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Abstract

In this paper, we consider the application of concepts of Statistical
Experimental Design to Sampling Theory. As is well-known, because of its
inherent nature, Experimental Design Theory involves a relatively heavy amount
of Combinatorial Mathematics. It turns out that, over the years, relatively
speaking, it is this combinatorial aspect of Design, that has found much
application in Sampling. We present a brief review of the same, including some
of the latest work in the field.

Introduction

The subject of sampling using experimental design concepts has attracted
more and more attention in recent years. A very explicit connection was made
by M.C. Chakrabarti (1963) who indicated that balanced incomplete block
designs (BIBD's) could be used as sampling schemes. At first, it was shown that
a BIBD procedure has properties similar to SRSWOR (simple random sampling
without replacement). But later on it was found that a BIBD corresponds, in a
sense, to controlled sampling, which was proposed by Goodman and Kish in 1950,
and to which further contributions were made by Avadhani and Sukhatme (1965,
1968, 1973).

Consider an agricultural survey. Suppose we use SRSWOR to draw a
sample of n counties from a population of N counties. It may happen that the n
counties in our sample are spread out in an undesirable or inconvenient manner.
As pointed out by Avadhani and Sukhatme (1973), "this may not only increase
considerably the expenditure on travel, but the quality of data collected is also
likely to be seriously affected by non-sampling errors, particularly non-response
and investigator bias, since in such cases organizing close supervision over the
field work would generally be fraught with administrative difficulties". Such a

sample is considered as non-preferred. Hence the total set of ί^J samples can be

classified into two classes: preferred samples and non-preferred samples
(Goodman and Kish, 1950). Hence, our objective is to design a sampling
procedure which reduces the probability of drawing a non-preferred sample as
much as possible, and at the same time resembles SRSWOR (assuming no
stratification, clustering, etc. is present, and there are no auxiliary variables).
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The problem of controlled sampling was first proposed by Goodman and
Kish (1950). This method involves stratified sampling and emphasizes the
minimization of the probability of the selection of the non-preferred samples.
But, as discussed by Avadhani and Sukhatme (1973), this method may lose
precision in estimation. In their three papers (1965, 1968, 1973), Avadhani and
Sukhatme discuss the problem of minimizing the chance of selection of non-
preferred samples without losing efficiency relative to SRSWOR.

We recall some useful notation from Srivastava (1985). Let U denote a
population with N units denoted by the integers 1, 2,...,7V. Let y be the variable
of interest, and let yi (i = 1,.. .,7V) be the value of y for the unit i in U. Let Y =

J2 yi be the population total The class of all subsets of U is denoted by 2 , and
TT

any ω G 2 is called a sample of U. (This includes the empty sample.) For any
set Ky let \K\ denote the number of elements in K. For any ω G 2 , let (ω:n) be
the class of all w-element subsets of u>; if |u>| < w, then this class is empty. A
sampling measure, denoted by p( ), is a probability density {^(w)} defined on
2U. For a given p( ), let

* ί = Σ P("), « = ! , . . . , # . (1)
'6

Then, τrt (i = l,...,iV) is the probability that the unit i is included in the sample.
For any non-empty sample ω, let ~yω denote the sample mean. Consider a
sampling measure p for which all inclusion probabilities iri (i = 1,...,JV) equal
(n/N). Then, Avadhani and Sukhatme define p to be admissible if (i) Nyω is an
unbiased estimator of 7, and (ii) Varp(Nyω) < VarSR^Nyω), where Varp and
VarSRS denote the variance respectively under the measure p, and the measure q
induced by SRSWOR with sample size n. (Note that, for all ω G 2U, q(ω) =

n )}> ί f \ω\ = n ' a n d ί(ω) = °' otherwise.)

Let 3 < n < TV—3. The following results are given by Avadhani and
Sukhatme (1973).

Theorem 1

Let S C (U: n), and let \S\ = b. Then the sampling measure which
selects each ω G S with probability (1/6) is admissible if and only if |{α;: ω G
S, i,j G w, i φ i}|, are the same for all % φ , ij = l,...,iV. For such a
measure, |{α;: ω G 5, % G w}| are the same for all i = 1,...,JV.

Under the condition of Theorem 1, let

λ = \{ω: ω G 5, t j e ω, i φ j}\ (2)

r = in/ΛΓ. (3)
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It is easy to see that the existence of S in Theorem 1 is equivalent to the
existence of a BIBD with parameters (N, b, r, n, λ), such that N is the number of
treatments, b the number of blocks, r the number of replications for each
treatment, λ the number of blocks which contain any given pair of treatments,
and n the block size. In fact, such a S is a BIBD with the above parameters.
But, when N and n are large, such a BIBD may be hard to identify. So, the next
two theorems are useful.

