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THE MODEL BASED (PREDICTION) APPROACH TO FINITE
POPULATION SAMPLING THEORY

Richard M. Royall, Department of Biostatistics,
The Johns Hopkins University

Introduction

Estimating a finite population mean from a sample is equivalent to
predicting the mean of the non-sample values. This view, that finite population
inference problems are actually prediction problems, leads naturally to a theory
in which prediction models, not sample selection probabilities, are central. This
paper is an informal survey of that theory.

The first section describes the model-based approach and attempts to
make clear how and why it differs from the prevailing (randomization-based)
theory. This section is built around a simple example, which is used to illustrate
various facets of the approach. The second section addresses the question “What
has the model-based approach accomplished?” This is not an attempt to catalog
significant contributions to model-based sampling theory, but to describe and
interpret the general kinds of developments that have occurred. Finally, the
third section consists of some brief observations on current research.

What Is Model-Based Sampling Theory?

Model-based sampling theory begins by recognizing that problems of
estimating finite population characteristics are naturally expressed as prediction
problems (Kalbfleisch and Sprott, 1969; Geisser, 1986, p. 163). For example,
Figure 1 shows the data for a sample of n = 32 hospitals. For each sample
hospital we know the number of beds (z) and we have observed the number of
patients discharged (y) during a given month. If we must estimate how many
patients were discharged from another hospital, say one with x = 400 beds, we
might fit the dotted line in Figure 1. The slope of that line, the ratio of total
sample discharges to total sample beds, shows that in sample hospitals there were
3.1 patients discharged per bed. Thus we might estimate that there were about
3.1 x 400 = 1240 patients discharged from the other hospital. More generally,
to estimate how many patients were discharged from a set r of non-sample hospi-
tals having a total of Lpx; beds, we might use 3.1 L x;. Then to estimate the
patient total for the entire population composed of the thirty-two hospitals in the
sample s as well as those in r, we would simply add the observed total for the
thirty-two sample hospitals, Lgy. to our estimate for those not observed, 3.1 Xox..

Clearly this estimate ot1 the population total is reasonable only if it is
reasonable to assume that the hospitals in r are “like” the ones in s: if the sample
hospitals are in the eastern United States while the r-hospitals are in France, then
this estimate is certainly questionable. How can we formalize this reasoning,
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Figure 1. Number of patients discharged and number of beds in 32 short-stay
U.S. Hospitals, June 1968.
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exposing and clarifying the underlying assumptions and explaining when the
estimate is a good one, and when it is not?

A natural way to express the assumptions is through a probability model
for the numbers of patients discharged from each of the hospitals, both those in
the sample s and those in 7. The model represents these numbers, y;, ¥a,..., ¥n
as realized values of independent random variables Y;, Y,,...,Yy, where N is the
total number of hospitals.

Model M. E( Y‘) = ﬂz" , 'UGT( Y‘) = 0'21"' )
cou(Y, Y)=0,i # j

Under model M the g’s will tend to be roughly proportional to the z’s,
with more variability about the expected value, Bz, in large hospitals than in
small ones. This model is consistent with the thirty-two observations shown in
Figure 1, but is not unique in this respect. We must be alert to the possibility
that other models might be more appropriate. Nevertheless, analysis under
model M can explain much of what our informal look at the problem has already
suggested.

First we note that the model represents a link between the two sets of
numbers, {y; i € s} and {y; i € }, that enables us to learn about the second set
by studying the first. Now the problem of estimating T = X,y; + X.y; is
evidently equivalent to the problem of predicting the value, £ y;, of the random
variable, £ Y; The estimate that we derived intuitively, TR = X,y + Xz,
where b = X,y/X,z = 3.1, is the best linear unbiased (BLU) estimator ‘of T under
model M, because bX,z is the BLU predlctor of X y. Note that this is actually
the popular ratio estzmator, (Z,9/%, z‘)E1 The reason that we would not use
this estimate if the non-sample hospitals were in France is that we would be
unwilling to apply the same model (with the same value of the expected number
of patients per bed, §) to both the sample and non-sample facilities. Note that
this conclusion would apply even if we had decided at random which ones to
exclude from the sample and had chosen the overseas hospitals by bad luck. Our
reluctance to use the sample ratio, 3.1 discharges per bed, to estimate for those
not in the sample arises from unwillingness to make the assumptions expressed in
the model, not from the process used to choose which hospitals to put in the
sample and which ones to leave out.

