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FOUNDATIONS OF STATISTICAL QUALITY CONTROL

Richard E. Barlow, University of California at Berkeley

and

Telba Z. Irony1, University of California at Berkeley

Abstract

The origins of statistical quality control are first reviewed relative to the
concept of statistical control. A recent Bayesian approach developed at AT&T
laboratories for replacing Shewart-type control charts is critiqued. Finally, a
compound Kalman filter approach to an inventory problem, closely related to
quality control and based on Bayesian decision analysis, is described and
compared to other approaches.

Statistical Control

The control chart for industrial statistical quality control was invented
by Dr. Walter A Shewhart in 1924 and was the foundation for his Economic
Control of Quality of Manufactured Product—his 1931 book. (A highly
recommended recent reference is Deming, 1986.) On the basis of Shewhart's
industrial experience, he formulated several basic and important ideas.
Recognizing that all production processes will show variation in product if
measurements of quality are sufficiently precise, Shewhart described two sources
of variation; namely

i) variation due to chance causes (called common causes by Deming,
1986);

ii) variation due to assignable causes (called special causes by Deming,
1986).

Chance causes are inherent in the system of production while assignable
causes, if they exist, can be traced to a particular machine, a particular worker, a
particular material, etc. According to both Shewart and Deming, if variation in
product is only due to chance causes, then the process is said to be in statistical
control. Nelson (1982) describes a process in statistical control as follows: "A
process is said to have reached a state of statistical control when changes in
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measures of variability and location from one sampling period to the next are no
greater than statistical theory would predict. That is, assignable causes of
variation have been detected, identified, and eliminated." Duncan (1974)
describes chance variations: "If chance variations are ordered in time or possibly
on some other basis, they will behave in a random manner. They will show no
cycles or runs or any other defined pattern. No specific variation to come can be
predicted from knowledge of past variations" Duncan, in the last sentence, is
implying statistical independence and not statistical control.

Neither Shewhart nor Duncan have given us a mathematical definition of
what it means for a process to be in statistical control. The following example
shows that statistical independence depends on the knowledge of the observer
and, therefore, we think it should not be a part of the definition of statistical
control.

Example

The idea of chance causes apparently comes from or can be associated
with Monte Carlo experiments. Suppose I go to a computer and generate n
random quantities normally distributed with mean 0 and variance 1. Since I
know the distribution used to generate the observed quantities, I would use a
iV(0,l) distribution to predict the ( n + l ) ί t quantity yet to be generated by the
computer. For me, the process is random and the generated n random quantities
provide no predictive information. However, suppose I show a plot of these n
numbers to my friend and I tell her how the numbers were generated except that
I neglect to tell her that the variance was 1. Then for her, x n + 1 is not
independent of the first n random quantities because she can use these n
quantities to estimate the process variance and, therefore, better predict xn+ι

What is interesting from this example is that for one of us the
observations are from an independent process while for the other the observations
are from a dependent process. But of course (objectively) the plot looks exactly
the same to both of us. The probability distribution used depends on the state of
knowledge of the analyst. I think we both would agree however that the process
is in statistical control.

All authors seem to indicate that the concept of statistical control is
somehow connected with probability theory although not with any specific
probability model. We think de Finetti (1937, 1979) has given us the concept
which provides the correct mathematical definition of statistical control.

Definition: Statistical control

We say that a product process is in statistical control with respect to
some measurement variable, ar, on units 1, 2,.. .,n if and only if in our judgement

p(xv x2,...,xn) = K*ty * 2' ••'*•»)

for all permutations {i^ i2v>*n} of units {1, 2,...,w}. That is, the units are
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exchangeable with respect to x in our opinion. This definition has two
implications: namely that the order in which measurements are made is not
important and, secondly, as a result, all marginal distributions are the same. It
does not, however, imply that measurements are independent.

In addition, the process remains in statistical control if, in our
judgement, future units are exchangeable with past units relative to our
measurement variable.

The questions which concern all authors on quality control are:

(1) How can we determine if a production process is in statistical control?

and

(2) Once we have determined that a production process is in statistical
control, how can we detect a departure from statistical control if it
occurs?