Theorem 2

The measure induced by the following (two-part) sampling procedure is
admissible:

(i) Split the population randomly into k subpopulations with fixed sizes

N{ (i = 1,.. .,*) such that £ J\Γt = N,
*=1

(ii) For t = 1,...,&, select ni units from the ith subpopulation by using an
admissible sampling measure (with inclusion probability {njN^)). The
selection of the units from the different subpopulations should be done
independently.

Corollary 1

The measure induced by the following procedure is admissible:

(i) Draw a sample of size v! > n from the population by SRSWOR.

(ii) From the sample selected in (i), draw a sample of size n by using an
admissible measure with inclusion probability n/nf for each unit.

In view of the above, Avadhani and Sukhatme suggest that the following
steps may be followed for controlled sampling:

(i) Let Nχ + N2 + ... + N_ = N. Divide the original population
randomly into g subpopulations, which have sizes Nv JV2,..., J\Γ
respectively.

(ii) Let nα + n2 + ... + ng = n. For i = 1, 2,...,<7, select an integer nj
such that nf < nj < Ni and also select a BIBD with parameters (τij ,
δt , rt , niy λt ). (It is preferred that n{ be much smaller than n{ .) Use
SRSWOR to select (independently for each i) a sample of size n{ from
the i subpopulation of size N.

(iii) For each sample of size n\ (i = 1,...,̂ ) drawn in step (ii), collect the
information on all the preferred subsamples of size ni and then find a
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BIBD with parameters (nj, 6t , rt , ne-, λ4) such that the number of the
blocks which correspond to the preferred subsamples of size nf is as
large as possible. Then draw one block with probability l/bi from the
i BIBD independently for i = 1,...,<7 In this way, we get a sample
of total size n^ + ... + n = n.

An example of controlled sampling using BIBD will be given in the last
section in this paper.

Other Works on Sampling Using Concepts of Experiment Design

In the first section, we discussed the use of BIBD in controlled sampling.
It is very clear that for a BIBD with parameters (N, δ, r, n, λ), N corresponds to
the number of units in the population, b corresponds to the (maximum possible)
number of distinct samples, and n corresponds to the size of the sample. With
this interpretation, it is easy to see that the parameters r and λ in the BIBD
correspond respectively to the first order and the second order inclusion probabil-
ities. So, for some time, the use of BIBD in sampling has been discussed widely.

As early as 1963, Chakrabarti pointed out the equivalence between
SRSWOR and BIBD in the sense of having the same first order and second order
inclusion probabilities. It is clear that the smaller the support of (i.e., the
number of distinct blocks in) the BIBD, the better is the possibility of adapting it
for a given situation of controlled sampling. Thus, BIBD's with a small support
size have importance in sampling theory. Because of this, the work of Hedayat
and others in the field of BIBD's with small supports is useful.

In 1977, Wynn showed that for each sampling measure p1 there is a
measure p2> which gives rise to the same first and second order inclusion proba-
bilities as pv and whose support size is not greater than N(N - l)/2. For the
case of SRSWOR, he showed that no BIBD with support size less than N can be
equivalent to SRSWOR in the above sense. Hence, with the help of BIBD's we

can reduce the support size from SRSWOR's ( JJ to something between ί ̂  ) and
N.

Besides BIBD, Fienberg and Tanur (1985) listed some parallel concepts
in Design of Experiments and Sampling. These include randomization in design
and random sampling, blocking in design and stratification in sampling, Latin
square in design and lattice sampling, split-plot design and cluster sampling, and
covariance adjustment in design and post-stratification in sampling. By using
some similar parallel concepts in design and sampling, Meeden and Ghosh (1983)
found some admissible strategies in sampling and Cheng and Li (1983) showed
that Rao-Hartley-Cochran and Hansen-Hurwitz strategies are approximately
minimax under some models. Brewer et al. (1977) discussed use of experimental
design in the planning of sample surveys, and Sedransk (1967) discussed the use
of experimental design in the analysis of sample surveys. But, even though
experimental design and sampling have so many parallel concepts and similar
structure, sampling has been developed separately from experimental design.
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Smith and Snyder (1985) pointed out the main distinction between experimental
design and sampling from their nature of inference. They concluded that "the
differences between survey and experiments are as important as the similarities,
and that each will continue to develop in its own way". An excellent discussion
of experimental design and sample surveys, both with respect to their similarities
and differences, was given by Fienberg and Tanur (1985).

