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We investigate the approximation of stochastic depen-
dence by functional relationships involving so-called cyclic
permutations of the interval.

1. Introduction. Dependence between two random variables can take, of
course, a variety of forms, of which stochastic independence and functional depen-
dence can be argued to be most opposite in character. In the one case, neither
variable provides any information about the other, whereas in the second case there
is complete determination (or complete dependence: Lancaster, 1963). By means of
a direct construction for uniform variables, Kimeldorf and Sampson (1978) showed,
however, that one can pass continuously from one to the other of these situations
in the natural sense of weak convergence. This obviously weakens complete de-
pendence as a foil for independence (and led Kimeldorf and Sampson, 1978, to the
fruitful concept of monotone dependence). Indeed, couched in somewhat differ-
ent language, Theorem 1 of Brown (1966) can be read to state that any form of
dependence between uniform random variables can be approximated in the weak
sense by functionally related random variables.

On the other hand, this raises the question, of theoretical and obvious com-
putational interest, of the extent to which complete dependence can be used to
approximate forms of stochastic dependence. We pursue this in several directions.
First we show that functional dependence can be specified to a highly stylized class
of invertible functions, the so-called cyclic permutations of the interval. Second, we
show that it is possible to move from two to an arbitrary finite number of random
variables. Finally we extend to arbitrary (continuous) marginals. Regarding the
last point, we systematically take the viewpoint of fixing marginals and consider
dependence within this constraint; for the narrower question of regression in this
context, see Vitale and Pipkin (1976) and Vitale (1979). We make extensive use of
the uniform representation of random variables (Kimeldorf and Sampson, 1975).
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In the next section, we set out some definitions and make some preliminary
comments. Theorem 1 of Section 3 states that any pair of uniform random variables
can be approximated in distribution by a second pair which exhibits (invertible)
functional dependence. Although Theorem 2 of Section 5 strictly includes this re-
sult, we present a proof in detail to give an idea of what the hands-on analysis looks
like and, in particular, to present a version of the construction of Brown (1966).
The interested reader may like to compare Theorem 1 to results of Garsia (1976)
and Holbrook (1981) which give exact, but generally non-invertible, relationships
in the case of an independent pair of random variables. Section 4 contains remarks
on Theorem 1. Using an approach that differs from those of both Brown (1966)
and Kimeldorf and Sampson (1978), Section 5 takes up the general case of approx-
imating a collection of random variables with continuous marginals but otherwise
arbitrary joint distribution. Section 6 relates the foregoing to the extremal distri-
butions of Hoeffding. Discrete approximating distributions occupy Section 7, and
a result of Fairley, Pearl, and Verducci (1987) is sharpened in Section 8. Section
9 concludes with a construction of a canonical sequence (Lai and Robbins, 1976,
1978) which is degenerate in a stronger sense than previous examples.

2 Notation and Preliminaries. We shall deal with Borel maps of the line
(or the interval) equipped with Lebesgue measure m( ). A Borel map T from the
interval to itself such that m(T"1(j0)) = m(B) for any Borel B will be called
measure-preserving and the entire collection denoted T. Within T, we consider the
class T j n v of measure-preserving maps T which are invertible, i.e., T is 1 — 1 and
T " 1 is Borel and measure-preserving as well.

An interval of the form ((j — l)/n, j /n) f°Γ some n > 1 and 1 < j < n
will be called a dyadic interval of rank n. Among invertible measure-preserving
maps, we call T a permutation of rank n if it maps by a translation each dyadic
interval of rank n onto a dyadic interval of rank n. This specifies T except for its
values at the end-points of the subintervals; we allow these values to be assigned
in any way that makes T one-to-one. We shall also refer to usual permutations
π : {l,...,n} —• {l,...,rc}, but there should be no confusion. Recall that π is
cyclic if it has a single closed cycle (i.e., of length n, which need not be traversed
in the natural order). We call a permutation T cyclic, and denote the entire class
by Tcyc, if as a map of dyadic intervals it similarly has a single cycle. Our aim in
focusing on the last class of maps is two-fold. One is to produce a simple universal
model for (approximate) dependence among random variables; the second is to
prepare the way for future work of a computational nature (see Section 7). These
definitions are drawn from Halmos (1956) to which we refer later.

The following is standard.