The solution offered by most authors to both questions is to first plot the
data. A plot of the measurements in time order is called a run chart. Run
charts are also made of sample averages and sample ranges of equal sample sizes
at successive time points. The grand mean is plotted and control limits are set
on charts of sample averages and sample ranges. The process is judged to be in
statistical control if

i) there are no obvious trends, cycles or runs below or above the grand
mean;

ii) no sample average or sample range falls outside of control limits.

Samples at any particular time are considered to constitute a rational
sample (i.e., in our terminology, to be exchangeable with units not sampled at
that time). The only question is that of exchangeability of rational samples over
time. In practice, control limits are based on a probability model for the rational
samples and all observed sample averages and ranges over time.

The marginal probability model can, in certain cases, also be inferred
from the judgement of exchangeability. If measurements are in terms of
attributes; i.e., x^ = 1 (0) if the t unit is good (bad) and if the number of such
measurements is conceptually unbounded, then it follows from de Finetti's
representation theorem that

p(Xi = 1) = f p(Xi = l\θ)p(θ)dθ = j θp(θ)dθ
0 0

for some measure p(θ)dθ and further, that xv x2,...,xn are conditionally
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independent given θ. In this case θ can be interpreted as the long run "chance"
that a unit is good; i.e., ( 5 ^ ^ ) / n tends to θ with subjective probability one as n
increases without limit. Chance in this case is considered a parameter — not a
probability.

In general, however, exchangeability alone is too weak to determine a
probability model and additional judgements are required to determine marginal
probability distributions. Let xv z2v Ά be exchangeable measurement errors.
If, in addition, we judge measurement errors to be spherically symmetric, i.e.,
p(xi, z2,. Ά ) ι s invariant under rotations of the vector (a?1? £2V Ά ) a-nd this for
all n, then it follows that the joint probability function is a mixture of normal
distributions and xi given σ is #(0, σ2) while xv £ 2 v A given σ2 are
conditionally independent. Also (Σrf)/11 tends to a limit, σ2, with subjective
probability one. For more details see Dawid (1986).

The problem of determining and justifying control limits remains. It was
this problem which led Hoadley (1981) to develop his quality measurement plan
critiqued in the next section. The usual method for computing control limits
(e.g. Nelson, 1982) violates the likelihood principle. Basu (1988) has argued
convincingly against such methods.

A Critique of the Quality Measurement Plan

A quality auditing method called the quality measurement plan or QMP
was implemented throughout AT&T technologies in 1980 (see Hoadley, 1981).
The QMP is a statistical method for analyzing discrete time series of quality
audit data relative to the expected number of defects given standard quality. It
contains three of the audit ingredients: defects assessment, quality rating and
quality reporting.

A quality audit is a system of inspections done continually on a sampling
basis. Sampled product is inspected and defects are assessed whenever the
product fails to meet engineering requirements. The results are combined into a
rating period and compared to a quality standard which is a target value of
defects per unit. It reflects a trade-off between manufacturing cost, operating
costs and customer need.

Suppose there are T rating periods: t= 1,..., T (current period). For
period t, we have the following data from the audit:

nt = audit sample size;

xt = number of defects in the audit sample;

s = standard number of defects per unit;

et = expected number of defects in the sample when the quality standard
is met; et = snt;
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It = Y = quality index (measure of the defect rate).

It is the defect rate in units of standard defect rate. For instance, if It = 2, it
means that twice as many defects as expected have been observed.

The statistical model used in QMP is a version of the Empirical Bayes
model. The assumptions are the following:

1. xt has a Poisson distribution with mean ntλt, i.e. (xt\ntXt) ~ Poi(ntλt)
where λj is the true defect rate per unit in time period t. If Xt is
reparametrized on a quality index scale, the result is:

θt = λt/s = true quality index.

In other words, θt = 1 is the standard value. Therefore, we can write:

(xt\θt) ~ Poi(etθt).

2. For each rating period *, there is a true quality index θt. θt, t =
1,...,T is a random sample from a Gamma distribution with mean θ
and variance 7 . θ is called the process average and 7 is called the
process variance. We can write (#*|0,72) ~ Gamma^/y2, θ/y2). In
this model, both θ and j2 are unknown.

3. θ and j2 have a joint prior distribution p(0, y2).

The parameter of interest is θτ given the past data, dτ^1 and current
data, Xrp Here df-ι = (xv ^v ^ r - i ) a n d do is a constant.

