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CONDITIONAL INFERENCE FROM CONFIDENCE SETS
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Abstract

Ideas of inference using conditional confidence have grown out of many
different schools of statistical thought. The development of these ideas is traced,
starting with some original ideas of Fisher. The influence of other researchers,
such as Basu and Buehler, is also discussed. The development is traced to the
present, through the work of Pierce and Robinson, to current work in conditional
inference.

Introduction

The development of conditional inference, in particular that based on
confidence sets, has followed many paths. There are now several inferential
methods that use this name. For example, the likelihood based methods of
Hinkley (1980), or Cox and Reid (1987), are conditional inference methods. The
attempt of Kiefer (1977), to merge conditional ideas with frequentist theory is
also conditional inference.

The one common factor in the different conditional inferences is the
requirement of reasonable (coherent) post-data inference. That is, inferential
statements made after the data have been seen should have some logical
consistency. Another approach to conditional inference, one that gained structure
through the work of Buehler (1959) and Robinson (1979a,b), provides an
objective framework for assessing post-data validity. It is this version of
conditional inference, based on confidence sets, on which we will concentrate.

The different versions of conditional inference have a common origin in
ideas of Fisher. These ideas of Fisher are somewhat intuitive, and leave some
gaps in development (but not to Fisher!). The origins in Fisher were later refined
by Basu, who relied on ideas of Bayesian inference to close any gaps. This is
where our review begins.

1. The seeds of conditional inference

Many influential ideas in statistics can be attributed to Sir Ronald
Fisher. One of the most elusive, perhaps, is that of conditional inference. In
Fisher (1959, page 78) we find the ideas of a reference set:
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In attempting to identify a test of significance with a test for
acceptance, one of the deepest dissimilarities lies in the population,
or reference set, available for making statements of probability.

Interpreting Fisher, we find that he is concerned with the range of the
inferences, that is, with the set in the population to which the inference should
apply. In this sense, he is concerned with conditional inference, inference
conditional on some subset of the sample space. The exact nature of his concern
is not, at first, clear. It does emerge in some later statements, again from Fisher
(1959, page 81). In talking of inference from Student's t distribution, he says

The reference set for which this probability statement holds is that
of the values of μ, ~x and s corresponding to the same sample
there is no possibility of recognizing any subset of cases ••• for
which any different value of the probability should hold, (my
italics)

In this statement we see one of the keystones of conditional inference.
There should not be a subset of the sample space (a recognizable subset) on
which the inference from a procedure can be substantially altered. If such subsets
exist, then inference from the procedure is suspect.

If such a recognizable subset existed, then Fisher would no doubt find it,
however, there does not seem to be any general methodology used. Although
ideas of estimating and eliminating nuisance parameters are used, and also ideas
of ancillarity are used, no general scheme is defined.

One famous example is Fisher's criticism of Welch's solution to the
Behrens-Fisher problem. If lrt , sf, i = 1,2, are the sample mean and variance
from samples of size n from independent normal populations with unknown
parameters μi and σ?, Fisher (1956) derived the following fact. Under the
hypothesis Ho: μ1=zμ2, for any value ί,

> i I Sj = Si )= P(\ Γ 2 ( n_ 1 } | > rt), (1)

where T^ίn-D ^ i a s Student's i distribution with 2(n-l) degrees of freedom, and r
is an unknown parameter satisfying 0 < r < 1. Thus, conditional on Sx = 52,

the random variable N^|^ 1-^ 2l/>J' 5i+ 52 i s stochastically greater than |T2^w_χj |.

Fisher used this fact to show that Welch's solution suffered from the property
that the probability of rejecting a true Ho, given that 5^ = S\, was bounded
below by the nominal level. Thus, on the recognizable subset {(s\,s%): s\ = s2}>
Welch's solution has an actual error rate greater than the nominal level.

This conditional behavior would be even more disturbing if the set
{(svs2): sί — s\} *s taken as a reference set, i.e., a set on which the conditional
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inference should be applied. Fisher's argument for conditioning on this set, or
more generally on the ratio s\/s\, is elusive. The fact that Fisher considers this a
reasonable reference set appears again in Fisher (1959), where he discusses his
solution to the Behrens-Fisher problem.