PROPOSITION 2.1. Suppose that {Eu..., Ek} is a Borel partition of [0,1] and
that δ > 0 is given. There is a partition {Fu..., Fk} of [0,1] in which each F{ is a
finite union of intervals, τn(Fi) = m(Ei), and m(EiAFi) < 6, i = 1,..., fc. (Here
Δ denotes symmetric difference.)
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3. Dependence in the Square.

THEOREM 1. Let U and V be uniformly distributed variables. There is a
sequence of cyclic permutations ϊ i ,T2, . . . such that (U,TnU) converges in distri-
bution to (U,V) as n —• oo.

PROOF. The proof consists of two parts. First we divide [0,1] x [0,1] into
subsquares and adapt an argument of Brown (1966) to find a permutation T such
that the distributions of (U,V) and (U,TU) coincide on subsquares. If T is not a
cyclic permutation, then we proceed to find such an approximation to it; for this,
Halmos (1956, p. 56) would suffice, but we supply a direct proof for completeness.
Finally, we note that reducing the size of the sub-squares finishes the proof.

PART ONE. Let n, a power of 2, be fixed, and let Ij = ((j — l)/n,j/n),
j = 1,..., n. We first produce a Tε T j n v such that

(1) P(UεIi9TUεIk) = P{UεIά, Vεlk) = pjk, j , * = 1,...,n.

Define two systems of subintervals

Ij2 = (i—^+Pjui—l+Pji+Pji) l<j<
\ n n J

j . n = ( j ~ l | P i x i . . . \pin.lijj

and

f (i~lA. ί^lj. Λ. λ
i ?*2 — I i Plj ? T Plj ~Γ P2j I

\ n n J

ίj - 1 λ
TJn = + Plj + + Pn-ljJ/n j

\ n /
Note that there is a coincidence of Lebesgue measure, m(Ijk) = m(/jtj). The
invertible map T which sends each Ijk onto ϊjk, j,k = 1,..., N by a translation is
what we need (a pencil sketch will help to see this).

Observe that if each pjk is a dyadic rational, then T is a permutation of the
interval. If not, we approximate: given ε > 0, find dyadic rationale pjk such that

(2) \Pjk-Pjk \<ε9 j,k= l , . . . , n
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under the constraints (for eventual uniform marginals)

(3)

and

(4)
A : = l

This is a tricky problem to solve directly, but it yields to an appeal to Birkhoff's
(1946) theorem (see, for example, Roberts and Varberg, 1973): if P is the n x n
matrix with (j, k) entry pj^y then it can be written as a convex combination of
permutation matrices

p = Σ>π< " W = [JΊi* = Σ>[π ( t )]; f c.
1=1 t = l

Now the 0t 's can be varied at will (subject to 0t > 0 and J2?Li ®% = 1) &nd
the constraints (3), (4) will still hold. Accordingly, find dyadic rationale 0t , i =
1,..., n, so that 0; > 0 and | θi - θi |< ε/n!, i = 1,..., n\. It follows that for each

is within ε of pjk, and the marginal constraints are satisfied. With this done, we
proceed as before to get a permutation T which satisfies

(5) I P(UεIJ9VεIk) - P(UεIJ9TUeIk) \< e, j,k = 1,.. .,n.

PART TWO. We next want to arrange for a cyclic permutation. Note that if
f is a permutation of rank JY, then it is also a permutation of rank N for any
N > N. We exploit this by choosing JV" very large and modifying T on a small
number of dyadic intervals of rank N. More precisely, given ε > 0, we shall find a

cyclic permutation T such that

(6) PifUεljiTfelA + PifU/tljtfVεlAKε, j = l,...,n.

The details follow, but first we must modify T so as to leave no dyadic interval
invariant. Suppose that T leaves (0,k/2N) invariant (i.e., it acts as the identity).
Then redefine f on this interval to be fx = x + r mod k/2N for some small dyadic
rational r. A similar procedure can be done for other invariant intervals. It is clear

that the new T can be constructed so as to satisfy (6) in place of T and with ε
replaced by, say, 2ε.
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Assume that this adjustment has been done and the modified function is f.
For ease of notation, we retain N as the rank of f. Suppose that f has p cycles
of length Λi,Λ2,...,Λp (p < 2AΓ"1 since each cycle contains at least two inter-
vals). If we instead consider f as of rank N > JV, then it has p cycles of length
h12*-N,h22*-N,...Jhp2*-N.