The model assumes that the process average, 0, although unknown, is
fixed; i.e., the model assumes exchangeability. In reality θ may be changing. In
order to handle this, the QMP procedures uses a moving window of six periods of
data.

A suitable way to describe and to analyze the QMP model is via
probabilistic influence diagrams. Probabilistic influence diagrams have been
described by Shachter (1986) and Barlow and Pereira (1990).

A probabilistic influence diagram is a special kind of graph used to model
uncertain quantities and the probabilistic dependence among them. It is a
network with directed arcs and no directed cycles. Circular nodes (probabilistic
nodes) represent random quantities and arcs into random quantities indicate
probabilistic dependence. An influence diagram emphasizes the relationships
among the random quantities involved in the problem and represents a complete
probabilistic description of the model. The solution for the QMP model, i.e., the
posterior distribution of θ γ given the past data, rfj -i and current data, Xj, can be
achieved through the use of influence diagrams operations, namely, node merging,
node splitting, node elimination and arc reversal. These operations are described
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in Barlow and Pereira (1990). Figure 1 is an influence diagram representation
corresponding to the QMP model.

The joint distribution for random quantities in the QMP model is
completely defined by the influence diagram above. The absence of arrows into
node (θ) γ 2) means that we start with the unconditional joint distribution of θ
and 7 . The arrows originating at note (0, γ2) and ending at nodes θt (t =
1,.. .,T) indicate that the distributions of θf are conditional on θ and γ 2 . This
means that the process is considered exchangeable, that is, the process average, 0,
is constant over time. Finally, each node xt is the sink of an arrow starting at
node θf meaning that the distribution of the random quantity xt is conditional on
0tfor each t= 1,...,T.

Exchangeability assumption:

( θ t i θ , r 2 ) ~G(θ2/r22

( x t l θ t ) ~ P o i ( e t . θ t )

Figure 1

The QMP chart is a control chart for analyzing defect rates. Quality
rating in QMP is based on posterior probabilities given the audit data. It
provides statistical inference for the true quality process. Under QMP, a box and
whisker plot (Figure 2) is plotted each period. The box plot is a graphical
representation of the posterior distribution of θτ given dτ^ = ( ^ i v ^ r - i ) a n c *
xτ The standard quality on the quality index scale is one. Two means twice as
many defects as expected under the standard. Hence, the larger the quality
index, the worse the process.

The posterior probability that the true quality index is less than the top
whisker (I99%) is 99%. The top of the box (I9 5%), the bottom of the box (I5%)
and the bottom whisker (Iχ%) correspond to probabilities of 95%, 5% and 1%,
respectively.
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The x is the observed value in the current sample, the heavy dot is the
Bayes estimate of θ and the dash is the Bayes estimate of the current quality
index (0y), a weighted average between xT&na θ.
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Figure 2

In a complete QMP chart (with all boxes), the dots are joined to show
trends, i.e., it is assumed implicitly that the quality index θt may be changing
from period to period.

1. Exception reporting

The objective of quality rating is to give a specific rule that defines
quality exceptions and a measure (e.g., probability) associated with an exception.
For QMP there are two kinds of exceptions:

a. A rating class is Below Normal (BN) if I 9 9 % > 1, i.e. if P(θτ > 1)
> 99%.

b. A rating class is on Alert if I9 9% < 1 < Ig5%» *-e-> ί f

P(θτ > 1) < 99%. (See Figure 3.)

Products that meet these conditions are highlighted in an exception

report.
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2. Posterior distribution of current quality

In order to get the exact solution for QMP, we have to compute the
posterior distribution of θτ given dT-X = (arj,.. ,,a:Γ—i) a n c ^ xτ H°a (^ey (1981)
describes a complicated mathematical "solution" to this model. It can be best
understood through the following sequence of influence diagrams:
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κ'rJ

Oh-iJ—^{^TJ

Figure 4

Diagram 1: Starting model: (0, y2) ~ p(β, y2).

=1,...,Γ. {xt\θt) ~ Poi(etθt).

Diagram 2: Nodes 0 l v . ,βτ are eliminated through integration.

(*#>72) ~ Negative Binomial (Aitchison and Dunsmore, 1975).

Diagram 3: Nodes â , x2,.. .,xτ are merged, i.e., the joint distribution of dτ =
(xv x2)...,xτ) is computed.