The model also provides guidance in sampling. For a given split of the
population into sample s and non-sample r hospitals, the estimation (prediction)
error in the ratio estimate of T is TR — T = bz — Xy Its expected value
under M is zero and its variance is var(Tp — T) = (N/ N1 - H(7%,/7,)0%, where
7 is the population mean, %, and Z,_ are sample and non-sample means, n is the
sample size, and f is the samplmg fractlon, n/N. This variance decreases as T,
increases, so it is minimized when s consists of the n largest hospitals. Equally
important, it is mazimized when s consists of the n smallest. Although we will
find that robustness considerations imply that it is often unwise to choose the
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largest units for s, the smallest units represent the worst possible sample under a
wide variety of conditions.

Another role of the model is to validate large sample confidence intervals:
if the population is enlarged, so that both sets of hospitals, s and r, grow in a
stable way, then (Tp — T)/[var(Tq — T)]l/ 2 converges in distribution to the
standard normal. Because v = I (y; — bz;)?/nz; is a consistent estimator of o?,
an approximate confidence interval for T is given by Tp <+
A(N/HA - f)(?ir/?cs)v]ll 2 when n and N—n are both large (Royall and
Cumberland, 1978).

Although the ratio estimator is BLU under model M, other estimators
might also be considered, because of robustness, simplicity, or other criteria.
Analysis under M remains critical: the estimator we choose must at least have
reasonable properties under this model if it is to be appropriate for estimating the
total number of patients discharged. For example, the simple expansion
estimator Tp = Z,y + (N — n)3, = Ng,, which estimates the non-sample mean 7,
by the sample mean ¥,, would be inappropriate here in any sample s of hospitals
whose mean size Z, is not very close to the population mean Z. This is because
the estimator is biased under M:

E(Tg - T) = NB(z, - 3).

This expression shows that the expansion estimator will tend to underestimate T
if the average size of sample hospitals, Z,, is smaller than the population average,
7, and to overestimate when z, is larger. By contrast, the linear regression
estimator Tpe = N[g, + b,(Z — 7,)] where b, = X (z; — Z,)y,/Z (z; - i’)z, is,
like the ratio estimator, unbiased under M in any sample s: E(Tpg— T) =0

Thus we can evaluate estimators in terms of bias and variance under M,
study how these properties are affected by characteristics of the sample, like Z,,
and find approximating distributions for setting confidence intervals. If M were
known to be true, then this body of theoretical results might be satisfactory for
guiding us in selecting a sample and making inferences from observations.

But M is not true. A sufficiently large sample of hospitals would surely
reveal that M, like any mathematical model, is at best an approximation.
Although we have adopted M as a working model for this population, we remain
skeptical, aware that theoretical results derived under M have practical value
only if they are robust in the face of plausible departures from this model.

Robustness to departures from M can be studied by changing the model.
For example if we generalize by relaxing the restriction that war(Y;) be
proportional to z; we see that the ratio estimator remains unbiased and
consistent. But the large-sample confidence interval is no longer valid, because
the estimator of war( TR — T) is no longer consistent. Fortunately there are
variance estimators that are consistent under the generalized model, providing
robust large sample confidence intervals (Royall and Cumberland, 1981a).

