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An intimate relation between Ising and certain dependent
percolation models was discovered some twenty years ago
by Kasteleyn and Fortuin and developed more recently by
Swendsen and Wang. We review this relation and the role
of stochastic domination within it. When the Ising model
is not ferromagnetic (i.e., not positively dependent), the
related percolation model is more complicated but still
of interest.

1. Introduction. Although percolation and more recently Ising models have
been of interest to probabilists and statisticians for some time, they have been
largely unaware of the beautiful and useful relation which exists between the two
types of systems. This relation, originally discovered by Kasteleyn and Fortuin
(1969) was clarified by recent work of Swendsen and Wang (1987) on Ising simu-
lation methods, and further explained by Edwards and Sokal (1988). Our purpose
here is to describe the relation (Section 2), explain how it yields certain stochastic
monotonicity properties (Section 3) of Fortuin (1972) and then mention some ap-
plications due to Aizenman, Chayes, Chayes and Newman (1987, 1988). We also
discuss (Section 5) the situation when one goes beyond the case of ferromagnetic
(i.e., positively dependent) Ising models. It should be noted that most (all?) of
what is presented in this paper satisfies one or more of the following descriptions:
old, already published, known to the experts. For more details related to Sections
3 and 4 (and much of Section 2), see Aizenman, Chayes, Chayes and Newman
(1988).

2. Random Colored Graphs - Positively Dependent Case. Let A be a
finite set of sites (or vertices) and B the corresponding set of all bonds (or edges);
i.e., B is the set of pairs b = {#, y} of sites. (For many applications A is a subset of
some regular d-dimensional lattice, say Zrf, and one takes A f Zd.) We will consider
bond random variables n& taking values 0 or 1 and site random variables Tx taking
values in {!,•••,?}. The π&'s define a random graph with vertex set A in which
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a bond 6 is occupied (i.e., the edge 6 occurs) when nb = 1; connected components
of the graph are called clusters. The Tx's define a coloring of the sites from a set
of q allowed colors. Our focus throughout this paper will be on certain natural
randomly colored random graphs and on the corresponding marginal distributions
of the Tx's alone and the n&'s alone. The colorings we consider will always be
symmetric (i.e., the joint distribution will be invariant under exchanges of colors)
but clearly generalizations to nonsymmetric situations are possible. Another type
of generalization we will avoid (but which can be made in order to deal with Ising
models with other than "pair interactions") is to consider, in addition to edges,
randomly occupied faces, etc.

We begin by simply taking all the Tx's and n&'s to be jointly independent with
the 2Vs symmetric and with

(1) Pr(nb = l) = Pb for each b e B\

where we assume 0 < pb < 1. Such π&'s describe independent bond percolation;
two important examples are nearest neighbor models (with Λ C Zd), where

( v _ ί p, if x and y are nearest neighbors
V) P{χ,y} - I 0

and 1/r2 models (with Λ C Z1), where

(3) P{x,y} = P\y-x\ with lxπ^x2px = β.

We next introduce some dependence into this simple model by conditioning on
the event

(4) {Tx = Ty for every b = {z, y} with nb = 1};

i.e., the sites in each cluster must have the same color. Let μq denote the resulting
joint (conditional) distribution of the Tx

Js and π&'s for some given Λ and p&'s. We
leave it as an exercise for the reader to verify that the marginal distributions μq

v

for the TVs and μ\ for the n&'s, have densities (relative to uniform distributions),

(5) μ% : const, exp ( Y\ KxylTχ=Ty 1 , where 1 - e~κ" =

(6) μ\\ const. qc J J (1 — pb) J J py, where C = no. of clusters.
b:nb=O b':nb,=l

When q = 2, μq

v is the Gibbs distribution of an Ising model; this may look more
familiar when expressed in ±1 valued variables Sx (Sx = +1 for Tx = 1, Sx = - 1
for Tx = 2):
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(7) μl : const, exp I -

\ {*,»}

For q = 3,4, , μl is the distribution of a Potts model. The random graph corre-
sponding to (6) (Fortuin and Kasteleyn (1972)) is known as a Fortuin-Kasteleyn
random cluster model (or simply FK model); it is a dependent percolation model
which is perfectly well defined for non-integer values of g, even though μl and μq

are not. Note that μl for q = 1 is just independent bond percolation.
Fortuin and Kasteleyn (1969, 1972) focused on the distribution μq (and not on

the joint distribution μq as was implicitly done by Swendsen and Wang (1987))
and on how various Ising/Potts quantities can be expressed in terms of μq. For
example, the reader may easily derive for q = 2:

(8) Cov(5a;, 5a;/) = μl(x and x' are in the same cluster).