We snip these cycles and patch them together. In cycle # 1 , choose one of the
h\2N~N intervals to be the "out-interval" and its image under f to be the "in-
interval." Now define Γ on in- and out-intervals so that it maps the out-interval of
cycle # j onto the in-interval of cycle # j + 1, j = 1,... ,p - 1, and the out-interval

of cycle #p onto the in-interval of cycle # 1 . The resulting permutation T is cyclic

and differs from f on at most a set of measure p2~^. It follows that, with N

suitably large, (6) holds as does (5) with T, ε replaced by T, 2ε respectively.

Finally, we note that the required sequence {Tn} is obtained by effecting the

construction for T for successive values n = 1,2,4,8,..., 2J',... so that (5) and (6)
are satisfied with ε = εn = o(l/n2) at each step.

4. Discussion. Especially in the case when U and V are independent, Theo-
rem 1 calls for some explanation. How is it possible, after all, to arrive at a limiting
pair of independent variables when at each stage the components of each approx-
imating pair stand in an invertible, functional relationship to one another? We
refer the reader to the discussion of Kimeldorf and Sampson (1978) and provide
some other remarks here.

One ingredient which might be questioned is the mode of convergence. Conver-
gence in distribution may be insufficiently stringent. If, for instance, convergence
in the variation metric is substituted then the theorem obviously fails. On the
other hand, so important a mode as convergence in distribution ought not to be
easily dismissed. It is after all central to questions of sampling. In this context,
given any sample (i^ , vt ), i = 1,..., N in the square with the u^s distinct there is a
Tε T j n v which fully "explains" the sample in the sense that Tu{ — v;, i = 1,..., N.

This leads to a related comment. Granted that the components of each approx-
imating pair stand in a functional relationship to one another, the function itself
may be so wild that in practical terms it is not feasible as a predictive device. That
is, small errors in U may lead to large errors in TnU. To combat this, one may
try to refine the process. But this seems to butt up against an inevitable problem
of computational complexity. In this sense, Tn cannot be used for prediction in
any meaningful way. A possible rejoinder to these comments is that rather than
using Tn point wise one should smooth it slightly so as to get, in effect, a smoothed
regression function. We take up an aspect of regression in a later section.

A different, and provocative, comment has been offered by M. Klass. As we
have said, the puzzling note is that the theorem makes an asymptotic statement in
which there is an abrupt change of behavior at the limit. This type of phenomenon
often occurs when one is dealing with a "large" space where there is flexibility for
discontinuous behavior to occur. The key here is the roominess of [0,1]. A smaller
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domain, or what is the same, random variables with "fewer" values illustrates
the point. Take, for instance, U and V to be independent, p = 1/2, Bernoulli
variables. Then the analogous theorem fails. It is clear that there is no sequence,
convergent in distribution to (Uy F), of pairs (U,TnU) where Tn : {0,1} —• {0,1}.
This is true more generally for any pair of discrete random variables which are not
already in a relationship of functional dependence. The case of random variables U
and V", each uniformly distributed on {1,2,..., JV}, but with otherwise arbitrary
joint distribution, is interesting to consider. There is generally no approximating
(ί7, Tnf/), as we have said, but we are always within a randomization of matching
the joint distribution exactly. Consider that BirkhofF's theorem provides a set
{Πi,..., Π M } of permutations of {1,..., N} and probabilities 0χ,..., ΘM, θi > 0,
Σθi = 1 such that if X is chosen at random in {1,2, ...,JV} and if J is chosen
equal to j with probability θjy j = 1,..., M, then the pair (ί7, Π?ί7) is distributed
like (U,V).

5. General Form. Theorem 1 can be generalized in two ways: relaxation
of the condition of uniform marginals and, what we take up first, treatment of an
arbitrary number of uniform random variables. This generalizes Theorem 1; now
we take some shortcuts in the proof.

THEOREM 2. Let Uij...,Udbeα collection of uniform random variables. There
is a sequence of vectors converging in distribution to (£/χ,..., Ud) of the form
( I W , T2U,..., TdU) where U is uniform and T Ί , . . . , Td are cyclic permutations.

PROOF. It is well-known that there are SΊ, £2,...,SdS T such that (5Ί/7,
. . . , SdU) is distributed like (t/i,. . ., Ud) (see, for example, Billingsley, 1971, The-
orem 3.2).