The fact remains, however, that the mechanism of choice of a reference
set is elusive. Although concepts of ancillarity and elimination of nuisance para-
meters are considered, a general mechanism for choosing a conditional reference
set is not known.

2. Basil's refinement

In doing conditional, or post-data, inference the evidential meaning of
the inference becomes increasingly important. Fisher's idea of a reference set has
some meaning, i.e., it defines a part of the sample space on which inference is to
be restricted. On the other hand, the connotation of a recognizable set does not
carry this distinction.

A recognizable set is only a set that is in the sample space, and may give
no meaningful inference base. Poor conditional (post-data) performance of a
procedure on a recognizable set is taken as criticism, but if this recognizable set is
not a meaningful reference set, then the criticism may be vacuous.

Fisher had the intuition to choose recognizable subsets that were also
meaningful reference sets. Thus, when he leveled criticism (or praise) of the
conditional performance of a procedure using a particular recognizable set, this
set was also a meaningful reference set. One of the major clues left to us by
Fisher, on how to chose these reference sets, is that they should use ancillary
information.

Alas, many of us are not possessed with Fisher's intuition in choosing
reference sets. When Basu started to think about this, he realized that basing
conditioning sets on ancillary information was not, in itself, a reasonable
technique in general. In Basu (1964, page 17, Statistical Information), he says

The ancillary argument of Fisher cannot be extended . We end
this discourse with an example where ••• the ancillary argument
leads us to a rather curious and totally unacceptable 'reference
set'.

Basu then gives an example to illustrate his point. The point that we
should be concerned with is that the choice of the reference set is not automatic.
Of course, Basu does not give us a recipe for choosing a reference set, but rather
argues that the only reasonable procedures are free of conditional defects.

3. Conditional and unconditional inference

Inference made conditional on the data must, necessarily, connect a
statement about the unknown parameters to the data actually observed. This
fact separates conditional confidence inference from unconditional, or pre-data,
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confidence inference. This latter inference, that of the frequentist (Neyman-
Pearson) school, need not apply in any way, to the data at hand. A frequentist
inference merely states how the procedure will perform in repeated trials, even if
such a statement is ludicrous in the face of the observed data.

This dichotomy, between conditional and unconditional inference, most
often results in a statistician choosing one stand and rejecting the other. Fisher
rejected unconditional inference in favor of conditional. Basu, although starting
in the Neyman-Pearson camp, ultimately rejected unconditional inference in favor
of Bayesian conditional inference. Indeed, perhaps Basu stated his belief most
elegantly in Basu (1981, page 173, Statistical Information)

With Eχ as the (Neyman-Pearson) confidence set corresponding to
the observed sample z, can any evidential meaning be attached to
the assertion 0 G Eχ? Suppose on the basis of sample X one can
construct a 95% confidence interval estimator for the parameter 0,
then does it mean that (the random variable) X has information
on 0 in some sense?

Of course, Basu gave examples of 95% Neyman-Pearson confidence
intervals with no information at all about 0. For example, if 0 G [0,1], and
X ~ ί7(0,l) (X is 0-free), then for any fixed set B C (0,1), the set

B if 0 < X < .05

(0,1) if 0.5 < X < .95

5 s if .95 < X < 1

is a 95% unconditional confidence set for 0. But, of course, we cannot attach any
evidential meaning to the statement W0 G Eχ? (We note, in passing,
that the conditional behavior of this set is wretched. For example,
P(0 G Ex\0 < X < .05) = P(0 G B) and P(0 G EJ.95 < X < 1) =
P(0 G B°). One of these two probabilities must be smaller than .95.
Further, P(0 G Eχ\.O5 < X < .95J = 1, showing that the post-data inference
can be moved all over.)

