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Abstract

In a population genetics two-locus model with recombination an offspring

has either a single parent gene, or is a recombinant from two parent genes. The

number of ancestors, backward in time, of a sample of genes can thus decrease

or increase and is found to be a birth and death process. Instead of a one-locus

ancestral tree the ancestral paths of a sample of gene pairs are described by a

graph with leaves as the sample genes and an eventual common ancestor where

all paths from the leaves lead. In this paper properties of the two-locus ancestral

graph and the two marginal ancestral trees are studied.

1. Introduction. In population genetics the ancestral tree of a sample of

genes plays an important role in a probabilistic description of the sample.

Kingman (1982) studies the coalescentprocess which describes the relationship

between a sample of genes and their ancestors. The ancestral tree of a sample in

a large population can be described by a death process where ancestors coalesce

at a rate of r(r -1)/2. A tree is constructed by beginning with leaves at the n edg-

es and joining edges where ancestors coalesce, keeping edge lengths proportion-

al to the times between coalescence. The root is the first common ancestor of

the sample. Mutations occur (to ancestors) along the edges of the tree according

to a Poisson process of rate θ/2 and determine the allelic configuration in the

sample. The infinitely-many-alleles model is characterized by every mutation

producing a type entirely new to the population. A nice review article on ances-

tral trees is Tavare (1984).

In a multi-locus model with recombination the relationship between a sam-

ple of genes and their ancestors is complicated because of recombination split-

ting up genes.

A gene in the two-locus model is described by an ordered pair

(x,y) e [0, l] x [0, l ] . The allele types at locus A and locus B are x and y.

Stochastic evolution of the population is described by a discrete-time Wright-

Fisher model. There are a fixed number of M genes in each generation. Genes

in generation τ+1 are produced from those in generation τ in the following

way. Choose a single parent at random from the proceeding generation with
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probability 1 - rM. With probability rM, the parent is formed by recombining

two genes chosen at random from the proceeding generation; if the first chosen

is (α, β) and the second chosen is (γ, δ), then the parent is of type (α, δ). If the

parents type is (x, y) then the offspring's type is (*', / ) , where *' = x with prob-

ability 1 - UA or *' = Z, a uniform random variable on [0,1], with probability u^,

and similarly for / . (Z is considered a member of an independent, identically

distributed sequence of random variables where different mutations are repre-

sented by distinct random variables.) The labeling by uniform random variables

is just a convenient way of achieving unique labels for mutations in the infinite-

ly-many-alleles model.

A diffusion time scaling is to measure time in units of M generations and let

M -»oo while ΘA = 2MuA, BB = 2MuB, p = 2MrM are held constant. In Ethier and

Griffiths (1990a) the Wright-Fisher model is set up as a measure-valued Markov

process which converges to a measure-valued diffusion. An atom of the mea-

sure at (x, y) represents the relative frequency of that type in the population. The

convergence is robust under a number of different models (eg. Moran model).

Our interest here is in describing the process of a sample of n genes' ancestors

backwards in time, rather than in convergence of the process. Events occurring

between the sample and the sample's parents in the proceeding generation (to or-

der M"1 in probability) are: mutation to a gene in the sample at the A locus, with

probability nu^; mutation to a gene in the sample at the B locus, with probability

nuβ\ coalescence, when the sample has n - 1 parents, with probability n{n - 1)/

2M; and recombination, when one gene in the sample is constructed from two in

the proceeding generation, with probability nrM.

Let n(t) be the number of ancestors at time t backwards of a sample of Λ(0)

= n genes in the limit process. This includes recombinant ancestors. Then {n(t)\

t > 0} is a birth and death process with rates λk = £p/2, μ* = k(k -1)/2. Let Wn

be the waiting time to first visit state 1. Wn has a proper distribution because of

the quadratic death and linear birth rates. It is convenient to stop the process at

this time, since the genetic composition of the sample is determined by then. If

the process was continued it would have a modified Poisson stationary distribu-

tion {(eP- i r V / y ! J = 1,2,...}.