Hedayat (1979) gave a method for finding a sampling design which has
the same first and second order inclusion probabilities, but has a reduced support
size than SRSWOR. (In other words, he gave a general method for obtaining
BIBD's with relatively small support sizes.) Let M denote the incidence matrix
of all the pairs (i, j) versus all the samples of U with size n, where i, j £ U.

Thus, M is a ί (^) x (**) J zero-one matrix. Suppose all the samples of U with

size n are arranged in a list in an arbitrary but fixed order. Consider a BIBD
(with block size n) in which fk denotes the frequency of the k sample in the

above list. Let / = (fv f2,...,./( „[)). Consider a sampling measure p which assigns

probability (/j./Σ/ί) to the * sample. Then, p has the same first and second
i

order inclusion probabilities as SRSWOR of size n iff Mf = λjL, where λ is a
positive integer and I is a column vector with all entries equal to 1. So each
feasible solution of the system

Mf=Xhf > 0 (4)

gives a sampling measure equivalent to SRSWOR of size n. Notice that there is
always a solution for the system. So we can introduce another quantity, for
example, the number of non-zero entries in /, and find a feasible solution of the
system to minimize the quantity. The algorithm of mathematical programming
can be used to get such a solution. In other papers in combinatorics, Hedayat
and others give further results.

In Hedayat and Pesotan (1983), (R x L) triply balanced matrices was
discussed. The (R x L) triply balanced matrices arise in estimating the mean
square error of nonlinear estimators in sampling. Briefly, a (R x L) triply

R
balanced matrix is Δ = (δ ) with entries +1 or -1 such that Σ# rA = 0,

R R J r=l

Σδrlfirs = 0» Y^^rhKJ^rt = >̂ where the Λ, 5, t are distinct and A, 5, t = 1,...,Z.
r=l r=l

It was proved that a (R x L) triply balanced matrix Δ is an orthogonal array of
strength 3 and 2 symbols.

In Hedayat, Rao, and Stufken (1988), balanced sampling plans excluding
contiguous units are discussed. In some situations, the N units of the population
are arranged in a natural order. In this case it may happen that contiguous units
provides us similar information so that it seems more reasonable to select a
sampling plan such that the contiguous unit cannot appear in the sample. Here
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the term balanced means that the first and second order inclusion probabilities
are fixed. The condition of the existence of such a sampling measure is given in
this paper, and a method of constructing such a sampling measure is also
proposed.

Use of i-Design

Suggested by the usefulness of BIBD with sampling, the use of /-design in
sampling was proposed by Srivastava and Saleh (1985). A BIBD, which has the
same inclusion probabilities (of individual units, and pairs of units) as SRSWOR,
has the same moments as SRSWOR up to order two. Generalizing this,
Srivastava and Saleh showed that a /-design has the same moments as SRSWOR
up to order /, because it has the same inclusion probabilities as SRSWOR up to
order / (i.e. every set of i units (i = 1,...,/) has the same inclusion probability,
say gfj ). Also, as for the BIBD, the sample space under a /-design can be much
smaller than the sample space under SRSWOR. Thus, using /-designs we can try
to avoid non-preferred samples, and still maintain resemblance to SRSWOR up
to moments of order /.

For later use, define aiω (i G U, ω G 2U) by

aiω = 1, if i G ω

== 0, otherwise. (5)

Let 1 < k < N. For any sampling measure {/>(ω): ω G 2 } define

where t1? «2> Λ € U
In this section, we suppose the sample size is always equal to n, a fixed

integer. We are interested in estimating the population total Y.
The following results from Srivastava and Saleh (1985) are useful in the

studies on using /-design theory in sampling.

Lemma 1

Let 2 < k < n. Suppose i j , . . . ,^ are distinct elements of U. Then we
have

]Γ>(h,...,*i) = ( n -

ik Φ «i,...,«,t_i (7)

(8)
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This lemma says that for 2 < k < n, the inclusion probabilities of
order j(l < j < k - 1) are determined by the inclusion probabilities of order k.

Theorem 3

Suppose there are two different sampling measures on 2 . Let < be a
positive integer. Then these two sampling measures give the same inclusion
probabilities of order t if and only if these two sampling measures give the same
values of E(y^), k = 1,..., t, for all possible values of (yv...,yj.

