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The tail probabilities of two weighted sums of indepen-

dent gamma random variables are compared when the

first vector of weights majorizes the second vector of

weights. The conjecture that the two cumulative distri-

bution functions cross exactly once is established in four

special cases by means of the variation-diminishing prop-

erty of totally positive kernels. Bounds are obtained for

the location of the unique crossing point and its asymp-

totic behavior is determined.

1. Introduction. In this paper we continue the study of tail probabilities
of weighted sums of independent, identically distributed (i.i.d.) gamma random
variables begun by Diaconis (1976) and extended by Bock, Diaconis, HufFer, and
Perlman (1987) [hereafter abbreviated as BDHP (1987)].

Let YΊ,..., Yn be i.i.d. gamma random variables with common probability den-
sity function (pdf)

(1) ga,β(y) = [0»Γ(α)]-V' 1 *-*^, 0 < y < oo,

where a > 0 and β > 0 denote the shape and scale parameters, respectively. We
denote this gamma distribution by G(α,/J). For nonnegative weights θ\,.. .0n, the
tail probabilities of the weighted sum ΣθiYi &re denoted as follows:

(2) Fθ(t) =

where θ = (θu.. ,θn) and 0 < t < oo.
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Such weighted sums arise in many contexts in statistics and probability, for ex-
ample as the distribution of quadratic forms X'AX where X is an n-dimensional
normal random vector and A is an arbitrary n x n positive semidefinite ma-
trix. Such a quadratic form occurs, for example, as the limiting distribution of
the chi-squared goodness-of-fit statistic when parameters are estimated on the
basis of the ungrouped, rather than grouped, data—cf. Chernoff and Lehmann
(1954). Weighted sums of exponential random variables also occur in the form
— log(Πff ), a weighted version of the Fisher statistic for combining independent
p-values Pu . . . P n , where each P t is uniformly distributed on (0,1) under the com-
bined null hypothesis—cf. Good (1955) and Zelen and Joel (1959). See BDHP
(1987) for additional examples.

Because the distribution of J2 θ{Yi cannot be expressed in a simple form, it is
important to determine approximations or bounds for its tail probabilities. Much
work concerning such approximations exists in the literature—cf. Johnson and
Kotz (1970), Chapter 29—but little is known about bounds. One obvious question
is the comparison of the tail probabilities of Σ θiY% and 0 Σ ^ > where θ = rΓ1 Σ ^ '
This comparison is both natural (since J5(]Γ0t Yί) = E(ΘΣY%)) a n d potentially
useful, since the tail probabilities of ΘJ2Y{ ~ G(nct,θβ) are easily determined.
For the reason mentioned in the next paragraph, it is appropriate to conjecture
that the tail probabilities of ΘY^Yi provide lower bounds for those of Σ ^ t ^ '

Since θ = (θu...yθn) majorizes θ = (0,. . . , θ) [denoted by θ y θ—cf. Marshall
and Olkin (1979)], the above suggests a stronger conjecture, namely, that the tail
probabilities of ΣθiYi exceed those of ΣηiYi whenever θ y η = (7/1,.. .,r/n).
[Recall that θ y η requires that Σ #i = Σ %> so that again E(Σ θiYϊ) = £ ( Σ Viγi)-
Also, we shall adopt the convention that θ y η requires that (771,..., ηn) not be a
permutation of (0 1 ? . . . , θn).] Support for this conjecture is immediate: since

(3) Var (Σ>Y,) = (1>. ? ) Var YΎ

and Σ $i ls a strictly Schur-convex function of (0χ,..., 0n),

(4) θ y η = > Var ( £ > * , ) > Var

This states that if the weights #i , . . .,0n

 a r e more dispersed (in the sense of ma-
jorization) than 771,..., ηn about their common average, then the random variable
Σ QiYi is more dispersed than Σ ViYi about their common expected value, as mea-
sured by their variances. Our basic question is whether Σ^'^t' 1S more dispersed
than ΣηiY% as measured by the stronger criterion of their tail probabilities.

In this paper we investigate two aspects of this question, requiring two different
techniques. First, in Section 2 we investigate the conjecture that if θ y η, then
Fβ(') and Fη(-) cross exactly once on (0,oo) at a unique point t*. If true, this
conjecture (called the Unique Crossing Conjecture, or UCC), implies that the prob-
ability distribution of Σ7?*^' ^s more concentrated about t* than that of Σ^ϊ^ί
Although we believe that the UCC is true in general, we are able to verify it only
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in the following special cases:

(a) n = 2 (Proposition 2.1);

(b) n = 3, ct = 1 (Proposition 2.5);

(c) n > 3, α > 1, 0 and η differ in only two components (Proposition 2.3);

(d) n > 3, η = θ (Proposition 2.7).