2. Two-locus Ancestral Graph. A two-locus ancestral graph is drawn

proportional to a real-time scale starting from n end edges, then joining edges at

a vertex when two ancestors of the sample coalesce, or appending two edges at a
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Figure 1
Two-locus ancestal graph
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vertex to represent ancestors when recombination occurs. An example is shown

in Figure 1. By convention at recombination the genes represented by the left

upper edge and the lower edge have the same type at the A locus, and similarly

for the right edge and the B locus. Probabilistically the graph is described by

choosing two edges at random to be joined when a death occurs in the process

{fl(ί); t > 0}, and choosing an edge at random to append two edges to when a

birth occurs. Mutations occur along the edges of the graph (given the edge

lengths) according to a Poisson process of rate θ/2 = (θ^ + θ )̂/2, with probabil-

ities θ /̂θ and θ#/θ of being on locus A or locus B. Knowing the graph and

where mutations have occurred along the edges completely determines the con-

figuration of allele pairs in the sample of n genes. Locus A's marginal coales-

cent tree is found by tracing a path from the n genes upward in the graph, always

taking the left path at recombination events, similarly for locus B, taking the

right path. The marginal common ancestors may occur in the graph before the

(first) common ancestor of the pairs. Figure 1 illustrates the marginal trees in a

graph. First marginal ancestors are shown as dots. If p = 0 there is no recombi-

nation and the common ancestors are the same. As p -»«> the waiting time to the

common ancestor of the pairs tends to infinity, but the marginal times to com-

mon ancestors remain finite, their distribution not depending on p.

Hudson (1983), Kaplin and Hudson (1985) use genealogical methods in

studying an m-loci model with recombination, where they consider the collec-

tion of AW correlated family trees.

In a single-locus model the waiting time Tn until there is a common ances-

tor of n genes is a sum of mutually independent exponential random variables

with rates

n(n -1)/2,..., 1. The density of Tn is known (see Tavare (1984)) and

As n -»oo the distribution of Tn converges to a proper distribution.

Theorem 1. Let Wn be the waiting time until there is a common ancestor of a

sample of n genes in the two-locus ancestral graph, then

(2.1)
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Proof. By considering the waiting time until the first event in the birth and

death process with rates λr = rp/2, μr = r (r -1) /2, r = 1,2,..., E(Wx) = o , and

E(W) = _ — ? — — + n~l E(WΛ ,) + !?_E(W ) (2.2)
v n / n(n + p - l ) n + p-1 v n~1' n + p-1 v n + 1 / v '

Couple the birth and death process with one where there is a reflecting bar-

rier at b > 1 by deleting all excursions > b. Denote wj as the waiting time to 1 in

the modified process. E (W§ satisfies a similar recursion to above, but for n =

2,3,..., b - 1, and E(Wb

b) = E ί W ^ ) . It is straightforward to solve the modified

system of equations and obtain

n b-\-k

2 £ (lfc-2)! X '
* = 2 y=0

The limit as b -* ~ is

" " . Γ(*-l)Γϋ + 2)

Extreme cases of (2.1) are EίW^) = 2(1 - Λ*1), when p -^o and i?(^n) -»<*>

when p -> oo. A limit formula is

E(WJ =

The waiting time Wn can be decomposed into the waiting times spent in the

states 2,3,..., before the process is absorbed at 1.

Theorem 2. Let Wnj be the waiting time spent while there are j ancestors of a

sample of n genes in the two-locus ancestral graph, then WΛ = ΣJL JN^p and

mitt (Jt n)

) = 2 Σ (*-2)![>'-7y!, (2.3)
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Proof. This is similar to the proof of Theorem 1. E(WnJ) satisfies a similar sys-

tem of equations to (2.2), but with the first term on the right multiplied by the

Kronecker delta δ^j. G

If p = 0, then E(WnJ) = 2/(j(j -1)), agreeing with known results, since then

Wnj has an exponential distribution. BiWn2) = 1, not depending on p. As

p -»<*>, EζW^j) * 2fy~2/(/(/ -1)). If n -> oo, the upper summation limit in (2.3) is

replaced by/

It is of interest to consider the maximum number of ancestors of a sample

that there can be at any time instant before a common ancestor in the two-locus

ancestral graph.

Theorem 3. Let Mn be the maximum number of edges in a cross section of a

two-locus ancestral graph of a sample of n genes, then

Σ *
(2 4)

&=Λ, Λ + l , . . . .

Proof. Denote pn (k) = P (Mn < k). Clearly for k = 1,2 ...,

n = 2 k, andpx{k) = 1,pn(k) = 0 if n > k. Denote «„(*) = pn(k) -Pn_x(k),

then

P«,+ 1(t) = (n-l) «„(*),

V i w = 7 T " 2 ( i ) - J-1 k

Summing this equation and using Pk+ι(k) = 0,

Simplifying (2.5) gives (2.4). α

As n-*o, n^M^x, in probability, and from (2.4), P(Mn > n + d)
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The two-locus ancestral graph will now be examined in greater detail. Given a

two-locus graph G construct two marginal coalescent trees TA and TB. It is con-

venient to consider the marginal trees up to the common ancestor vertex in G, al-

though the common ancestor vertices in TA and Tβ may occur earlier. Denote

the edge set of a graph by £() . Partition the edges of G into

nE(TB)<,B = E(G)E(TA)
C nE(TB),

C = E(G) nE(TA) nE(TB),D = E(G) nE(TA)
cnE(TB)c.