Let

11 ~ L i £ ω « - i -

Then, we have

Theorem 4

Consider two sampling measures on 2U. Consider the following four
conditions:

(i) For all possible values of y = (#!,...,yn)
;j E(jjJ) is the same under

these two sampling measures,

(ii) For all possible values of j/, E(ji2J), or E(s2J), or V(~yω) is the same
under these two sampling measures,

(iii) For all possible values of j/, cov(Ίjω, s^) is the same under these two
sampling measures,

(iv) For all possible values of j/, V(s2J) is the same under these two
sampling measures.

Let ί be an integer such that 1 < t < 4. Then the above conditions (i), (ii), up
to (i) are true if and only if these two sampling measures have the same inclusion
probabilities of order t

One can generalize Theorem 4 to higher order. But the most important
case is order 4. In this case, we can characterize the mean and the variance of a
linear estimator, and characterize the variance of a quadratic estimator of the
variance of the linear estimator.

Now consider a ί-design Z>(i\Γ, n, t, b) where N is the number of varieties,
n the block size, b the number of blocks (which may or may not be distinct), and

where every combination of i varieties (t < u) occurs in δ(!f)/(w) blocks.



248 J. Srivastava & Z. Ouyang

Consider a sampling measure (called a t~design sampling measure) which selects

each block of D(N, n, t, b) with probability 1/6. When b = (**) and each block

in DIN, n, ί, (^)J is distinct, this sampling measure becomes SRSWOR. In this

case SRSWOR is a /-design DyN, n, /, (^)J, where t can take any value from 1 to

n.
For the /-design sampling measure mentioned above, for distinct iv...,it

G ί/, we have

•ft. > - KK
Hence we have the following theorem.

Theorem 5

SRSWOR (with sample size n) and the /-design sampling measure have
the same inclusion probabilities of order / and hence have the same moments up
to order /.

For any /-design D(N, n, /, 6), the number of distinct blocks is not

greater than ( ̂  j , and usually is much less than ί ^ j . This makes a /-design useful

in controlled sampling. In fact, a BIBD is a 2-design. Because we need to
estimate V(~yω), we need to consider up to the fourth moments; the first two
moments are not enough. In view of this, Srivastava and Saleh assert that it
would be much better to use 4-designs rather than BIBD's, since the former gives
rise to the same moments as SRSWOR up to order 4.

Connection with Arrays

The theory of factorial designs constitutes a major part of the whole
subject of experimental design. Furthermore, the modern theory of factorial
designs is largely built around the concept of arrays. Indeed, arrays constitute a
very important tool in all of design theory, since for example, BIBD's, PBIBD's
and /-designs, etc. may (through their incidence matrices) be studied in terms of
arrays. Because of this, in this section, we discuss the application of arrays in
sampling theory. An array is a matrix whose elements come from a finite set.
Suppose the finite set has m elements in it. Without loss of generality, we use
the integers 0, l,...,m-l to denote the elements of the finite set. In this case, an
array is a matrix whose elements belong to the set {0, l,...,ra-l}. When m = 2,
such an array becomes (0, 1) matrix which is of special importance.

A special case of a (0, 1) matrix is the incidence matrix of a class of
subsets of a given finite set. The rows of an incidence matrix correspond to the
elements of the given finite set and the columns correspond to the subsets of the
given finite set. In sampling, an incidence matrix is Ω^ which is a (N x 2^)
(0, l)-matrix such that its columns correspond to the elements of 2 , and rows to
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the elements of U. In order to simplify the discussion, and without loss of
generality, we assume that the ith row of Ω^ corresponds to the element i of U,
and the j t h column of Ω^ corresponds to the j t h element of 2U such that the
elements of 2 U are arranged in the following standard order:

(i) If ωv ω2 G 2^ and \ωχ\ < |u>2|, then ωχ precedes ω2,

(ii) If \ωλ\ = \ω2\ but there exists a k G U such that
|{1,...,*} Π ω2\ and |{l,..,ί} \ |{
0 < I < ifc, then ω1 precedes ω2.

ΓΊ ωχ\ =

In this way, the elements of 2 U are arranged as

} Π ωx\ >
Π ω2\ for

(12)

and i E ω(j) if and only if the itfι coordinate of the j column of Ω^ is equal to
1. For N = 3, Ω^ is equal to

0 1 0 0 1 1 0 1

0 0 1 0 1 0 1 1

0 0 0 1 0 1 1 1

(13)

Now, given any sampling measure {p(ω): ω G 2^}, we can rewrite it as a
vector which is called the vector form of sampling measure

p' = (K«(O)), p(ω(l)),...,p(ω(2N- 1))).

