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Line segments within a convex body, one of whose end-
points lies on the surface of the body are called rays. A
forward and backward ray are complementary extensions
of one another to form a secant of the body. This arti-
cle illustrates that when these rays are generated by v-
randomness they display a negative orthant dependence
when the convex body is a sphere in 9tn. However, the
forward and backward rays in any convex body in 3ίn do
not always display this dependence.

1. Introduction. In the field of geometrical probability, one of the topics
which is extensively discussed is that of the distributions of the lengths of random
rays and secants within and through convex bodies. See, for example, Coleman
(1969, 1973), Enns and Ehlers (1978,1980, 1981), KeUerer (1971,1984), Kingman
(1969), and Santalo (1976, 1986).

In most cases one is concerned with the distribution of a single quantity. This
article will illustrate that for a sphere in 9ftn, the bivariate distribution of two
related rays displays a negative orthant dependence (see Block, Savits, and Shaked
(1982) and Joag-Dev and Proschan (1983)). It will also be illustrated that this
dependence relationship does not hold for these rays in all convex bodies in 9£n.

2. Definitions and Notation. In the notation of Enns and Ehlers (1978),
the normalized average overlap volume of a convex body K with its translate in
3ftn is defined as:

(i) Ω(/) = εθ[v(κ n κ(i, θ))]/v{κ)

where K{1, θ) is the translate of a convex body K a distance I in direction θ.
Also V( ) and £#(•) are respectively the volume and expected value of (•) when
uniformly averaged over all θ.

Line segments may be entirely in the interior of K or they may have one
endpoint (rays) or both endpoints (secants) in the surface of K. These rays and
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secants may be generated by a variety of measures or types of randomness, for
example, Coleman (1969) or Ehlers and Enns (1981).

The measure considered here is that of i/-randomness, namely a point P is
chosen at random in K, according to the uniform distribution (Lebesgue measure)
on K. A direction θ is then selected independently of P from a uniform distribution
over all possible directions in 3?n. The length of the forward ray L\ is the distance
from P to the surface of K in the direction θ. Similarly, the backward ray extends
from P to the surface of K in the opposite direction to θ and has length X2
Obviously L\ and L2 have the same marginal distributions and from Enns and
Ehlers (1980) these are:

(2) P{LΎ >£) = P(L2 >£) = Sl(l).

The secant traverses the whole body K and has length L = L\ + £2- It has been
shown in Kingman (1969) and Enns and Ehlers (1978) that the probability density
function of L is:

The bivariate distribution of L\ and L2 derived in Enns and Ehlers (1980) is:

(3)

3. The Negative Dependence Condition. The bivariate distribution of
the lengths of the forward and backward rays (3) displays a negative orthant
dependence (NOD) if (2) has an increasing hazard rate. This may be shown by
considering the form of the bivariate distribution (3). For NOD one requires:

(4) P( i i > /1, L2 > ί2) < P{Lλ

see, for example, Block, Savits, and Shaked (1982) or Joag-Dev and Proschan
(1983). Incorporating (2) and (3) into (4) yields our condition for NOD, namely:

(5)

If r(ί) is the hazard rate of the distribution of L\ or X2? then:

(6) Ω(*)= exp- / r(x)dx\ .

Condition (5) then implies that

/ r(x)dx > / r(x)dx + / r(x)dx
Jo Jo Jo

or equivalently:
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(7) / r(x)dx > / r(x)dx, for all positive ί\ and £2-
Jί\ JO

Now (7) is the condition for an increasing hazard rate average (IHRA). Hence if
L\ and L2 have an increasing hazard rate (IHR) then they are (IHRA) and hence
the pair (Zi,Z2) is NOD.

In the following section it will be shown that if L\ and L2 are i/-random rays in
a sphere in 3ftn (n-sphere), then (£1,^2) are NOD. It is intuitive that if a forward
ray in a sphere is large, then it is likely that the backward ray is small. However
(Xi,i2) are not NOD for all convex bodies K. An example where NOD breaks
down is a sufficiently elongated rectangle. Here it is intuitive that a long forward
ray will have to be in the direction of the elongation and will hence most likely
have a correspondingly long backward ray.

4. Negative Orthant Dependence of the Forward and Backward Rays
in an n-Sphere. From Enns and Ehlers (1978), it has been shown that for a unit
n-sphere

Cn Ji/2

where Cn = τrn/2/ (^)! = the volume of a unit n-sphere.

From Section 3 it is now sufficient to show that the hazard rate of Ω(^), namely
r(£) = — ̂ nΩ(-έ) is increasing in £. This then implies ( i i , ! ^ ) are NOD.

Let

(9)

If ξ(£) > 0, then r'(£) > 0 and the result is shown.

From (8) one obtains

Γ Λ o 1 π — 1

a λ\ --—=• jγ* 1 o ΠΎ«*/ I * \JbJU

L * J L * J Jil2

or equivalently:

1 / ( l - χ 2 ) I τ i { 2 ( n + l ) x - ( n - l)£}dx.

Let the partial integrand α(^, x) = 2(n + l)a; - (n - 1)£.

For x in the range of the integral one obtains:
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and it follows that ξ(ί) > 0 and the result is proved.
A recent article by Enns and Ehlers (1988) shows that the dimensional moment

of the extended ray length does not depend on the generating body K. The
extended ray is the ray projected to the boundary of the convex body G where the
convex body K C G. Redefine L\ and L<ι as the extended forward and backward
rays when K is any convex body and G is an n-sphere. I conjecture that (iχ,X2)
will be NOD. Again intuitively it does not matter where the generating point is
chosen within G. If the forward ray is long, then the backward ray will tend to be
short. Hence the generating point may be chosen in any interior region K.

Negative orthant dependence between the two rays does not always hold for
some convex bodies. It can be shown for a sufficiently elongated rectangle, that
NOD is violated. This is a messy but straightforward algebraic exercise and will
not be reproduced here.
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