To study the effects of errors in the working model’s regression function,
E(Y;) = Bz;, we might consider a sequence of generalizations, first adding a
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constant term, then a quadratic, etc. Each term added to the regression model in-
troduces bias in the ratio estimator. For example, if E(Y,) = a + Bz, then the
bias is E( TR — T) = No(z — %,)/Z, Protection against this bias can be achieved
by choosing a sample that is balanced on #: Z, = 7. Protection against a
quadratic term’s bias can be achieved by balancing on 2* as well: 2,12/ n =
E{sz /N. And balancing on other powers of z protects against bias caused by the
presence of corresponding terms in the true regression function (Royall and
Herson, 1973).

Thus in order to protect against the bias that can be caused by departure
from the working model’s regression function, we might choose a balanced sample
in preference to the optimal (minimum variance) sample composed of the n
largest hospitals. The same type of trade-off, efficiency for robustness, might
apply to other aspects of the problem as well, such as the choice of an estimator
for T and an estimator of the error variance, var{T — T). The model-based
theory does not assume that a particular model is correct and proceed blindly
under that assumption: alternative models are used to examine the key practical
issue of robustness.

The main features of model-based sampling theory have appeared in our
look at the hospital discharge population:

(i) representing the unknown numbers of interest as realized values of
observable random variables,

(ii) recognizing that estimating a population value from an observed
sample is a prediction problem, and

(iii) using probability models as the formal basis for prediction and for
determining the primary statistical properties of samples and
predictors.

The use of probability models as the basis for inference from sample to
population, (iii), is the critical feature distinguishing the model-based theory from
the prevailing one. Although a random sampling plan may be used for choosing
which hospitals will be observed (and for which hospitals the number of
discharges must be estimated), the basic inference framework is the probability
model, not the random sampling plan. By contrast, the prevailing theory of
finite population sampling reverses the priority, avoiding probability models in
favor of distributions created by random sampling plans as the formal basis for
inference.

Conventional theory defines bias, for example, with respect to the
probability distribution generated by the random sampling plan. Thus the
expansion estimator, Ng,, is an unbiased estimator of T if every set of n hospitals
is given the same probability of being selected as the sample. But the same
estimator is biased if the sample is chosen by another selection scheme. The bias
in Ny, is determined, not by relationships between the hospitals in s and those
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not in s, but by the probabilities with which other samples might have been
selected. Recall that the model-based theory under model M said that this
estimator has a positive bias if the sample consists of hospitals that are larger, on
average, than those not in the sample, a negative bias if the sample hospitals are
smaller, and no bias only if the sample is balanced on size. Although both
definitions of bias are mathematically valid, for the purpose of inference from a
given sample of hospitals the model-based one is clearly relevant and informative
while the conventional one is misleading.

Conventional theory defines variance also as an average value over all
possible samples. Again this is in contrast to model-based theory, which, because
it defines the variance for a specific sample with respect to a prediction model for
the unobserved variates, conditions on the characteristics of the sample actually
observed as well as on those of the non-sample units whose values must be
predicted.

Model-based theory, by insisting that inferences should be based on
prediction models, not on probability distributions created by randomly choosing
which units to observe, does not preclude the use of random sampling plans. It is
not the presence or absence, but the role, of random sampling that distinguishes
model-based from conventional finite population sampling theory. The
terminology invites misunderstanding on this point: because the word sampling
in the name suggests only the design phase—choosing samples — model-based
sampling theory is easily misinterpreted as signifying a theory for choosing
samples using models, whereas the critical feature is the use of models in
inference.

There are other model-based approaches. The one sketched above is
developed in terms of bias, variance, and approximate normality under linear
models. Alternatives include approaches based on fiducial (Kalbfleisch and
Sprott, 1969), likelihood (Royall, 1976b), and Bayesian prediction models.
Ericson (1988) has recently surveyed the Bayesian theory. We will focus on the
linear prediction approach, because it has seen the most vigorous development,
empirical testing, and critical discussion.