Such identities allow one to study Ising/Potts behavior by percolation methods.

3. Stochastic Domination. Among the most useful of percolation theoretic
techniques are inequalities. Recall that the earliest example of associated random
variables (variables such that increasing functions of them are positively correlated)
is independent bond percolation. This result of Harris (1960) extends to FK models
with q > 1 as shown by Fortuin (1972):

(9) for q > 1, the n&'s with distribution μl are associated.

(9) can be easily proved by the "standard FKG method" of Fortuin, Kasteleyn and
Ginibre (1971) and Sarkar (1969). We remark that for q = 2, the association of
the 7i&'s is different from the association of the Sx's, which follows from the FKG
method applied to μ%.

To motivate the following stochastic monotonicity properties we note the ele-
mentary calculation,

(10) μl(nb = 1 I {nb, : b> φ b}) = pb or βb = 1_*/*pb/q

where the first value is taken if x and y are in the same cluster even with nb = 0
and the second value otherwise. It was shown by Fortuin (1972) that

(11) μq

e is stochastically decreasing in q > 1 for fixed pt's

(i.e., the expectation of an increasing function is decreasing) and

(12) μl is stochastically increasing in q > 1 for fixed j3&'s

These domination results follow from (9) and the fact that C, the number of clus-

ters, is a decreasing function while C plus the number of occupied bonds is increas-

ing; the reader can supply the details.
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4. Applications of Domination. In Ising or Potts models (in which the limit
Λ t Zd has already been taken) one is typically interested in the absence or presence
of long range order. For our purposes, we will take this as synonymous, in the case
of Ising models, with the vanishing or nonvanishing of limn^n^oo Cov(So, Sx). A
phase transition is said to occur if the change of a parameter (e.g., the p in a nearest
neighbor model) switches the model from absence to presence of long range order.

By using identities such as (8) (note that its right-hand side is the expectation
of an increasing function) together with both monotonicity results ((11) and (12)),
one can generally conclude that a phase transition occurs for every real q > 1,
if and only if it occurs for some real q > 1. By taking the special q to be 1,
one can thus reduce the occurrence of Ising/Potts phase transitions to an issue of
independent percolation! This approach is presented in great detail by Aizenman,
Chayes, Chayes and Newman (1988), where it is applied to 1/r2 models and to
situations where Λ tends to a logarithmic wedge in Zd; applications to dilute
Ising/Potts models are given in Aizenman, Chayes, Chayes and Newman (1987).
We remark that because the special q is 1, this approach does not even utilize the
association of the FK models except for Harris' original independent percolation
result. We conclude this section with a little more detail about one application to
1/r2 Ising models.

Consider fan 1/r2 independent percolation model (see (3)). If β = liπL^oo x2px

= 0 (in fact if β < 1), it was shown by Aizenman and Newman (1986) that (after
Λ I Z1) there are a.s. no infinite clusters regardless of the individual px values. Next
consider the related Ising model with Kxy = K\x_y\ (see (5)). As a consequence of
the stochastic domination of μ2 by μ\ and the identity (8) relating Ising and FK
models, it follows from the independent percolation result that

(13) lim x2Kx = 0 implies absence of (Ising) long range order.

We note that this result, a long standing conjecture in Ising model theory, was
also independently proved (by other methods) by Berbee (1989).

5. Random Colored Graphs - General Case. The Kxy's appearing
in (5) (or (7)) are automatically non-negative. Let us consider more generally
distributions with density

(14) const, exp J2 JχyιTx=Ty I , JχV € R.
{*,y}

When Jxy > 0 for all z, y the Ising or Potts model is called ferromagnetic and
when Jxy < 0 it is antiferromagnetic. It is quite fashionable these days to consider
models with both positive and negative JX3/'s; spin glasses are of this type with
the Jxy's themselves random. In this section, we describe the generalization of
FK models to the non-ferromagnetic context. The first published discussion of
non-ferromagnetic FK models we are aware of is by Kasai and Okiji (1986). (We
thank A. van Enter for informing us of this reference.) The most general extension
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of FK models is that of Edwards and Sokal (1988). Here, we only consider Ising
or Potts models as in (14).