As we trace the development of conditional inference, we will see that
Basu's teachings are there. Many papers take the approach of verifying good
conditional properties by verifying Bayesianity. However, this might be a case
where some good can come out of greed. Why should we be satisfied with only
good post-data behavior or good pre-data behavior? Why can't we try for both?
The answer is that we can not only try for both, we can sometimes attain it.
The procedures that do can be acclaimed by both camps - conditional and
unconditional.
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Formalizing Conditional Inference

The work of Buehler (1959) was a landmark attempt in examining post-
data validity of Neyman-Pearson procedures. Buehler's work is pioneering for
two reasons. One, he examined post-data behavior of frequency based rules (not
necessarily Bayes rules) and two, he developed criteria for carrying out this
evaluation in an objective manner. Buehler's work was based on other seminal
ideas of Tukey (1958) and Stein (1961), and was ultimately generalized and
formalized by Robinson (1979a,b). We briefly describe Robinson's set-up.

The random variable X has density j{x \ θ) and, based on observing
X = x, a confidence procedure < C(x),y(x) > is constructed. A confidence pro-
cedure consists of a set C(x) and a probability assertion y(x). The validity of
j(x) as a confidence assertion is measured by the ability of < (C(x),y(x) > to
maintain its confidence even when evaluated conditionally. To be specific, we
consider j(x) to be an evaluation of the coverage properties of C(x) in the sense
that

EΘl(X) « PΘ(θ G φ θ ) . (2)

Suppose now that a recognizable subset, A, of the sample space, and an c > 0
exists such that

Eθ(y(X)\Xe A) - Pθ(θ e C(X)\X G A) > e . V0 (3)

Then, we have qualitatively changed the confidence behavior. On the set A, our
conditional assertion is suspect: The asserted probability, y(x), is, on the
average, uniformly greater than the actual conditional coverage.

In Robinson's terminology, (3) is a special case of a relevant betting
function, defined as follows:

Definition 1: A function k(x), -1 < k(x) < 1 is relevant for
< C(x),Ί{x) > if

Ee {( I(θ G C(X) - 7(X)) k(X)} > eEθ\k(X)\ (4)

for all θ and some e > 0. If e = 0, k(x) is semirelevant.
For statistical purposes, the most interesting forms of functions k(x) are

indicator functions. Such functions reduce (4) to forms like (3), and allow
interpretations in terms of conditional coverage probabilities. If k(x) < 0 is
relevant, it is called negatively biased. If k(x) = -I(X G A) then (4) would reduce
to (3). Positively-biased sets can similarly be defined. In the previously men-
tioned criticism by Fisher of Welch's solution to the Behrens-Fisher problem,
Fisher identified a negatively-biased relevant subset.

Buehler and Fedderson (1963) identify, in a special case, a positively-
biased relevant subset for the one-sample t interval (they also attribute a similar
result to Stein, 1961). Later, Brown (1967) generalized this result to any one-
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sample t interval. For a random sample Xv ;Xn from n(μ,σ2), Brown identi-
fied constants K and e so that

l{μ e X ± iS\ \X\ I S < if) > 1-αr + e Vμ,σ2 , (5)

where t is the cutoff yielding a nominal 1-ct interval. This can be interpreted as
saying that the conditional coverage of the t interval, after accepting H0:μ = 0, is
uniformly greater than the nominal level.

Identification of semirelevant subsets is less interesting than identification
of relevant subsets, as most procedures with a frequentist guarantee will allow
them. For example, from (5) we can deduce

P(μ e X ± tS\ I X\/ S > uf) < 1-α Vμ,σ2 , (6)

identifying a negatively-biased semirelevant set for the t interval. However,
Robinson (1976) showed that the t interval allows no negatively biased relevant
sets. This led him to conclude that elimination of negatively-biased semirelevant
sets was too strong a conditional criterion, but elimination of negatively-biased
relevant sets was about right. (The elimination of positively biased sets is of
lesser concern, as this corresponds to being conservative. However, note there are
situations when this direction of error can be important.)

An interesting set of papers are those by Olshen (1973), and Scheffe
(1977) with a rejoinder by Olshen (1977). In the 1973 paper, Olshen established
a result like (6) for the Scheffe multiple comparisons procedure. Specifically,
Olshen showed that the conditional coverage of the Scheffe procedure, given that
the ANOVA F test rejects iΓ0, is less than or equal to the nominal level. Thus,
Olshen generalized Brown (1967) in one direction, identifying a negatively biased
semirelevant set for the Scheffe intervals. Scheffe took exception to this criticism,
and answered Olshen in the 1977 article.