What Has the Model-Based Approach Accomplished?

The model-based approach has bridged the gap between finite population
problems and the rest of statistics. Before the model-based approach, finite
population sampling was an eccentric realm where many of the basic concepts
and tools of statistics were curiously inapplicable. Statisticians skilled in
designing experiments and in applying linear models to make inferences from
experimental and observational data found that finite population problems were
apparently beyond the scope of their techniques. Although there were some
familiar-looking formulas, such as the linear regression estimator shown in
Section 1, these statistics lacked the familiar rationale and properties. Not only
was the linear regression estimator biased (and therefore certainly not a BLU
estimator) it was not even linear, because the random choice of observation
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points turned the denominator of the estimated slope into a random variable. To
make matters appear utterly hopeless to one interested in statistical theory,
Godambe (1955) proved that the BLU estimator for a finite population average
does not exist and furthermore (1966) showed that the likelihood function
generated by a random sample from a finite population is, for all practical pur-
poses, totally uninformative. Attempts to fill the theoretical vacuum were
uniformly unsuccessful (e.g., Godambe, 1966; Hanurav, 1968; Hartley and Rao,
1969; Royall, 1969).

The prediction approach revealed that the problem was rooted, not in
esoteric aspects of finite population problems that invalidated the methods
applicable to the rest of statistics, but in the attachment of those who worked in
finite population sampling theory to a restrictive statistical doctrine based on a
dubious principle. This is the Randomization Principle, proclaimed and then
renounced by Fisher (1935 §21, 1960 §21.1), which asserts that the only
probability distributions appropriate for statistical inference are those created by
deliberate randomization.

A particularly clear statement of the Randomization Principle in the
finite population setting was given by Stuart (1962):

If you feel at times that the statistician, in his insistence on
random sampling methods, is merely talking himself into a job,
you should chasten yourself with the reflection that in the absence
of random sampling, the whole apparatus of inference from sample
to population falls to the ground, leaving the sampler without a
scientific basis for the inferences which he wishes to make.

This Principle has had its champions in experimental statistics
(Kempthorne, 1955), where it underlies the curious claim that no valid statistical
inferences are possible in observational studies. (This last point is discussed in
Royall (1976a), with references.) But in that area the Principle faced strong
opposition, from “Student” (1937) and Neyman and Pearson (1937, p. 384) for
example, and it never held sway. The Principle’s unchallenged domination of
finite population theory is thus curious; it is doubly curious because this
domination is credited to Neyman (1934) (ref. Smith, 1976; O’Muircheartaigh
and Wong, 1981).

The theoretical vacuum in finite population sampling was an inevitable
consequence of the Randomization Principle. If the Principle is applied in other
areas of statistics, entirely analogous results follow: if all inferences must be
based on the probability distribution created by artificial randomization, so that
all variables that have not been made random by the experimenter’s actions must
be treated as fixed (possibly unknown) constants, then the likelihood function for
randomized comparative experiments is just like the finite population likelihood
function—uninformative (Cornfield, 1966). Likewise, if inferences about
regression coefficients must be based on the distribution created by using
deliberate randomization to select material for observation, then the
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Gauss-Markov theorem can justify least-squares estimators only in those cases
where at each value of the regressor z the average response J over all units
actually available for observation falls precisely on the regression line: thus the
Principle would imply the non-existence of BLU estimators in essentially all real-
world applications, certainly including all problems where each potential sample
unit is characterized by a unique vector of regressor values.