Second, in Section 3 we investigate a conjecture regarding the location of the
unique crossing point t* when η = 0. It has been established by Diaconis (1976)
and BDHP (1987) that when θ y η and n = 2, the unique crossing point of FQ
and .F77 lies in the interval

(5) (2aθβ, (2a+l)θβ)

(See also Proposition 2.2 in Section 2.) This implies that Fβ(t) is Schur-convex in
0 when t < ΊaQβ and that Fβ(t) is Schur-convex in θ when t > (2a + 1)0/?. For
n > 3, however, BDHP (1987) obtained only that Fβ(t) is Schur-convex in θ when

(6) * > n(na + l)θβ

which, when n = 2, is a smaller interval than that implied by (5). Furthermore,
they obtained no general result on the Schur-convexity of Fβ(i) for n > 3; in fact,
BDHP (1987, p. 394) presented a counterexample to show that no such result is
possible.

In Section 3 of the present paper, we shall show that when η = 0, the unique
crossing point t* of Fβ and FQ in fact satisfies

(7) t*(0,0) ~ naθβ as n -* 00

uniformly in 0 for fixed θ. In the course of this demonstration, we derive approxi-
mate bounds of the form

(8) naθβe~2 < Γ(0,0) < (not + l)θβlog[na(n - 1)]

valid for all n > 2 (cf. Propositions 3.1 and 3.2 and also (50) and (60)).
As in BDHP (1987), many of our methods also can be applied to obtain bounds

for tail probabilities of weighted sums of independent Weibull random variables.
Furthermore, it is likely that part of our results extend to the case where some of
the weights θ{ may be negative, and also to the case where Yi,..., Yn are not i.i.d.
but are exchangeable with pdf of the form

for suitable functions h.
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2. The Unique Crossing Conjecture. By (4), FQ and Fη cannot be
identical when Θ y η. Since

(9)

FQ — Fη must change sign at least once on (0,oo). In this section we investigate
the

Unique Crossing Conjecture (UCC): If θ y η, then FQ — Fη changes sign
exactly once on (0, oo). This crossing occurs at a unique point t* = t*(θ,η), which
is the only zero of FQ - Fη on (0, oo).

If t* exists, then necessarily

ί > 0 for 0 < t < t*,
I ^ U lor t ^ t < oo.

To see this, note that (4) and (9) imply that

E £ ΘM - Γ) 2 = Var ( £ OiY) + [E ( Σ ft*) " **]'

> Var

(11)

hence

0 < J

iW ) θ{ )] [Fθ(t* - y/u) - Fη(t* -
Jo

If the inequalities in (10) were reversed, then (11) would be violated, so (10) must
hold. (See also Remark 2.4 for the case a > 1.) The result (10) shows that if
the UCC is true, then the distribution of Σ 0 t Ί ; is indeed more dispersed about t*
than that of ^ ηiYi in the strong sense of tail probabilities.

Without loss of generality, we may set the scale parameter β = 1 for the
remainder of this section. We shall establish the UCC in four special cases by
means of the representation (13) below for FQ. First, define

sn =
t = l

W = (Wu...,Wn).
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Then W and Sn are independent,

Sn ~ C(nα,l),
W ~ Dirichlet(α,..., α),

i.e., W has the (exchangeable) Dirichlet distribution on the simplex

(12) ΣW ΞΞ {w|t*i > 0,..., wn > 0, ]Γ Wi = l }

with pdf proportional to (ΠWi)""1. Thus

Fθ(t) =

= /

(13) = t f°
Jo

where

(14)

Note that the support of ΣΘ{Wi is the interval (̂ min5̂ max) Q
From (13) it follows that

Fθ(t) - Fη(t) =

(15) =

Because the kernel

is 5ίπc% totally positive (STP) [cf. Karlin (1968), p. 15, eqn. (9)], it is strictly
variation-diminishing, i.e., the number of sign changes of Fβ — Fη on (0, oo) cannot
exceed the number of sign changes of HQ — Hη provided this latter number is
finite, the sign changes of FQ — Fη must occur at isolated crossing points, and
these crossing points are the only zeroes of FQ - Fη on (0, oo) [apply Theorem
3.1(b) on p. 21 of Karlin (1968)]. We make use of these facts to establish the UCC
in several special cases.