The connection between Bayes sets and conditional performance is very
strong, as shown by Pierce (1973) and Robinson (1979a). If π(θ) is a proper
prior, and we define the pair < C7Γ(x),γ7Γ(x) > by

7 * ( * ) = / π(θ\x)dθ, (7)

where π(θ \ x) = f(x\ θ)π(θ)/$j{x\ θ)π(θ)dθ, then no semirelevant functions exist
for < C*(z),y*(x) > . Thus, proper Bayes procedures have the strongest possible
conditional properties.

Although the connection between Bayesianity and conditional perform-
ance is very strong, the exact link has not yet been established. That is,
necessary and sufficient conditions for elimination of relevant, or semirelevant,
functions have not yet been established. Although the work of Pierce and
Robinson, and also Bondar (1977), establishes links between (possibly improper)
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Bayes procedures and nonexistence of relevant sets, the ultimate theorem, giving
a necessary and sufficient condition, is still not known. The answer, although
still unproven due to mathematical technicalities, seems to be that elimination of
relevant functions will occur if and only if the procedure is a limit of Bayes rules.
Another step in establishing this connection was taken by Casella and Robert
(1988), but the full answer remains an open question in the conditional inference
literature.

Frequentist Conditional Inference

Although proper Bayes rules have strong conditional properties they do
not, in general, have good frequentist properties. Even Bayes rules based on "flat
priors", such as a Cauchy, which may exhibit some acceptable frequentist per-
formance, cannot maintain a frequentist confidence guarantee. This is a property
shared by Bayes credible sets based on proper prior distributions (Hwang and
Casella, 1988). However, limits of Bayes rules, or generalized Bayes rules, can
maintain a frequentist guarantee, and such procedures may also have acceptable
conditional properties. It is within this class that we can find procedures that
have acceptable frequentist (or pre-data) properties and acceptable conditional
(or post-data) properties.

A confidence set, C(x), is a 1-α frequentist confidence procedure for a
parameter θ if

e C(X)} > 1-α for all θ , (8)

that is, the unconditional coverage probability of C(x) is at least 1-α. Of course,
this pre-data guarantee says nothing of the conditional performance of the
procedure < C(x)1l-a > . Robinson was able to establish conditional properties
for several frequentist procedures by using the fact that they are limits of Bayes
rules. In particular, his results for the ^-interval (Robinson, 1976) rely on this
fact. Other results (Robinson, 1979b) for frequentist intervals for location or
scale families also use arguments based on limiting Bayesianity. Most condi-
tional properties of limits of Bayes rules deal with relevant, rather than
semirelevant, functions, and the existence of e > 0 becomes important in the
limit. However, for certain procedures from location families, Robinson (1979b)
established the nonexistence of semirelevant functions. In particular, if
X ~ j{x-θ), then the procedure

< [a?-c,aH-c], 1-α > ,

(9)
1-α = / f{t)dt,

— c

is a 1-α frequentist confidence procedure that allows no semirelevant functions.
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Using different arguments based on in variance, Bondar (1977) established
conditional properties of invariant frequentist sets.

The issue that is at the heart of the frequentist/conditional dichotomy is
the assignment of a confidence function to a set C(x). For example, for any set
C(ar), where X ~ J{x | 0), if we define j(x) by

S

θ

where π(θ) is a proper prior, then the procedure < C(x),y(x) > is free of
semirelevant sets. However, if C(x) is also a 1-α frequentist confidence
procedure, this argument does not imply any conditional properties of
< C(x),l-α > . Thus, this type of consideration leads to two questions:

i) Is < C(x),y(x) > a reasonable frequentist procedure?

(11)
ii) Is < C(x),l-a > a reasonable conditional procedure?