Combining Ωy and p', we have a matrix fl"y(p) where

(14)

(15)

Thus, 7Γ j^p) presents a sampling measure in a matrix form. Now suppose all the
p(ω(j)) are rational numbers and p(ω(j)) = vjv such that Vj is a non-negative
integer, v = Σv; (where the sum runs over all j), also suppose there is no common
factor other than 1 among the i/ (j = 0, l,...,2n-l). Suppose

(16)

Now we introduce another matrix Δy(p) such that

(17)
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where lf

k is the (1 x k) vector containing 1 everywhere, and where if for any j , we
have Vj = 0, then the columns (c) do not appear in Δ ^ p ) . Now, drawing a
column from Δyζp) with probability (l/v) is equivalent to drawing a column
from Ω^ with probability measure {p(ω(j)) = v /v, j = 0, 1,...,2^-1}. So, the
matrix Ay(p) represents the sampling measure in the form of an array and it is
called sampling array in Srivastava (1988), wherein the following result is proved.

Theorem 6

For any vector form of sampling measure p and e > 0, there exists a
vector form of sampling measure /?* whose elements are rational such that
(p ~ P*Y(p ~ P*) < t- (Note that every sampling measure can be expressed in
the vector form.)

Although this theorem seems simple it has an important interpretation in
that we can replace a sampling measure by a rational sampling measure as
closely as we want. On the other hand, by using a rational sampling measure we
get a sampling array. So the above theorem connects sampling theory to the
theory of arrays in a fundamental manner, and hence to factorial and other
experimental designs.

Now consider the problem of estimating the population total Y by a
general linear estimator YQ (G means general), where

N
YG = Σ Wi = Σ ciωaiωVi> ( 1 8 )

i € ω *=1

and where ciω are known real numbers which depend on i and ω for all i 6 U, ω
£ 2U. Define

Φic= Σciωaiωp(ω) (19)

Φ°iic = Σ claiup(ω), φ% = Σ ciωcjωaiuajωP(ω) (20)

= Φc - ( W e + ΦΛN) + JNN (2 2)

where J m n is a m x n matrix which elements are equal to 1. It is easy to check
that

Φ c = Σ K " ) U C U;

c (23)
ω ω ω

where

ΰcω = (clωalω-^ C2ωa2ω-^' • ->cNωaNuΓl) ( 2 4 )

We have the following theorem:
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Theorem 7

The mean square error of ΫG as an estimator of Y denoted by MSE{ YG)
is

MSE(ΫG)= Y*ΦCY. (25)

Notice that the matrix Φc is known when the sampling measure and the
estimator ΫG are selected. The matrix Φc in sampling theory is similar to the
information matrix in the theory of experimental design.

A General Estimator

In this section, we consider an estimator proposed in Srivastava (1985).
There is an interesting history relevant here. First, in 1985, Srivastava observed
the connection between combinatorial arrays and sampling theory, discussed in
the last section. This appeared to open up a quite new theoretical field, in which
variable sample size appeared to be inherent. Thus, there seemed to be a need
for a general estimator in which sample size was not necessarily fixed. Now,
most estimators in sampling theory relate to fixed size. In many ways, the most
general estimator (which, among other things, allows variable sample size)
existing in 1985 was the Horvitz-Thompson estimator. But this is entirely
dependent on the sampling measure, which is of course decided upon before the
sample is drawn. In an attempt to be able to utilize the new knowledge
(independent of the sample, but obtained during the course of actual sampling)
the concepts of the sample weight function (discussed below), and the estimator of
this section, were discovered. This estimator is extremely general, in that most
of the known estimators turn out to be its special cases.

The most important concept in this estimator is the introduction of the
sample weight function r, defined on 2 , such that for all ω £ 2U, r(ω) is a finite
real number. For every K C U, and k £ (1, 2,...,iV), let

(K: k) = {ω:wC K, \ω\ = *}.