. As an example all four types of edge occur in Figure 1. Let E t be the edges of

a cross section of G taken at time t backwards. Denote nA(t) = |ErnΛ|,

nB(t) = \E(nB\,nc(t) = \E(nC\,nD(t) = \EtnD\ mdn(t) = | ί j .

Ancestors represented by edges in A do not contain genetic material which

has any influence on locus B, similarly for B and locus A, and those represented

by D do not contain material influencing either locus A or B.

Our interest is in the Markov process (nA (ί) ,nB (t) ,nc (t) ,nD {t)). Think of

edges in G as being particles of possible types (1,0), (0,1), (1,1) or (0,0), accord-

ing as to whether they belong to A, B, C or D. That is, the type of an edge e e G

is (IE ( Γ j (e), IE ( Γ β ) (e)), where /(•) denotes an indicator function. Two edges of

types (α, β), (γ, δ) ((α, β, γ, δ) e {0,1}), coalesce to (α v β, γ v δ) ( v denotes

logical or). If recombination occurs to an edge of type (α, β) the edge splits into

two edges of types (α, 0) and (0, β). Once convinced that this particle evolution

is consistent with the type definitions in the partition of G it is clear that

(ΛΛ W >nB W >nc <0 >nD (0) i s Markovian.

Transition rates are:

(α + 1

(α-1
(α-1
(fl,b

(a,b,
(a,b,
1.

i,b +
,b-1
,b,c,
•he,

c,d +
c,d-

d),
d),

1),
1),

hd),
,d),

φ/2
ab
ac +
bc +

(α +
d(a-

α(α-l)/2
6(6-l)/2

b + d)p/2
ι-6 + c) + d(d-l)/2

The marginal transition rates of (nA(t),nB(t),nc(t)) do not depend on np(f),
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so it too is Markovian.

Transition rates are:

(a, i>, c) -> *

(a-1,

(β-1,

(a.b-
v (a>b,(

,b+\,c
b-hc-i
b,c),
he),
?-l).

-1),
-1),

cp/2
ab
ac + a(a -

bc + b(b-
c(c -1)/2,

D/2
D/2

This process is used in Ethier and Griffiths (1990a), with a different interpre-

tation, in showing that the two-locus measure-valued diffusion is ergodic.

Although nit) is not a monotonic process, both nA (t) + nc (t) and nB (t) + nc (t)

are non-increasing processes, which are eventually absorbed into 1,1.

It is clear how to extend the two-locus graph to multiple loci, although the

extension is not studied here. Consider m loci with a total recombination rate p.

Given a recombination event, it splits a gene between locus j and j + 1 with

probability py./p, j = 1,..., m - 1 , p = pi +... + pm_i. The ancestral graph is still

similar to the illustration in Figure 1. Edges are labeled by elements of {0,1 } m .

Coalescence is similar to the two-locus case, and if recombination occurs be-

tween locus; and) + 1 to an edge of type (α l t..., am) the upper joining left and

right edges have respective types (aγ a.β 0), (0,...,0,cL+1,...,αm).

Results of Theorems 1,2,3 apply also to multiple loci.

Hudson(1983), Kaplin and Hudson (1985) use the process (2.6) and its ex-

tension to m-loci in their study of the homozygosity and number of segregating

sites in a sample of genes. They were not concerned with the total graph, but

just the correlated trees at the m loci.

A system of equations which is useful in several theorems is the following.

Letυ and β be functions on NxNxNxR satisfying

υ(g+^ ^

-\) , . , . c(c-l)
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where Λ = α + ft + c, a + c > 1, ft + c > 1. The function β and boundary condi-

tions v(l, 1, O p), v(0, 0, 1; p), v(l, 0, 0; p), v(0, 1, 0; p) are assumed to be

known.