Deliberate randomization is a valuable statistical tool (for protecting
against unconscious bias, for example). Few statisticians would deny this. But
the Randomization Principle claims much more: the only biases, standard errors,
significance levels, and confidence coefficients acceptable for inference are those
defined and justified in terms of deliberate randomization. The model-based
prediction approach to finite population sampling consists of nothing more
radical than taking the concepts, techniques, and tools that form the familiar
core of applied statistics and using them where previously they had been
precluded by acceptance of the Randomization Principle. This has had several
important effects:

(i) providing techniques for systematic study of some finite population
sampling problems that the randomization approach is ill-equipped to
address,

(ii) bringing an alternative theoretical perspective to finite population
methods that have been analyzed previously in terms of randomization
theory,

(iii) revitalizing conventional randomization-based finite population theory,

(iv) providing a new context for studying the model-based methods that
are standard outside of finite populations, and

(v) testing general statistical concepts and principles in a new setting.

Examples in the first category — problems that are difficult to address in
terms of deliberate randomization alone — include non-response (Sérndal, 1981;
Little, 1982; Chiu and Sedransk, 1986), small area estimation (Laake, 1979; Holt,
Smith, and Tomberlin, 1979; Royall, 1979), and inference from non-random
samples (Smith, 1983; Kott, 1984). This is not to say that there was no
methodology for these problems before the model-based approach came along.
There were various techniques that had been derived intuitively and developed by
trial and error. What models did was to provide a theoretical framework for
studying the methods (such as synthetic estimates for small area estimation) and
for describing the implicit assumptions behind them, as well as for suggesting
alternatives.

Of greater theoretical interest are activities of the second type —
applications of the model-based approach to problems where the old
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randomization approach had already generated a body of results. In some cases
the prediction approach simply provided a new explanation and interpretation of
conclusions that had been reached by conventional sampling theory. An example
is the finding that the Yates-Grundy estimator is better than the Horvitz-
Thompson estimator for the variance of the mean-of-ratios statistics,
NzZ,(y,;/z;)/n, in samples chosen by a probability-proportional-to-z sampling plan
(Cumberland and Royall, 1981).

In other cases the prediction approach revealed a clear preference for one
of two procedures where the randomization approach had been noncommittal.
One example is in post-stratification, where some followers of randomization
theory had chosen to condition the variance on the actual stratum sample sizes,
while others had chosen to use the unconditional variance. The deadlock was
described by Holt and Smith (1979), whose prediction theory analysis made clear
the need to condition.

Variance estimation for the ratio estimator provides another example of
the activities in category (ii). Randomization theory had been unable to choose
between two proposed variance estimators, yet model-based analyses revealed
that the more popular of the two has a severe conditional bias. This bias is
positive in some samples, leading to overly conservative confidence intervals, and
negative in others, producing undercoverage. The second statistic is free of these
biases. It is worth noting that empirical comparisons of these two variance esti-
mators had also been inconclusive, because the investigators, guided by
randomization theory, had averaged the results over all of the values of the
conditioning variable, and had thereby averaged out the biases (Rao and Rao,
1971). Empirical studies guided by prediction theory exposed the biases clearly
enough to inspire efforts to accommodate the conditional results within
randomization theory (Fuller, 1981; Robinson, 1987).

The model-based approach has stimulated conventional sampling theory
in other ways as well. For example, model-based results on variance estimation
(Royall and Cumberland, 1981a) have inspired significant developments in
conventional theory (Wu and Deng, 1983; Deng and Wu, 1987). At a more
general level, the model-based approach has forced those who object to it to
examine and articulate the reasons for their opposition (e.g., Hansen, Madow,
and Tepping, 1983) and to extend and adapt the conventional theory to accom-
modate those model-based results that they find compelling (e.g., the above-cited
attempts to develop a conditional randomization theory for the ratio estimator).
Another general effect on conventional sampling theory has been to create a
greater awareness of models and willingness to use them in analyses. Very
important work has been done in studying the effects of using standard computer
packages (i.e., analyses based on simple models) to analyze sample survey data
when the models do not adequately describe the process generating the
observations. Some of this work has been model-based and some has been based
on random sampling distributions, but stimulated by the model-based activity,
and using models in the analysis (e.g., Holt, Smith, and Winter, 1980; Skinner,
Holmes, and Smith, 1986).