PROPOSITION 2.1. Ifn = 2, the UCC is valid.

PROOF. Without loss of generality, assume that θ\ > #2- Since (^1,̂ 2) >-
(771,%)? it follows that
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\y\)V2) = ^" + α, u — α)

(771,772) = (0 + ^,0 — 6),

where θ > α > \b\ > 0. Since Wχ + W2 = 1, it follows that

HQ{U) = P[0 + α(Wλ - W2) < u]

(16) #?j(u) = P[0 + |6|(Wi - W2) < u],

where we use the fact that W1 — W2 is symmetrically distributed about 0 on (—1,1)
since W is exchangeable. Also, since W\ has a Beta distribution, W\ — W2 =
2W\ — 1 assigns positive probability to every open subinterval of (—1,1). Therefore

ί
> 0 \iθ -α<u<θ

< 0 i f 0 < w < 0 + α
= 0 if u < θ - α, u = 0, or u > θ + α,

hence has exactly one sign change (at θ) on (0,oo). Thus FQ — Fη can have at
most one sign change, hence by (9), must have exactly one sign change on (0,00).
Furthermore, this sign change must occur at a unique point t* which must be the
only zero of FQ — Fη on (0,00). ||

For the case n = 2, a closer examination of (15) in fact yields the upper bound
in (5) for ί* = f(0,77), the unique crossing point of FQ — Fη on (0,00).

PROPOSITION 2.2. (Diaconis and Penman (1976), BDHP (1987)). When
n = 2 and θ y η, t*(θ,η) < (2α + 1)0.

PROOF. From (16) and the symmetry of W\ — W2, Λ = HQ - Hη is antisym-
metric about 0, i.e.,

(18) Λ(tι) =

Thus, if we define

(19) ψt(u) =

we obtain from (15) and (18) that

θ r2θ

A(u)ψt(u)du+ K{u)ψt{u)du

(20) = / A(u)[φt(u) - φt(2θ - u)]du.
Jo
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When t > (2α + 1)0 and 0 < u < 0, it follows from Lemma 2.8 (at the end of this
section) that ψt{u) - φt(2θ - u) < 0, so by (17) we have that Fβ(t) - Fη(t) < 0.
By (10), this implies that t* < (2α + 1)0 as claimed. ||

Unfortunately, this method does not yield the lower bound for t* in (5), since
it is not true that ψt{u) — ψt{2θ — u) > 0 for every u £ (0, 0) when t < 2α0.
Furthermore, when n > 3, Λ( ) need not be antisymmetric so the method does
not immediately yield useful information about the location of t*. An alternate
approach is presented in Section 3 which does provide upper and lower bounds
(though not sharp) for t* when η = θ.

We now return to the UCC for the case n > 3. At present we cannot establish
the UCC in general, so must content ourselves with four propositions (2.3, 2.5, 2.7,
2.7a) dealing with special cases of interest.

PROPOSITION 2.3. Suppose that n > 3 and a > 1. Ifθ and η differ in exactly
two components, then the UCC is valid.

PROOF. When n = 3, we may assume without loss of generality that Θ3 =

773 > 0, so that θ y η <=> (θuθ2) >• (771,f?2). Now

Fθ(t) = E{P[θ1Y1 + θ2Y2<t-θ3Y3\Y3]}
/ΌO

= Jo

 F(θ1,θ2)(t-v)g(v)dv,

where g = gaiθ3 Thus

(21) Fθ(t) - Fη(t) = f A(υ)g(t - u)du,
Jo

where

A(u) = F{θltθ2)(u)-F{ηuη2)(u).

We shall apply (21) to show that for 0 < t\ < t<ι < 00,

(22)

(23)

Fθ(h) - Fη(h

Fβ{h) - Fη(t2
) =

0 = *

0 =>

Fθ(t2

Fθ(^

) -

) -

Fη(t2)
Fη(h)

<

>
o,
0.

These implications, together with the facts that FQ - Fη is continuous and has at
least one zero crossing on (0,00), imply that FQ and Fη satisfy the UCC, hence
establish the proposition when n = 3.