The system arises by considering the first transition in the process

X nc(t)) beginning at (a,b,c). The overall transition rate away from (a,b,c) is

(n(n -1) + cp)/2. Proofs of Theorems 4,6,7 are straightforward using systems of

equations of the form (2.7), so are omitted. Ethier and Griffiths (1990b) show

how to solve systems of equations such as (2.7) numerically. Defining the de-

gree of v(α, ft, c p) as a + ft + 2c, terms on the right side of (2.7) are of degree

less than or equal to a + ft + 2c. Knowing terms of lesser degree the others can

be found by solving a tridiagonal system of equations.

Let WAA and WBnbe the respective waiting times until a sample of n genes

has common ancestors at locus A and locus B.

Theorem 4. Let ξ(α, ft, c p) be the expected waiting time until

nA (/) + nc (0 = 1 , nB (t) + nc(t) = 1, beginning with nA(0) = a, nBφ) = ft, Λ C (0)

= c.

E(max(W^n,WBtb)) = ξ(0,0,n;p) is the expected waiting time until a sample

of n genes has common ancestors at locus A and locus B. ξ satisfies the system

(2.7) with β(α, ft, c; p) = 2/(n(n -1) + cp) and ξ(l, 1,0; p) = 0, ξ(0,0,1; p) = 0,

ξ(l,O,O;p) = O,ξ(O,l,O;p) = O. α

Illustrative values of the waiting time are shown in Table 1 for a sample of size

50.

Table 1

Expected waiting time to marginal common ancestors, n = 50.

p 0 0.1 0.5 1.0 2.0 5.0 10.0 20.0 ~

~μ 1.96 2.01 H i 125 236 146 150 151 152

The waiting time until a sample has marginal common ancestors is finite as

p -> ~, being bounded below by 2(1 - n1) and above by 4(1 - nΛ\ however the

waiting time until a common ancestor in G tends to infinity. ξ(α, ft, c; p) is

monotonic in p and therefore bounded by ξ (α + c, b + c, 0; «>). One argues that if

p = oo, edge types (1,1) are instantaneously split into a pair (1,0) and (0,1), so

ξ (a, b, c; o°) = ξ (a + c, b+c, 0;<*>). In this case there is an easy recursion,
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a,b = l,2,...,n = a + b> 1 and ξ(i, i,0;oo) = o.

Simplifying,

«βbιfi >-> (2 8)

a, b = 2,3,... and

ξ(α,l,O;~) = 2(1-<Γ 1), a= 1,2 ξ(l,έ>,0;~) = 2(1 -b~l), b = 1, 2

If p = oo, ψAjn and H^ / Λ are independent and their distribution known. It is

therefore possible to work out a (series) formula for ξ(α,6,0;oo), but (2.8) is

convenient for calculation. Illustrative values of the waiting time when p = «>

are shown in Table 2.

Table 2

Expected waiting time to marginal common ancestors, p = <».

n 2 10 20 50 100 500 1000

μ Γ50 136 2A6 152 Z54 Ϊ 5 6 2.56

If p = 0 the process essentially behaves as a single-locus one and

ξ(0,0,n;0) =2(l-n- 1).

E(min(wAtn,WBtH)) can be found from the relationship

It is possible to find the distribution of max(Wkv2' ^5,2)

WBt2) explicitly.

Theorem 5. The joint Laplace transform
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where

and

pd + p)
1 p 2 +13p + 1 8 > 2 p 2 +13p + 18* 3 p 2 +13p + 18*

An alternative form for the Laplace transform is

< 2 9 >

where

A =

B = 2λ3 + λ2(3p + 20)+λ(p 2+19p + 54)

The mean values are

2(p2+13p + 18)

(2 10)

Proof. Let fabc (λv λ2) be the Laplace transform of the waiting times, given

= a, riβφ) = b, ncΦ) = c. The waiting times in state (a,b,c) have a Laplace

transform

where
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f λ i f α + 6 > l , 6 + c > l

or

fabc=fabΛKX2> a n d 8abc = 8abc(λvλ2>- B y considering the first transition

from particular values of (a,b,c),

/002 = g f +

/ioi =
/210 = ^2101 3/101 "*" 3 J

/220 = ^2201 3/111+ 3/210 J

The required Laplace transform is/oo2 Solving the equations,

/lθl "/210 ~ ( l + ̂ j) and / n l -

Substituting in the first equation produces the Laplace transform in the statement

of the theorem. It is straightforward to find the means (2.10) from the Laplace

transform (2.9). D

Corollary.

E(exp{-λιWA2-λ2WBt2}) = ̂ (ψ(λ l f λ 2 )+ψ(λ 2 , λj)).