We proceed to approximate each Si by an invertible map. Consider 5χ. Let
Ej = 5'Γ1(0 ~" l)/n>i/n)> 3 — lj >n Proposition 2.1 provides a partition
{Fi,.. .,-Fn} (each Fj a finite union of intervals) such that m(EjAFj) < δ. Create
§1 by taking a 1 — 1 piecewise linear map of the interior of Fj onto ((j — l)/n, j/n),
j = 1,..., n. If max{£, 1/n} is small, then S\U is close to S\U in probability. Since
§1 is invertible, Halmos (1956, p. 65) applies and ensures a cyclic permutation T\
such that T\U is close to S\U, and, from our construction, to S\U in probability.
Proceeding similarly for £2, S3,..., Sn completes the argument.

COROLLARY. The approximating random vectors in the theorem may also be
taken of the form (U, T2U, T3U,..., TdU) where T2, f3,..., fd are cyclic permuta-
tions.

PROOF. (T1U,T2U,...,TdU) = (UJT2Tΐ1UJ...JTdTϊ1U) and define fά =
TjT^1, j = 2,.. .,d. If Tj is a cyclic permutation, then set fj = fj. Otherwise,
let fj be a cyclic permutation such that fjU and fjU are close in probability as
argued above.

We turn next to our central result, which treats more general marginals. In
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view of the discussion in Section 4, we fix attention on continuous marginals. We
recall a standard definition.

DEFINITION. The INVERSE of a distribution function F is given by F^(u) =
mΐ{x I u < F(x)}.

THEOREM 3. Let Xι,...,Xd be random variables with continuous marginal
distributions Xj ~ Fj, j = l, . . . ,d. There is a sequence of random vectors,
converging in distribution to (J£Ί,..., Xj), of the form

(Fi1(T1U),Fϊ1(T2U),...,Fj1(TdU))

where T\,..., Td are cyclic permutations.

PROOF. Set U\ = F\(X\),.. .yUd = Fd(Xd) &s uniform random variables and
note that

The event (i^~1(ί7i) < # 1 , . . . , irj"1(ί7d) < Xd) is the same (up to an event of proba-
bility zero) as (Z7i < Fχ(xi),..., Ud < Fd(xd)) whose image in [0, l]d is a continuity
set of the joint measure of (t/χ,..., Ud) (e.g., Billingsley, 1971, p. 3). It follows
that if a sequence of random vectors of the form (Tχί7,..., TdU) converges in dis-
tribution to (£/χ,..., Ud), then the same holds for (F1~

1(Γi?7),..., F^fTdU)) and
(-XΊ,..., Xd) = (Ff^ ί/ i ) , . . . , F^^Ud))* Together with Theorem 2 this concludes
the proof.

The variable U serves to parameterize each approximating vector. It can be
removed by observing that if we set Yj = F~x{TjU), then U = TjFj(Yj) a.s. and
hence Yk = Fζ1 oTko TjFj(Yj) a.s. As in the corollary to Theorem 2, Tk o Tj may
be adjusted to be a cyclic permutation.

COROLLARY. The approximating vectors in the theorem may be taken to be of
the form

where T2,..., Td are cyclic permutations.

6. Remarks. It is interesting to link up Theorem 3 with the extremal distri-
butions of Hoeffding (1940) (see also, Frechet, 1951; Whitt, 1976; Tchen, 1980).
They relate to the following question: Among all random vectors (X,Y) with
X ~ F and Y ~ G, when is Cov(X,Y) smallest and largest? (F and G are as-
sumed to yield finite second moments). The answers use T m i n £ T j n v and jΓmaχ£
T j n v respectively:
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and

Thus Theorem 3 can be thought of as embedding the (degenerate) distributions of
Hoeffding in a class dense in the collection of all distributions with the specified
marginals.

An amusing note regarding Theorem 3 is a quick answer to the ancient class-
room problem of displaying a random vector (X, Y) which has normal marginals
but is not bivariate normal (Vitale, 1978). It is enough to take X ~ N(0,1) and
Y = JV-1 oToN(X) where Tε T is anything but T m i n or Γmax, say, Tu = u + 1/2
mod 1.

7. Discretization. While it is true, as discussed before, that Theorem 1 (and
hence Theorem 3) has no general analogue for discrete marginal distributions, the
result itself can be discretized.