T
(dτ\θ,η(2) ~ J J Negative Binomials.

Diagram 4: The arc that goes from node (θ,y2) to node dτ is reversed, i.e.,
Bayes theorem is used to compute the posterior distribution of θ
and γ 2 given dτ. ρ(θ,y2\dτ): posterior for θ and γ 2 given dτ.

Diagram 5: Node dτ is split. The joint distribution of (xv x2,.. .,xτ) is written
as the distribution of dτ_χ = (χχ, x2,...,xT_^) and the conditional
distribution of xτ given dτ_v
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Diagram 6: Node θτ is added again into the model. The distribution of θγ
given (0,7 ) and Xj> is determined.

Diagram 7: Node (0,7 ) is eliminated through integration.

As we can see from the diagrams, the quality indexes 0 l v . . ,0^ a r e

eliminated in order to compute the distribution of the data, dτ, given 0 and y2

and then, to compute the posterior distribution of 0 and 7 given the data, dj .
Nevertheless, the parameter of interest is the current quality index, θ jy which has
to be re-introduced into the influence diagrams. This procedure is not correct.
According to this, Xj, is influencing θj> twice in diagram 6. On one hand, directly
(there is an arrow from xτ to 0y), and on the other hand, through the posterior
distribution of 0 and 7 given dγ. In other words, node θj is eliminated (in
influence diagram 2) and is added again (in influence diagram 6) and this is not
the way one should solve an inference problem.

Even if this procedure were correct, the posterior distribution of θγ would
be a complex triple integral depending on the prior distribution assessed for 0 and
7 . This integral would have to be inverted in order to compute the QMP box
chart. In other words, the exact solution is mathematically intractable, especially
when many rating classes have to be analyzed each period. The result is a
complicated algorithm (Hoadley, 1981) that computes all the parameters that are
needed in order to construct the Gamma distribution for θj\dγ. Hoadley's model
assumes exchangeability, i.e., statistical control. Hence it does not provide an
alternative to statistical control which can be used to decide whether or not the
process is still in statistical control at the current time period. In the absence of
an alternative model to exchangeability a better solution would have been to
simply plot the standardized likelihoods (gamma densities) for θt at each time
period based on the Poisson model. This would implicitly assume the θfs
independent a priori.

A Kalman Filter Model for Inventory Control

As we have seen, the problem of quality control is to determine if and
when a process has gone out of statistical control. The main difficulty with
classical quality control procedures and also with the QMP model is that the
models used assume the process is in statistical control and consider no
alternative models to this situation. For coherent decision making, it is necessary
to determine logical alternative models corresponding to a process out of
statistical control.

In a paper dealing with inventory control (Barlow, Durst and Smiriga,
1984), a Kalman filter model was discussed from a decision theory point of view
which could also be used for quality control problems. The paper describes an
integrated decision procedure for deciding whether a diversion of Special Nuclear
Material (SNM) has occurred. The problem is especially relevant for statistical
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analysis because it concerns (a priori) low probability events which would have
high consequence if any occur. Two possible types of diversion are considered: a
block loss during a single time period and a cumulative trickle loss over several
time periods. The methodology used is based on a compound Kalman filter
model.

Perhaps the simplest Kalman filter model is

= θ(t) + v(t)

(1)
= θ(t-l) + Wθ(t),

where y(t) is the measured inventory at time period t and θ(t) is the actual
inventory level. Our uncertainty with respect to measuring error is modeled by
v(t) while wθ(i) models our uncertainty about the difference in the actual
amounts processed between time period t-1 and t.

The y(t) process will be in statistical control in the sense of the first
section if and only if wQ(t) = 0 for all i. For the inventory problem it seems
reasonable to use (1) to model the process in the absence of any diversions. Later
we will extend this model to account for possible diversions.