Proof. This is clear by symmetry, D

The first form of ψ (λ r λ2) in Theorem 5 is an expression in terms of a mix-

ture. Another way to invert ψ(λ l f λ2) is to use a partial fraction expansion of

(2.9). The distribution has a singular component where WA$2 = WBf2 Express

(2.9) as

Ψ ( λ Γ λ 2 ) =

where

Ψ0(λ) =
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Ψl(λ,,λ2) = (l + %i)-i2pW+p + 12)/B. (2.11)

The singular part of the distribution has Laplace transform ψo(λ) and the contin-

uous part ψj(λi,λ2). In particular

^ . (2-12)

It is possible to show that B(λ, p), the cubic in λ appearing in the denominator of

ψ (λv λ2) , has three distinct negative roots for all p > 0. The Laplace transforms

Ψθ(λ), ψi (λi, λ^), ψ(λ, 0), ψ(0, λ), can be inverted by partial fraction tech-

niques after finding the roots of S(λ, p) for a given numerical value of p. An ex-

pression of the form

occurring in the expansion of ψ (λ l f λ2) corresponds to a density

β Γ M " ( β " 1 ) v

i 0 < v < ι ι < - .

If p = 0 both the waiting times are identical, and have an exponential distri-

bution with mean 1. If p -> «> the waiting times are the maximum and minimum

of two independent exponential random variables, with mean 1, and so

P(m*x(WA2,WBt2)<w) = (1-<ΓW)2, P(mm(WA2,WB2)<w) = l-e~2w.

Hudson and Kaplan (1985) introduced the idea of the number of recombina-
tion events in a sample of genes in an m-loci model with recombination. With
two loci their definition of the number of recombination events occurring in a
sample of n genes is the number of events occurring to ancestors of the sample
which have both loci belonging to the maiginal trees. Denote their number of

recombination events by R°Λ. Ethier and Griffiths (1990a) define their number of

recombination events Rn as the number of recombination events in a two-locus

graph before the common ancestor. Of course Rn > Rn. They show that Rn is dis-

tributed as the number of steps to the right in a random walk starting at n with

absorbing state 1 and transition probabilities for m > 2,

ίm-l, probability (m-1) (m-l + p),

m+1, probability p (m-l + p)
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An explicit formula for the probability generating function of Rn is given in Eth-

ier and Griffiths (1990b), where it is also shown that

They also show that there is a stochastic representation related to the random

walk which gives the two-locus sampling distribution. This is a particularly at-

tractive representation because of its simplicity, and is a good reason for having

such an extended definition of ancestors. Here is a description of the process.

Run a random walk starting at n until it hits 1.

Transition probabilities of the random walk are:

,r-l, (r-1) (r-l + θ + p),
r-*\ r, θ (r-l + θ + p),

lr+1, p ( r - l + θ + p),

where θ = θ, +θ p .
A D

Let τ be the hitting time of 1. Construct samples of genes (pairs of loci) at τ

- 1, τ - 2,..., 0 in the following way. Start with a sample of size 1 at τ. Let

{u r t = o, l,2,...} be the random walk and {z, = ut+ι - υ v t = o, l,...}. If

lt = -l, duplicate a sample member at random. If z, = o, choose a sample mem-

ber to mutate, at either locus A or B with respective probabilities ΘA/Θ or θ#/θ.

If Z, = +1 , choose two members of the sample without replacement to recom-

bine. The sample of n at time 0 has the two-locus sampling distribution.

Theorem 6. Let η(α, b, c; p) be the expected number of transitions (nA(t\ riβ(t),

nc(f)) -> (nA(t+) + 1, nBif) + 1, n^t*) - 1) before nA(f) + nc(f) = 1, nB(f) +

nc(t) = 1 beginning with nA(0) = α, nB(0) = b, nc(β) = c.

Then E(Rn) = η (0,0, n p). η satisfies the system (2.7) with β(α, b, c; p) =

cp/(Λ(n -1) + cp) and η(l, 1,0; p) = 0, η(0,0,1; p) = 0, η(l, 0, O p) = 0, η(0,1,

0;p) = 0. A particular case is E(R°2) =6p/(6 + p). D

Table 3 illustrates results from Theorem 6 for a sample of size 50.
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Table 3

Recombination events in a samples' ancestors.