Clearly, if i £ (U: £), theni is a A -tuple, with k distinct elements from U. From
here on, Σ will denote the sum over all i_ £ (U: Jfc), Σ w m denote the sum

ί i_ί
over all ω £ 2 u such that ± C ω, and Σ w m denote the sum over all i £

(w: k). Note that the last sum could be empty. In this section, we always look
uponi = (hv ••?*'*) as a n unordered set {ip. ••>**}• Let

M") (26)

For k G (1, 2,...,JV-1), t € (1, 2,...,JV), and i £ (U: k), let Γ r(j, t) be
the class of all unordered sets = (j0,...J^i) such that j G (U: t) and ± C j
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wherei = (ij,...,^, and πjj) φ 0. Let

vj(i, t) = I Tr(i, Ol (27)

Also, let α(i, <) be real numbers which satisfy the following two
conditions:

a{i, t) = 0, if vjd, t) = 0, and (28)

Σ"U,<) = 1. (29)
t=i

For all ω £ 2u,i e (U: *), define

(30)

where a~ = α"1 if a φ 0 and a~ = 0 if a = 0, and Σ* runs over all j G (U: t)
such that i = (ί'lvi^jb) C i and j C ω. Now, consider the estimation of the
following symmetric linear population function Q(φ) where

Q(Φ) = ΣV-U). (31)
I

where φ, defined over ({/: £), is such that for all ± G (U: k), ψ(J) is a real
number. Notice when ± C ω and α; is selected, ^(i) can be calculated. Thus,
once a sample ω is drawn, we can compute Qsr(ψ) where

)• (32)

Here in Q5r, 5 means that we are estimating a symmetric function, and r means
that the sample weight function r is being used.

Theorem 8

The statistic Qsr(φ) is an unbiased estimator of Q(φ), if and only if for
every ± G (U: Jfc) with φ{i) φ 0, there exists a t such that 1 < t < N, ι/r(i, t)

φo.
For the case of πr(i) φ 0 for all i G (U: Jfc), let a{χ, jfc) = 1 and α(i, /)

= 0 for all t φ k. Then we have

, ω) = K^KCi)]"1 a n d (33)
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(34)

By using Theorem 8, it can be checked that (34) is unbiased for Q(ψ)
The variance of Qsr(φ) and an unbiased estimator of the variance of

Q8r{φ) were also obtained in Srivastava (1985). Now we turn to an estimator of
the population total. N

Let k = 1, i = 1, φii) = Vi. Then Q{φ) = £ y. = Y. Then, (34) gives

(35)

By Theorem 8, if τrr(i) φ 0 for all i € U, then y s r l is an unbiased estimator of
Y. When

r(ω) = 1, for all ω 6 2 ϋ , (36)

τrr(i)'s become π t 's where πi is the probability such that the unit i is included in
the sample. At this time, Ysrl becomes the well known Horvitz-Thompson
estimator ΫHT where

*/7Γ= ΣVi/*i (37)

The variance of Ϋsrl is given in the following theorem.

Theorem 9

Suppose πr(i) φ 0, i = l,...,i\Γ. Then

Σ Σ

where

•• # , J =

(38)

(39)

(40)
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It is easy to see that

So the term in y\ in Var(Ϋsrl) is always larger than the correspondent term for
YffT But we can choose r[ω) such that the cross product terms of Ϋ8rl are small
so that Var(Y8rl) is small. Examples are given in Srivastava (1985).

Balanced Array Sampling

We have defined arrays in the fourth section. Let K(a x b) and
k(a x 1) be a matrix and a vector with elements from σβ, where σ8 is a finite set
whose elements are (0, 1,. ,.,s-l). The symbol λ( , ) is defined as a counting
operator, such that λ(&, K) is equal to the number of times k occurs as a column
of K. Let ψ8 be the permutation group over σ8. For φ G φ8, and j G σ5, let
φ(j) be the image of .; when the permutation φ is applied. Similarly, we define
φ(k) = (φ(kί),...,φ(kβ)) iϊk= (kv...,ka) is a (α x 1) array over σ8.

Definition 1

Let K be a (a x b) array over σ8. Then K is a balanced array (B-array,
or BA) of strength t if and only if

λ(*o, Ko) = λ {φ%), Ko) (42)

where kQ is any (i x 1) array over σ3, Ko is any (< x b) subarray of K and φ is
any permutation in φ$.

Balanced arrays play an important role in factorial experimental design
and coding theory. F o r i = (tp.. . ,^) € (U: fc), define

π(iv..., ik) = π(i)= Σ P H (43)
ωl

When k = 1 or 2, the following customary notations will be used instead of 7r(i),

TΓ = τr(0, TΓ^ = π(2,;). (44)

Definition 2

Let p( ) = {p(ω): ω G 2^} be a sampling measure. Then p(-)
corresponds to balanced array sampling wiih strength k iff π(i l v..,2^) is fixed, for
all possible (iv...,ig) G (U: g). Here, g = 0, 1,...,*.