The compound Kalman filter model allows a decision maker to decide at
each time period whether the data indicate a diversion. A block loss, by
definition, will be a substantial amount which, it is hoped, will be detected at the
end of the period in which it occurs. A trickle loss, on the other hand, is a
smaller amount which is not expected to be detected in a single occurrence. A
trickle loss may consist of a diversion or process holdup (or both), while a block
loss is always a diversion. Two models are given for the process during each time
period; in one, a block loss is assumed to have occurred, while in the other, only
the usual trickle loss takes place. Since there are two models at each time period,
a fully Bayesian analysis would required 2 n models at the end of n time periods,
which is computationally untenable. A simple approximation is made which
rests on the assumption that a block loss is a low-probability event. With this
approximation only two models need be considered at each period, with all
inference conditional on the assumption of no block loss in past periods (which
has probability virtually equal to 1 as long as we have never come close to
deciding that a block loss has occurred). By comparing these two models, we
decide whether a block loss has occurred, and if we decide that it has an
investigation is initiated. Since trickle loss, at least in the form of process
holdup, is always assumed to occur, we will never decide that no trickle loss has
occurred. We will either decide that a trickle diversion has occurred over several
past periods, or we will decide that we as yet are unconvinced that a trickle loss
beyond the normal holdup has occurred.

In Figure 5, /?(1), /3(2),..., etc., denote the amount of possible but
unknown block losses during their respective time periods. The amount of
possible but unknown trickle losses are denoted by r(l), r(2),..., etc. In our
approach, we shall have two models: one model for block loss, say Λfg, and one
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model for trickle loss, say Mj*. We believe that model Mβ holds with probability
p(MB) and model Mτ with probability 1 - p(Mβ). Given data /?, p(Mβ\D) is our
updated probability for the block loss model Mβ. If our updated probability for
the block loss model is too high, then we will decide to investigate the possibility
of a block loss. A decision regarding possible trickle loss, on the other hand, is
based on the probability that loss beyond the normally expected holdup has
occurred over several time periods; i.e.

P{τ(l) + ... + τ(t) > c\D}

where c is the normally expected holdup over t time periods. Thus, as indicated
in Figure 5, our decision sequence is the customary one; at each time period we
either decide that a

β(0

Block
loss

No Block Loss

Possible Trickle Loss

Stop
and
Investigate No Block Loss

Possible Trickle Loss

Stop

Figure 5 Diagram of possible decision sequences relative to diversion of special
nuclear material

substantial block loss has occurred in the most recent period, that an unusually
large trickle loss has been occurring in the past few periods, or that no block loss
is likely to have occurred and that trickle loss is within acceptable limits. Our
decision procedure does not formally permit the conclusion that a block loss has
occurred other than within the most recent period, but it is shown that certain
trickle alarms indicate the presence of an undetected block loss in some past
period.

In order to clearly illustrate the salient features of these models, consider
the simplified model (1) with only one measurement each period. At time t, θ{ί)
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is the quantity of interest, but we can only observe y(t). We assume that all
variables in (1) are normally distributed.

The simplified trickle model Mτ is:

v(t),

- r(<) + we(i), (2)

τ(i) = r(ί-l) + wΰ(t).

The simplified Kalman filter block model MB is:

y(i) = θ(i) - β(t) + <*),

θ(t) = θ(i-l) - τ(t) + wθ{i), (3)

r(t) = τ(t-l) + wθ(t).

For the MB model, assume that /?(0) is also normally distributed.
The values of distribution parameters, even in our simplest model, must

be carefully set. Too little initial uncertainty about possible trickle loss may
make the model surprisingly unresponsive to large unexpected losses. A set of
distribution parameters can be entirely self-consistent, seem on casual inspection
quite sensible, and still produce undesirable behavior of the detection procedure.
Thus distribution parameters should not be set arbitrarily or casually, but only
after a careful assessment of process and loss uncertainties which takes into
account the effect of the parameters on the resulting decision procedure.

The compound Kalman filter model provides a detection process which
can compete with currently popular methods. Large block losses are detected
handily, while somewhat smaller block losses are often detected later by the
trickle model. Trickle losses consistently in excess of the expected holdup are
detected rapidly, and smaller trickle losses are detected as the total amount of
trickle loss becomes large.

With standard quality control methods, decisions must be made with a
test of fixed significance level; otherwise, the frequentist interpretation of the test
does not hold. Since we are dealing with probability distributions, we are not
limited to setting a critical threshold and a critical probability. In fact,
simulations indicate that it is best to take into account all the information given
by the posterior probabilities. The results of a single hypothesis test, although a
convenient summary, may be misleading. The user of these methods is
encouraged to examine the probabilities of multiple critical regions, something
which is not possible with standard quality control methods.
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