E(R5Q)

0 0 0

0.1 4.58 xlO"1 4.43 xlO"1

0.5 2.52 2.13

1.0 5.78 4.07

2.0 1.62x10 7.51

5.0 2.12 xlO2 1.57x10

10.0 2.49 xlO4 2.56x10

20.0 5.12 xlO8 3.94x10

As p -> «>, Rn -> oo, but R°Λ < oo and has a proper limit distribution. Using an

argument similar to that for ξ(α, b, c; <*>), η(α, b, c; <*>) = c + η(α + c,b + c, 0; ~ ) .

x\(a, b, c; oo) satisfies a similar system of equations to (2.8), but with the term 2/

(a(a - 1) + bφ - 1)) replaced by 2ab/(a(a - 1) + bφ - 1)), η(α, 1, 0; oo) = 2

Σ I J Γ 1 , a = 2,3,..., η( l , 6,0; oo) = 2Σ*:};'1, b = 2,3,...,, and

η(l , 1,0; oo) = 0. Thus if p = °*,E(R°n) = n + η(n,n,0;oo).

If the first time that nΛ(ί) +« c (0 = l , nB(t) +nc(t) = l is when nA(t) = 0,

nB (0 = 0 , n c (0 = l then the first common ancestor in the two-locus graph and

the two first marginal common ancestors coincide. This produces the following

theorem.

Theorem 7. Let

T = inf{t > 0; nA(t) + nc(t) = 1, nB(t) + nc(t) = 1}.

and

ζ ( α Λ c p) =P(n c (Γ) = l | n A ( 0 ) = afnB(0) = M c ( 0 ) = c ) .

Then ζ satisfies the system (2.7) with β(α, b, c; p) = 0 and ζ(l, 1,0; p) = 0, ζ(0,

0,1; p) = 1, ζ(l,0,0; p) = 0, ζ(0,1,0; p) = 0. A particular case is
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p ) - . α

(l + p)(p2+17p + 18)

Table 4 illustrates probabilities from Theorem 7 for n = 50.

Table 4

Probability that marginal and two-locus ancestors are identical, n = 50.

j> 0 0.1 0.5 1.0 2.0 5.0 10.0 20.0

Probability 1.0 0.998 0.969 0.909 0.785 0.525 0.326 0.182

It is possible to modify coalescent trees so that ancestral lines are lost by co-

alescence or by mutation (Griffiths (1980), Tavare"(1984)). With a single locus

the number of ancestral lines at time t back is a death process with rate n(n + θ -

l)/2. Lines are lost by coalescence, at rate n(n -1)/2 and by mutation at rate nθ/

2. In the two-locus case the process (n^t), Πβ(t), nc(t)) can be modified to in-

clude loss by mutation.

Transitions rates are:

(α+ l,fc+ l ,c-1 ) , cp/2

( α - l , 6 - l , c + l ) , ab

(a - 1 , b, c), ac + a(a -1)/2 + αθΛ/2

( α , 6 - l , c ) , be + bφ-1)/2 + bΘB/2

(α, b, c -1), c(c -1)/2

(α+l,6,c-l), cθB/2

(α,fe+l,c-l), cθΛ/2,

The expected waiting time until nA(t) +nc(t) = l and nB(t) +/ιc(r) = l in

Theorem 4 can be modified by considering the transitions (2.13).

One way to derive the probability generating function, Pn(z)9 for the number

of allele types from a sample of n from the one-locus model is to consider back

in time whether lines are lost by mutation or coalescence. Each line lost by mu-

tation corresponds to a distinct allele type in the sample. By considering the first

event back in time, for n > 2,

„_! (z)+θzPΛ(z). (2.13)
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Solving (2.13) with the boundary condition/^(z) = z,

The proof of the next theorem, in the two-locus case, is clear using this ap-

proach. The theorem is also proved in Ethier and Griffiths (1990b) by applying

the generator of the measure-valued diffusion. It is possible to compute the joint

distribution of the number of allele types at the two loci, but there is no simple

formula for it.

Theorem 8. Let (K, L) be the number of allele types at locus A and locus B

in a sample of n genes. The pgf of (K, L) is P(O,ofn;zA,zB) in the system of

equations

(n(n-l) +cp+ (a + c)QA+ (fe + c)θ^)P(α, b,c,zA,zB) =

cpP(a+ltb+l,c-l;zA,zB) +2abP(a-l ,fc-

+ b (b + 2c - 1 + QBzB) P (α, b - 1 ,c; zA,zB)

+ c(c-l)P(a,btc-l;zA,zB)

+ cQBzBP (α + 1, b, c - 1 zA,zB ) + cQAzAP (α, b + 1, c - 1 zAtzB).

Boundary conditions are P (l, l, 0;zA,zB) = P (0, o, l zΛ,z5) = zAzB. α
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