First partition the set of all bonds B into BF, the ferromagnetic ones (or F-
bonds) corresponding to Jxy > 0, and BA the antiferromagnetic ones (or A-bonds)
where Jxy < 0. Define pb = 1 - exp(- | Jxy |) for b = {x,y} and again begin with
independent TX'B and π&'s as before, but this time condition on the event

(15) {Tx = Ty for every b = {x, y} e BF with nb = 1 and

Tx φ Ty for every b e BA with nb = 1}.

We denote the resulting joint distribution μq and the two marginals μq

v and μ .̂ μq

can readily be seen to be precisely the Ising model (14). The density of μ% can be
expressed in the form,

(16) const. J[Rq(C) Π (1-Pb) Π Pv
C b:nb=0 b':nb,=l

where the first product is over all clusters C of the n&'s and Rq(C) is the number of
allowed colorings of C according to the rules that endsites of .F-bonds (respectively
A-bonds) have the same (respectively different) colors. Here C is thought of as a
connected subgraph in which each edge is labelled F or A.

In the purely ferromagnetic case, Rq is of course simply q and we are back to
the usual FK model measure (6). In the purely antiferromagnetic case, Rq(C) is
the number of ςr-colorings of the graph C in the usual sense of graph colorings
where adjacent vertices must have different colors. For a given cluster C, Rq(C)
may vanish if q is not sufficiently large; for example for C the complete graph on
k vertices in the purely antiferromagnetic case,

This formula shows something besides the vanishing of Rq for certain integer values
of q\ it shows that q cannot in general be taken nonintegral (as can be done in the
standard FK models) since that can lead to negative values of Rq.

In addition to clusters which are ruled out for small g, there are ones ruled out
for all q—namely if there is an occupied A-bond between two sites connected by
a path of occupied F-bonds. If C is not one of these totally prohibited clusters,
then Rq(C) can be calculated as the ordinary number of g-colorings of a "reduced
graph" whose vertices are the connected components of C obtained by only using
F-bonds and in which an edge occurs whenever there is at least one A-bond in C
between the two corresponding components.

For the remainder of our discussion, we restrict attention to Ising models (q =
2). Here it is clear that for any C, R2{C) either vanishes or else equals exactly
2. Borrowing terminology from spin glass theory, we will call any configuration
of the Tib's with a cluster C having ./^(C) = 0 a frustrated configuration; i.e., a



400 Charles M. Newman

configuration of the π&'s is frustrated if there is no 2-coloring of the sites which
satisfies the occupied F-bonds and A-bonds. Let us write U for the collection of
unfrustrated configurations of the n&'s. Then the density of μl may be expressed
as

(17) μ\ : const. \υ<£ J J ( l - p 6 ) [J Ph,m

b:nb=0 b':nbt=l

The Ising model covariance may be expressed in terms of the μl expectation (which
we denote E%) as (compare (8))

(18) I Cov(Sx, Sx>) I = I El{η(x,x')) \< μ2

e (x and x' are in the same cluster)

where

0, if # and x' are not in the same cluster
,- QS / ,>v I —1, if there is a path of occupied bonds between

I x a n ( i χt with- a n °dd number of A-bonds
+1, otherwise.

Although this measure seems rather difficult to work with, it can at least be used
to obtain some modest results. We present these now primarily as an exercise in
using μl rather than because of their intrinsic merit. Better results will presumably
require an analysis of E2(η(x,x')) deeper than the trivial inequality of (18). (We
remark that a formula similar to (18) appearing as Equation (A 7) in Kasai and
Okiji (1988) appears to be seriously incorrect in that η is not averaged.)

For given Jxy'sy we let μl denote the (q = 2) ferromagnetic FK measure, (6);
its related Ising variables will be denoted Sx while those from μl will be denoted
Sx. Any frustrated configuration of ra&'s remains frustrated when an nμ is changed
from 0 to 1 (whether bf be an F-bond or an A-bond); hence \u is a decreasing
function on the n^'s. Since μl is associated, it follows that

(20) μl is stochastically dominated by μ\.

We thus have from (18) (with tildes) and (8) that

(21) I Cov(SxJx>) I < Cov(Sx,Sxι).

We conclude that absence of long range order in the Ising model with Jxy replaced
by I Jxy I implies its absence in the original model. For example, (13) remains
valid with Kx replaced by Jx regardless of the signs of the Jx's.
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