THEOREM 4. Suppose that (Xχy.. ,,Xd) is a random vector with continuous
marginals Fι,...,Fd respectively. Then there is a sequence of random vectors
converging in distribution to (XL, . . . ,Xd) of the form

(FΓ\π1(J)/n),...,Fϊ\πd(J)/n)

where n > 1, J is uniform on {1,2,..., n} and Πi , . . . , Π^ are cyclic permutations

PROOF. We adapt the argument of Theorem 3. With the uniform variable
U given, define J via J = j if Uε((j - l)/n,j/n). Also, let Π^(r) = s if Tt
takes the r^ dyadic subinterval onto the s™ dyadic subinterval. It follows that
((Πi( J )/n) , . . . , (Πrf( J)/n)) approximates (Ϊ7i,..., Ud) in distribution and this suf-
fices.

COROLLARY. The approximating vectors may be taken of the form

with n, J, Π2,..., Tίd as given in the theorem.

An interesting special case is that of a Markov chain.

COROLLARY. Let Xi, X2> .. be a discrete time Markov chain in equilibrium
with stationary continuous density F. Then, for any d, {X\,.. ,Xd) can be ap-
proximated in distribution by

with n} J as in the theorem and Π a cyclic permutation of {1,2,..., n}.
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These results suggest a practical method for generating random vectors with
arbitrary dependence structure among components. Aside from evaluation of in-
verse distribution functions and a single uniform variate, all that is needed are the
appropriate permutations of {1,2,..., n}. How these permutations are determined
seems to be an interesting question.

8. The Penalty for Using Linear Regression. In an interesting study,
Fairley, Pearl, and Verducci (1987) look at the penalty incurred using various forms
of constrained regression. In particular, the expected unexplained variation left
from linear prediction can be partitioned into an "intrinsic variation" component
and an "extra-linear variation" component

(7) E(Y - pXf = E(Y - φ{X)f + E(φ(X) - pX)2, φ(X) = E[Y \ X].

They point out that it is of interest to bound the first, η = E(Y-φ(X))2, and note
that it can be seen arbitrarily close to 0 under certain conditions. Their technique
uses data (i.e., point-mass) distributions as approximants. The machinery we have
developed provides a stronger form of their result.

THEOREM 5. Suppose that a biυariate distribution is given with marginals
F and G and correlation p. Then there is another bivariate distribution with
marginals uniformly close to those of the first, correlation arbitrarily close to p,
and for which η = 0.

PROOF. First slightly smooth the given distribution so as to have continuous
marginals and then truncate it to a large rectangle. By the corollary to Theorem
3, the resulting distribution has a degenerate distribution close to it and for which
η = 0.

9. Maximally Dependent Random Variables. Suppose that ΛΊ,X2> >
Xn are independent, identically distributed random variables with common distri-
bution F. They are said to be maximally dependent if

(8) P(Mn >z)

where Mn = max{Xi,.. . ,Xn}. The expression on the right in (8) is clearly the
largest conceivable value for P(Mn > x). The study of maximally dependent
random variables was inaugurated in Lai and Robbins (1976) and continued in Lai
and Robbins (1978). Elaborations and generalizations appear in Tchen (1980) and
Rύschendorf (1981).

An important question is the existence of a canonical sequence; that is, XL,X2>

. . . , (X{ ~ F\/i) such that, for each π, Xi, . . . , Xn are maximally dependent. Lai
and Robbins (1978) establish existence (and non-uniqueness) in the case when F
is continuous (see Tchen, 1980, for the case F discontinuous). They argue that an
application of the inverse distribution function renders it sufficient to consider the
case of uniform variables and then they provide a direct construction. We show
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that it is possible to construct a different canonical sequence in which the joint

distributions completely degenerate in the sense of our foregoing discussion.

PROPOSITION 9.1. There is a canonical sequence I7i, t^j of uniform random
variables such that for each i > 2

(9) Ui = TiUi where Γt ε T j n v is piecewise linear.

P R O O F . We use Lai and Robbins' (1978) observation that a collection Ui,...,Un

of uniform random variables is maximally dependent if and only if Mn is uniformly
distributed on (1 — 1/n, 1).

We proceed by induction. The case n = 1 is trivial. Assume that £7i,..., Un

have been constructed in the form (9). Note that

B = {uε[0,1] I max{u, T 2 u , . . . , Tnu) < 1 - l/(n + 1)}

is a union of intervals and that, by Lai and Robbins' criterion, m(B) = ^~γ.

Construct {7n+i by mapping the interior of B in a piecewise linear manner onto

(1 — ̂ W , l ) . Elsewhere define J7n+i to be piecewise linear so as to be finally

1 — 1 and measure-preserving. It follows that M n +i is uniform on ί l — ~rf?l)

and hence t / i , . . . , {7n+i is a maximally dependent collection.
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