derivatives, at some notational expense, but the details are not considered

here. It is perhaps worth noting that in proving Theorem 2 we will show that the

moment condition (2.3) implies (2.4) and (2.5). Of course under the stronger

moment condition (2.1) Theorem 1 holds, and then all derivatives converge.

The proof of the main results relies heavily on the following lemma which is

proved in Biggins (1989).

Lemma 1. // {Xr} are independent complex random variables with E(Xr) = 0 or,

more generally, martingale differences, then
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for 1 < α < 2.

This, together with Jensen's inequality, immediately yields the following result

for the branching random walk.

Lemma 2. If, given F^nK {Xr} are independent identically distributed copies of

X with EX = 0 then

|m(λ)

for 1 < α < 2.

3. Proof of Theorem 1. It will suffice to show that for each λ0 e Λ* uni-

form convergence holds in a disc centred at λo for then a standard covering aigu-

ment completes the proof. Denote the disc of radius p centred at λo by Dλ (p).

Given λ0 e Λ* , we can, because of the representation (2.2), find α e (l, γ ] and

p such that

Dλo(3p) c {λ€ Ω° : m(cxθ) / |m(λ)|α < 1 }. (3.1)

We will demonstrate convergence on D λ (p).
0

Let Γ be the boundary of Dλ^(2p) and suppose/is analytic on Z\o(3p),

then, writing

Γ = {z(0 : i(ί) = λo + 2pe2πiί, te [0,1) } , (3.2)

Cauchy's integral formula gives

Therefore

1

sup{|/(ζ)| : ζe DλQ(p) } <2 \\f(z(t))\dt, (3.3)
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where z(t) parameterises the boundary of Γ and is defined at (3.2).

As w(N) (ζ) - win) (ζ) is an analytic function on Λ*, (3.3) yields immediate-

ly that

| w ( Λ ) | : ζ € D λ o ( P ) }

<2j\wm -Win)\dt

0

l J V - 1

1 ~

\w(r+1)-W(r)\dt, (3.4)

where we have suppressed z(t) in the integrand. The proof will be complete if

we show that (3.4 ) converges to zero almost surely and in mean as Λ -»<*>, and

for this it suffices to verify that it has finite expectation. Now note that

1 *»

1 oo

€Γ }. (3.5)

Furthermore, with the obvious extension of the notation of (1.1),

- λ z r < " ' f
„,(»+!> ( λ ) _WM ( λ ) = £ £ _ _ ψ α ) ( λ ) _

r m(λ) [

and so Lemma 2 can be applied to estimate (3.5).

Observe first that
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and so, by virtue of the moment condition (2.1) and the remarks immediately af-

ter Theorem 2, is uniformly bounded for λ e Γ. Hence, applying Lemma 2,

(λ)|αJ»l|m(λ)|

for λe Γ but, because of (3.1) and (3.2),

s u P { m ( α θ ) : λ e Γ } < i

and so (3.S) is indeed finite.

4. Proof of Theorems 2 and 3. Just as in the proof of Theorem 1 it will

suffice to show that for each θ 0 e T uniform convergence holds in an interval

around θ 0 . As θ 0 e T, there is a β > 1 with

m(βθ0)

so we may choose p sufficiently small that

(θo-2p,θo+2p)c{θ : ? ^ > < i } (4.1)
m(θ)p

(which implies that θo±2p e T). Now let D = (θ 0 - p,θ0 + p). Then

: e « D } < i . (4.2)

In place of the bound (3.3), based on Cauchy's integral formula, we employ

the following simple estimate

suP{i/(θ)| :θ€D}</(θ o)+J|/'(ζ)μζ.
D

Hence

( Λ ° ( Λ ) | : θ e D }

\wm (θ0) -w{n) (θ o ) | + j\(w(N) (θ) -win)
 (Θ)')|<*Θ
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oo

+ Σ j\
( r + 1 ) (θ) - Wir) (θ ))Vθ (4.3)

and the result will be proved by showing that the final bound here has finite ex-

pectation. The second term on the right is the harder one to deal with so our dis-

cussion focuses on it. In considering it Theorem 3 will be proved as a by-

product. Much as in (3.5), it will be enough to show that

suρ{ ΣE\ (W ( Λ + l ) (θ) - w{n) (θ) )Ί : θ e D } < oo.
A

Differentiation of (3.6) gives

(θ) -W(n) (θ))'

-θz 0 0

Notice that these are the differences of the martingale {W(n) (θ/} and, under

suitable moment conditions, Lemma 1 would apply to (4.4) to give a bound on

the expectation of its absolute value. When the resulting bounds have a finite

sum (over ή) this yields the convergence almost surely and in mean of the mar-

tingale. However to allow weaker moment conditions we will use a truncation

technique and so need variants of Lemmas 1 and 2, which we now discuss. In

these lemmas {Ir} will be indicator functions with lc

r = l - /r. These will be used

to isolate cases where \Xr\ is big.

Lemma 3. Let {Xr ,Ir] be a sequence of random vectors which are, given G, in-

dependent with E(Xr IG) = 0 and let Nbea (possibly infinite) G measurable ran-

dom integer then

N \ N r N ί \\/a>

J ^ |f |GJJ

for l<α<2.