234 R.M. Royall

Developments in category (iv) are of very general importance. The
model-based approach brings new statistical methods to finite populations,
methods that are widely used in other areas of statistics. These new applications
represent important tests cases for the methods, which are now used in real
samples from real populations that can be examined in toto to determine exactly
how large the estimator error is, whether the true mean actually lies within the
confidence interval, etc. Studying statistical methods in finite populations entails
a degree of realism and relevance to real-world phenomena that is hard to achieve
in other contexts, where the object of estimation is an unobservable (usually pure-
ly conceptual) model parameter, or where the test data are generated artificially.

This is illustrated by the finite-population tests of the standard variance
estimates in linear regression models (Royall and Cumberland, 1981a, b). These
empirical studies showed that the estimates are much more sensitive to errors in
the models’ variance structure than had been generally acknowledged (see e.g.
Efron, 1979 §7). This suggests that more attention should be paid to bias-robust
alternatives. But further finite population studies have produced frightening
examples showing that confidence intervals based on bias-robust estimates,
although better than those based on the standard variance estimates, can also
perform very poorly under conditions that, though not uncommon, are difficult
to recognize when they occur (Royall and Cumberland, 1985).

Finally, the model-based approach to finite population sampling has also
helped to clarify the basic concepts and principles of statistics. Stimulated by the
good advice “Look at the data,” along with exciting computer capabilities for
display and analysis of samples, statisticians now rely heavily on the data to
suggest and criticize models. Finite population studies have helped to emphasize
the limitations of this sort of empiricism: model failure that is not apparent in
the sample can produce seriously misleading inferences (e.g., Royall and
Cumberland, 1981a; Rubin, 1983). Thus, robustness is vitally important even
when the model fits the observed data well. Other important general issues that
have been emphasized and illustrated in the model-based approach to finite
population sampling include the critical distinction between probabilistic and
inferential validity and the need for conditioning on ancillary statistics to achieve
the latter (see Royall, 1976a, for discussion; ref. also Hinkley, 1983), the
inferential inadequacy of probability distributions generated by artificial
randomization, and the fundamental importance of likelihoods (Royall, 1976b,
discusses the last two points).

Some Current Developments

The role of randomization in a model-based approach to finite population
sampling is a subject of continuing research. Randomization is certainly valuable
at the sampling stage. For example, it can ensure that the chances are good that
the sample selected will be well balanced, so that in that sample a given
estimator is robust with respect to variables that are not adequately accounted
for by the prediction model (Royall and Herson, 1973). But just when and how
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random sampling probabilities should influence inferences from a given sample
has proved to be a difficult issue. On one hand, the set of labels identifying the
sampled units is an ancillary statistic, so that the Conditionality Principle
evidently precludes any role for the random sampling distribution in inference
(Basu, 1971). On the other hand, the expected balance associated with simple
random sampling is a characteristic whose statistical relevance does not seem to
vanish entirely when the perspective shifts from (i) choosing which units to
observe to (ii) making estimates from an observed sample (ref. Royall, 1976a, p.
471). Thus there are continuing efforts to formalize and explain the precise role
of random sampling in finite population inference (e.g., Sugden and Smith, 1984;
Pfefferman and Holmes, 1985; Cumberland and Royall, 1988; Kott, 1988; and
Tam, 1988) and to reconcile the prediction and randomization approaches
(Brewer, Hanif, and Tam, 1988).

But recent progress in model-based theory has not been limited to the
interface with randomization theory. Tam (1986) has given an elegant extension
and unification of earlier work on robust estimation. Chambers (1988) has con-
tributed both theoretical and empirical results on model-based estimation for
domains within a larger population. And Valliant has used the prediction
approach to analyze the statistical properties of a widely-used method of variance
estimation (1987a), to discover critical conditional properties of estimators in
stratified samples (1987b), and to study an important problem in economic
statistics (1988).
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