Thus, if p( ) corresponds to balanced array sampling with strength fc,
then there exists θv...,θk such that
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*,(hv..,g = 0,, (45)

for (iv...,ig) e (U: g), and g = 0, 1,...,*.

Theorem 10

Suppose, the measure p( ) corresponds to BA sampling with strength k.
Then there exists a sampling measure p*( ) whose sampling array is Δjy(/>*) such
that Ay(p*) is a B-array of strength λ, and jp*( ) is arbitrarily close to p( ). (In
the sense of Theorem 6.)

Theorem 11

Suppose Δ^p) is (N x v) B-array of strength L Let p( ) be a sampling
measure such that it gives a probability (l/v) to each column of A^yip) f°Γ being
selected. Then p( ) corresponds to balanced array sampling with strength k.

Let <$! and δ2 be the mean and the variance of the sample size under the
measure p( ), i.e.,

δ2 = ΣKw)M (46)

(M - «i)2 (47)

Then we have the following theorem.

Theorem 12

Consider BA sampling whose inclusion probability is given by (45).
Then

ΫHT=Θ-I

i\ω\yw (48)

V(ΫHT) = ̂ {(N-S^-^ + ψ r (49)

= £where Y = -ί]C !to ^ 2 = xr_ i £ ( ^ i ~ ^)2? a r e respectively of the population

mean and variance. (The significance of this result lies in the fact that if we have
some idea of the value of Y, we can reduce the variance below that of SRSWOR.
This may happen, for example, in recursive sampling.)
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Definition 3

Let p( ) be a sampling measure. Then, p( ) corresponds to proportional
array sampling with strength k (or, briefly, proportional sampling) iff for all
integer g such that 1 < g < fc, and all ( i l v > ϋ € (17: 0) we have

»(*!,...,*,) = *(h) •••*(*,)• (50)

Notice that when π t is fixed, say 6, for all i 6 ί7, then the proportional
array sampling with strength k is also balanced array sampling with strength k. In
this case we call it balanced proportional sampling with strength k.

In order to construct a p( ) which corresponds to proportional array
sampling with strength fc, we need the definition of orthogonal array (OA).

Definition 4

Let K be a (a x b) array over σ8. Then K is an orthogonal array of
strength t if and only if

λ(*o, Ko) = b x 5"' (51)

where JCQ is any (t x 1) array over σ5, ϋΓ0 is any (t x 6) subarray of K. It is
easy to see that an OA with strength t is a BA with strength t.

Let L(N x b) = (€1,...r£jy)/ be an OA of strength ib over σ 5 where s is a
prime number. Let st be an integer satisfying 1 < si < 5, i = 1,...,JV. In £{ ,
replace the (sχ- - 1) symbols {2, 3,...,st } by 1, leave the original 1 unchanged, and
replace the other symbols (if any) by 0. Notice when si = 5, then the symbol si is
the same as symbol 0. Let L(N x b) be the array obtained by the above
replacement.

Theorem 13

Consider a sampling measure p{ ) such that it has L(N x b) as a
sampling array. Then p( ) corresponds to proportional sampling of strength A;,
such that the inclusion probability of unit i is equal to st /s, for i = l,...,i\Γ.

Theorem 14

We have

i=l

for proportional sampling and

var( ΫHT) = Q- - l ) [(N - 1> 2 + NΫ2]. (53)

for balanced proportional sampling.



SAMPLING THEORY 257

We can use BA sampling with strength 4 to imitate SRSWOR up to the
4<A moments. Notice that the binomial sampling referred to in the literature, is a
balanced proportional sampling with strength N. It is clear that it should be ade-
quate enough to use balanced proportional sampling with strength 4 instead of
using binomial sampling.

Weight Balanced Sampling

Now we introduce an estimator of Y called YΛ which is a special case of
Ϋsl when

r(ω) = M"1, for all u € 2U, ω φ φ. (54)

/ _ v- P(ω)aiω • , v /«*

w |u;|

(57)

where we assume that empty samples are not allowed.