Since the work of Robinson, and the others, in the 1970s there has been
some progress made on the questions in (11). In Casella (1987) it was argued
that, with some regularity conditions, a sufficient condition for the frequentist
procedure < C(z),l-α > to be conditionally acceptable is the existence of a
(possibly improper) prior π(θ) such that

Jr( Λx\θ)π{θ)dθ

If (12) is satisfied, then the procedure < C(x)1l-a > allows no negatively biased
relevant sets, which is acceptable conditional performance. Furthermore, it was
demonstrated that such a property held for the multivariate normal confidence
set centered at the positive-part James-Stein estimator. Specifically, if
X ~ N(Θ,Γ), a jp-variate normal random variable (p > 3), then the confidence
procedure < Cβ(x)1l-a > allows no negatively-biased relevant sets, where

Cδ(x)=:{θ:\θ-δ(x)\ < c},6(x) = \l-f^

f{χ2

p < c) = 1-α

Such a conditional inference strategy was also promoted in Casella (1988),
and some other procedures were also examined. In discussing this paper, a
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number of alternate strategies were put forth. For example, Berger (1988) advo-
cates an "estimated confidence" approach, where the procedure < C{x)^(x) >
would be considered frequency valid if

EΘΊ{x) < Pj[θ G C(x)), for all θ , (13)

i.e., on the average, the confidence assertion is conservative. Lu and Berger
(1989a, b) have applied these ideas to Stein-type problems. Most recently,
Brown and Hwang (1989) have shown that for the confidence set [r-c,aH-c], where
X = x is an observation from f(x-θ), the confidence procedure < [x-c,x+c],l-a >
is admissible, where ί-a = / _cf(t)dt The admissibility is with respect to the
class of confidence procedures < [x-c,x+c],y(x) > (fixed c), where j(x) satisfies
E$l(x) < l~α (frequentist validity) and the loss function is Lc(θ,y(x)) =
(j(x)-I(θe[x-c,x+c])γ.

Another alternate strategy was described by Lindsay (1988), who
suggested attaching both a frequentist and conditional confidence to a given set
C(x). Although this is a sensible approach, it is probably the case that
practitioners are more comfortable with one number for a confidence assertion.
Thus, this reasonable solution might not find acceptability in practice.

Returning to the questions posed in (11), we might now ask what is the
reasonable requirement for the confidence assertion to be attached to C(x).
Considering the theories of relevant sets, and how confidence sets are used by
practitioners, the following strategy seems most reasonable. For a set C(x),
assert confidence γ(x) where γ(x) satisfies (10) for some (possibly improper) prior
π(0). This strategy assures us that < C(x),y(x) > is conditionally acceptable.
Moreover, we require that *y(x) be valid as a measure of frequentist confidence.
Ideally, we would require that 7(2;) satisfy (12), which not only renders
< C(x),y(x) > frequency valid, but also yields the conditional acceptability of
< C(a;),l-α > . However, condition (12) may not always be attainable and, in

such a case, we would settle for y(x) satisfying a condition such as (13). This
would give some frequentist acceptability to the procedure < C(x),y(x) > .

If neither condition (12) nor condition (13) can be attained by a 7(2:)
satisfying (10), then frequentist acceptability may have to be compromised. The
frequentist guarantee of the procedure < C(x),y(x) > may then be based on
quantities such as Eθy(X)1 miriβEβ^X), or minxy(x) (as long as these last two
quantities are positive). The point should be clear. A guaranteed legitimate
conditional inference is of primary importance. After that, the frequentist
guarantee should be arrived at in some reasonable manner.

These ideas have been investigated, in different forms, by Maatta and
Casella (1987), Goutis, Casella and Maatta (1989), Goutis and Casella (1989) for
estimating a normal variance, and Hwang and Casella (1988) for estimation of a
normal mean.
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Discussion

The ideas behind conditional inference are deep, and here we have
superficially sketched one line of work stemming from the developments of Fisher
and Basu. There are many ideas in their work, both implicit and explicit, that
have not been mentioned. (For example, Basu is an advocate of the Likelihood
Principle; and recent work by Casella and Robert, 1988, suggest that violation of
this principle immediately leads to the existence of relevant sets.) However, the
ideas of conditional inference play an important role in statistics.

Although it might be argued that searching for relevant sets is an
occupation only for the theoretical statistician, we must remember that practi-
tioners are going to make conditional (post-data) inferences. Thus, we must be
able to assure the user that any inference made, either pre-data or post-data,
possesses some definite measure of validity.
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