Proof. AsE(Xr\G) =
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E(X/\G) =-£(Xr/r|G),

consequently

ΣXr = ΣX,Ir + ΣE (V r | G)+Σ(X/r-E (X^| G))

(4.5)

where, of course, the N has been suppressed in the notation. Now

ElΣX^ύEΣEψ^WG) (4.6)

and

G). (4.7)

The final term on the right of (4.5) requires more work. Note first that for any
random variable X and α > 1

E\X-E(X)\a<,2a{E\X\a+ \E(X)\a)

Now applying Jensen's inequality, Lemma 1 and the inequality just derived we
see that

cΛl/α

1/α

(4 8)

for 1 < α < 2. Combining the bounds (4.6 ), (4.7 ) and (4.8 ) with (4.5 ) com-

pletes the proof.

It is worth stating the following special case of Lemma 3 which has condi-
tions appropriate to our context

Lemma 4. If, given G, {Xr, Ir) are independent identically distributed copies of

[X, 1} with EX = 0, and {Cr} are G measurable, then

1 / α. (4.9)

We now return to consideration of (4.4), applying the lemma just obtained
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to its two parts separately. Consider first

(1)
(4.10)

which is the more complicated of the two. Obviously we take F ^ as G. Let

and for the indicator variables let

(4.11)

where c> 1 will be fixed later. Let F θ be the probability measure of the random

variable in this indicator, we will use this in bounding the terms obtained in ap-

plying Lemma 4. Specifically, observe that

E\XI\<j",xF6(dx)

and

(4.12)

(4.13)

To simplify the expressions resulting from the calculation of the other com-

ponents of (4.9) let the probability measure |i0, which has mean zero, be given

by

Then it is straightforward to check that

and hence

tri (θ)

Γ (A).

-αθz (Λ)
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where

Therefore

EΣ l cΛ sJw »#(<&) (4.14)

and

V/n(θ)

Applying Lemma 4 to (4.10) using the above calculations will still result in

rather unwieldy expressions, so we now restrict attention to θ ε D . Note first

that, as Jχ2μθ (dx) is continuous on Ω° and hence uniformly bounded on £>,

(J
1/2

for 1 < α < 2. (We will use K for a generic constant independent of θ e D.)

Now we take α = β, so that (4.1) holds. Hence

sup{ik(β,θ): θeD}<oo

so that

J|χ+n*(β.β)| pμ^ (dx)<Kr£,

and furthermore (4.2) holds. With these estimates and the bounds (4.12),

(4.13), (4.14), and (4.15) we can now apply Lemma 4 to see that (4.10) is

bounded by

Γ)
which is in turn bounded by

~HxFQ(dx) + »8"c^P " 1 ) / β (J7 xF θ (^ ) ) 1 / β ) (4.16)
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Now we choose c> 1 but small enough that δc®~W < 1. We now want to show

that (4.16) is summable over n, and for Theorem 2 this must be so uniformly in

Θ E D . The sum of the second term here will be (uniformly) bounded provided

that j°°χFQ (dx) is. Turning to the first term

<ίK\°°x(log x)3/2F6(.dx) . (4.17)

Hence the moment condition (2.4) (or (2.3)) ensures that both sums are finite.

Consideration of the second part of (4.4),

- β x r

( " >

is similar, the indicator variables now being

with Fι

Q as the associated probability measure. The calculation analogous to

(4.17) no longer involves n1/2 and so leads to the moment condition (2.5). This

completes the proof of Theorem 3.

For the proof of Theorem 2 we must show in addition that

sup{Jχ(log x)3/%(dx) : ΘeD} <~ (4.18)

and

Sup{Jx(log x)Fι

Q(dx) : ΘeD} <~ (4.19)

To do this let θj = θo-2p and θ2 = θo + 2p; recall that p was chosen so that θj

and Θ2 are in Γ. Note that

θ e D } < « (4-20)

and so, for ΘeD,
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<K max jw ( 1 ) (Θ1),W
(1) ( Θ 2 ) | ; (4.21)

hence (2.3) does indeed guarantee (4.18) and (4.19).

This shows that the second term on the right of (4.3 ) has finite expectation.

A similar, but much more straightforward, analysis shows the finiteness of the

expectation of the first term. (The analysis also establishes that, when θ e Γ,

(1.2) is indeed sufficient for EWφ) =1.) This completes the proof of Theorem

2.

If we considered higher derivatives of W*^(θ) the analogue of (4.4 ) would

now involve each of the derivatives of w™ (θ) up to the degree in question.

These can be analysed as the components of (4.4 ) were. However the powers

of n multiplying the two parts of (4.16) will depend on which term in the ana-

logue of (4.4) we are considering. The argument dealing with the second term

in (4.16 ) is unaffected by any higher powers of n but they do change the power

of log x appearing in (4.17 ). It is worth noting too that an estimate like (4.20)

will still work if higher powers of bcl are included. Hence a bound like (4.21)

also holds for higher derivatives. Combining these considerations we see that

analogues of Theorems 2 and 3 can be obtained for higher derivatives by suit-

ably strengthening the moment conditions.
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