Theorem 15

Suppose τr > 0 for i = 1,...,ΛΓ. Then

γ _ lwl~ ^ Ŷ  « lie1 (tJiλ

(59)

Notice that when the sample size is fixed, Ϋs2 = YJIJ

Definition 5

A sampling measure p( ) corresponds to weight-balanced (WB) sampling,
if and only if (τr^/(τr^)2) and (TΓ̂ /TΓJTΓ̂ ) are constants for i G U and i φ , ij G
U respectively.
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Let

< / ( * ί ) 2 = βv for all i (61)

<jl<*'i = β* for a 1 1 Φ h ij € ft (62)

We have the following corollary of Theorem 15.

Corollary 1

Under WB sampling, we have

V(Ki) = (N- l)S2(/?α - β2) + NΫ\βx - β2) + N(β2 - 1)]. (63)

Definition 6

A sampling measure p( ) corresponds to strongly weight-balanced (SWB)
sampling if and only if πj, πf, π» are constants for i e U and i / j , ί j G ί7
respectively.

Let
π{ = /?3 t€ 17, and (64)

/W\= Σ* (65)
j

Theorem 16

For SWB sampling, we have

( ^ (66)

N
Suppose q(n) > 0, n = l,...,iV and Σ ί( n) = l Suppose we draw a

n = l

sample in this way: firstly select the sample size n with probability #(π), then
use SRSWOR to draw a sample of size n. Then use Nyω to estimate the
population total Y. In this way, we select a particular sample of size n with

probability q(n)/l ^J. We have

yJ = £ ύ4(Nyω - Y)21 \ω\ = n] (67)
7 1 = 1 L J7 1 = 1

Σ
7 1 — 1
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Hence, the technique of using Y52 to estimate the population total in
SWB sampling is a technique which imitates SRSWOR.

An estimator YG is said to be location invariant if and only if

ΫG (given that y = y*) = -yQN + ΫG (given that y = y* + yô lJ\r) ( 6 8 )

ί N V
for all real yQ, when y = (y^.-oίfiv)'' It is easy to see that YG = ί Σ ^iωaiωyi) ιs

N %=1

location invariant iff Σ ciωaiω = ^ f ° r a ^ w € 2 .
t = l

Theorem 17

Under SWB sampling, Ys2 is location invariant.
The material in this section comes from Srivastava (1987), where

examples of WB are given. From an unpublished paper of Srivastava and
Ouyang (1988), we know that Y52 is an admissible linear estimator of Y, and has
a variance formula which is similar to the Yates-Grundy variance formula for
Var{ Ϋffγ) when the sample size is fixed.

An Example of Controlled Sampling and BA Sampling

Now we discuss an example given by Avadhani and Sukhatme (1973) in
controlled sampling. Let N = 7, and suppose these seven units are located as in
the diagram below:

Here, any two units which are connected by a line are considered as neighbors.
We are going to get a sample of size 3 from these 7 units. In order to reduce the
travel cost, we hope the sample we get consists of neighboring units. So a sample
ω — i*v a2> ̂ 3} *s considered preferred if and only if after a suitable permutation,
there is a line between iχ and i2 and also there is a line between i2 and i3. So the
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total number of preferred samples is 21, and the total number of possible samples

is Q = 35.
Consider a BIBD with parameter N= 7, A = 3, 6 = 7, r = 3, ι> = 1:

T =

2 2 3 1 3 1 1

5 4 6 4 4 2 5

7 6 7 7 5 3 6

(69)

Now only the block correspond to column 7 is not preferred. Hence if we use
probability 1/7 to draw a column from T, we reduce the probability of drawing a
non-preferred sample greatly, and at the same time we have the same first two
moments as SRSWOR. But this technique does not avoid the nonpreferred
samples totally. To avoid the nonpreferred samples totally, consider a balanced
array approach as follows. We have a list of 16 samples: {147}, {246}, {543};
{125}, {257}, {576}, {763}, {631}, {321}, {15}, {27}, {56}, {73}, {61}, {32};
{5}. With probability (1/11) we draw any one of the first three samples, and
with probability (1/22) we draw any one of the remaining samples. Hence we
avoid the nonpreferred samples. But we use some subsamples of the preferred
samples.

The problem of controlled sampling may be approached through the
concepts of array sampling as follows.

(i) Decide the preferred and nonpreferred samples.

(ii) Decide whether fixed sample size should be used or not.

(iii) Consider using BA sampling or WB sampling.

(iv) Suppose BA sampling is used. Then we need to find a BA whose
columns consist of the preferred samples. If we fail to get such a BA,
then consider subsamples of these samples. Sometimes we have to
change the decision in step (ii) to consider using some non-preferred
samples in this step (with minimal probability).
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