By Proposition 2.1 and (10), there exists t0 € (0,00) such that

> 0 if 0 < u < t0

A(u){ = 0 ifu = t0

< 0 iϊto<u < 00.
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If Fβfa) - ^77(̂ 1) = 0, then since g > 0 on (0,00), (21) implies that tx > t0. Thus

- Fη(t2) < ί ° Δ(u)fif(ί2 - u)du + ί * A(u)g(t2 - u)du
JO Jto

< ^ '_ '°j [ j f Δ(«)»(«i - «)*. + jf' Δ(«)ί («i - «)*.]

= 0.

The second inequality follows because α > 1 = ^ gaiβ(-) is log concave =>• ̂ (ί - u)
is totally positive of order two (TP2) [cf. Karlin (1968), p. 32]. Thus (22) is valid,
and (23) is established in similar fashion.

For n > 4, the proposition is established by a similar argument, using induction
on n. II

We remark that the kernel

K2(t,u) =Ξ I[Oit](u)g(t - u)

is TP 2 [cf. Karlin (1968), p. 16], hence Theorem 3.1(a) of Karlin (1968), p. 21,
together with (21), shows that FQ — Fη has at most one sign change on (0,oo).
However, K(t, u) is not strictly TP2, so Karlin's Theorem 3.1(b) cannot be ap-
plied to conclude that the crossing point is unique, hence the need for a direct
demonstration of this fact.

REMARK 2.4. Ίίθ y η and a > 1, we may apply Proposition 2.3 to deduce that
Fβ(t) — Fη(t) is positive for sufficiently small t > 0 and negative for sufficiently
large t. This follows from the fundamental majorization result that if θ y 77, then
there exists a finite sequence

such that ψi and -01+1 differ in exactly two components [cf. Marshall and Olkin
(1979), p. 21]. By Proposition 2.3 and (10), each difference Fψ (t) - Fψ (t) must

be positive for small t > 0 and negative for large t, hence the same must be true
of the sum

k-l r -.

KώΛ*) - F<ψ. (*) = Fθ") "" FvW'
ί=i L ι l + J

Finally, we note that this implies that if the number of sign changes of FQ — Fη
on (0, oo) is finite, then this number must be odd. \\

REMARK 2.4A. The referee has pointed out that the argument for Proposition
2.3 also shows the following fact when a > 1: if the UCC is valid for the vectors θ
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and η in Etn, then it remains valid for the vectors (0, c) and (77, c) in JRn+A:, where
c = (CI,...,CA:) with Ci > 0. II

PROPOSITION 2.5. Ifn = 3 and a = 1, the UCC is valid.

Proof Since a = 1, W = (WΊ,W2,W3) is uniformly distributed on the 3-
simplex Σ<3> (cf. (12)) with vertices (1,0,0), (0,1,0), (0,0,1). Let hθ denote the pdf
of Σ 0 t Wi,i.e.,

(cf. (14)). Then hg is a continuous triangular density function with support

(0min?0max); hg increases linearly on (0min,0med) a n d decreases linearly on (0med,

0max)> where 0min> 0med> a n d 0 m a x denote the minimum, median, and maximum

of (0χ, 025^3) Similarly, hη is a triangular density function that increases linearly

on (7?min,f?med) a n d decreases linearly on (r/med^max). Since

(24) θyη=ϊ tfmin < 7/πΰn

it follows that hg — hη changes sign at most twice. But

(25) Hθ(u) - Hη(u) = Jo°°[hθ(v) - hη(υ)]I[OtU](υ)dv

and the kernel

is totally positive of every order [Karlin (1968), p. 16] hence is TP 3 . Thus by (25)
and Theorem 3.1(a) of Karlin (1968), p. 21, HQ — Hη changes sign at most twice,
so FQ — Fη changes sign at most twice and has at most two zeroes on (0,00), which
must coincide with the crossing points (cf. the discussion following (15)). But the
final sentence in Remark 2.4 implies that the number of sign changes of FQ - Fη
must be odd, hence cannot exceed one. Thus FQ — Fη must have exactly one sign
change and exactly one zero, i.e., the UCC is valid in this case. ||

It seems likely that Proposition 2.5 remains valid for n > 4. When a = 1, both
KQ and hη are univariate 5-splines (cf. Karlin, Micchelli, and Rinott (1986)) with
knots 0 i , . . . ,0 n and 771,...,^, respectively. We conjecture that the integrated
B-splines HQ and Hη cross exactly once whenever θ y η. By the argument
following (15), the validity of this conjecture would imply the validity of the UCC
when a = 1. We have been able to establish this conjecture when θ and η differ in
exactly two components. In fact, for every 0 < a < 00, HQ and Hη cross exactly
once when n = 2 (recall (17)), while when a > 1 and n > 3 the following result
obtains:

PROPOSITION 2.6. (Diaconis and Perlman (1976)). Suppose that n > 3 and

a > 1. Ifθyη and differ in exactly two components, then HQ and Hη cross

exactly once. ||
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Our proof of this result is similar to that of Proposition 2.3 though somewhat
longer, hence is omitted. Note that Proposition 2.3 follows from Proposition 2.6
by the argument following (15).

Now fix α = 1 and consider the above conjecture regarding the single crossing
of the integrated 5-splines HQ and Hη when θ >- η and differ in more than two
components. This conjecture is valid when n = 3. To see this, one first shows
that (4), (9), and (10) remain true with Yi,..., Yn replaced by WΊ,..., Wn and F
replaced by H. Then, by applying Proposition 2.6 rather than Proposition 2.3, it
may be shown as in Remark 2.4 that the number of crossings of HQ and Hη must
be odd. But it has been established in the proof of Proposition 2.5 that HQ and
Hη can cross at most twice, hence they must cross exactly once as conjectured.
(Note again that Proposition 2.5 follows from this result by the argument following
(15).)

D.L. Ragozin has obtained some convincing numerical evidence that the above
conjecture is valid when n = 4.

In the final proposition of this section, we return to the UCC for FQ and Fη
when η = 0 = (0,...0).

PROPOSITION 2.7. (Diaconis and Penman (1976), Shaked (1980)). Ifη = θ,
the UCC is valid for every n > 2.

PROOF. When η = θ, ΣViWi = ΘΣWi = 0, so

Jo ifu<0,
' ~ \ 1 ifu>θ.

Thus HQ - HQ has exactly one sign change, so by (15), FQ - FQ has at most one

sign change, hence exactly one sign change and exactly one zero on (0, oo). ||

We are grateful to the referee for pointing out the following extension of Propo-

sition 2.7:

P R O P O S I T I O N 2.7a. Ifη = ( l - X)θ + Xθ for 0 < λ < 1, the UCC is valid for

every n>2.

PROOF. Since Hη(u) = ^ ( λ - ^ w - (1 - λ)0)) when λ > 0, HQ - Hη has
exactly one sign change (at u = 0), so the argument for Proposition 2.7 remains
applicable. ||

The following lemma was needed in the proof of Proposition 2.2.

LEMMA 2.8. Define φt(u) by (19). If t > (2a + 1)0 and 0 < u < θ, then
φt(u)<φt(2θ-u).

PROOF. AS U increases from 0 to 0, b = θu"1 - 1 decreases from oo to 0. Since
t > (2α + 1)0, the desired inequality will follow from the inequality

u
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which is equivalent to

and therefore to the inequality

(26) / ( 6 ) Ξ

for b > 0. But /(0) = 0 while

hence (26) holds. ||

3. Location of the Unique Crossing Point When η = θ. It is a

consequence of Proposition 2.7 that FQ and FQ have a unique crossing point

t* = ΐ*(0, θ) e (0,oo) and that (10) holds when η = 0. In this section we present

partial results regarding the location oft*. Once again, without loss of generality

we may assume that β = 1.

Our results are based on the following alternate representation of FQ (compare

to (13)):

Fθ(t) =

(27) ΞE

where, for 0 < u < oo, G = G n α is defined by

(28) G(n) = P[Sn < u-1} = Γ gnαtl(s)ds
Jo

Since

(30) G»(«) = j i j«-"«-»«-" [(«, + 1) - «"'],

it is immediate that G is strictly decreasing on [0, oo), strictly concave on [0, (nα +
I ) " 1 ] , and strictly convex on [{nα + l ) " 1 , ^ ) . Thus, for every u e [0,oo) there
exists a unique line Lu tangent to the graph of G at (u,G(u)), the equation of
which is given by

(31) Lu(v) = G(u) + G\u)(v - ti), 0 < v < oo.
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When u < (πα + I)"*1, Lu is tangent to the graph of G from above, while when
u > (nα + I)"*1, Lu is tangent from below.

Because G is strictly concave on [0, (nα +1)""1], clearly Lu(0) > G(0) = 1 when
0 < u < (nα + I ) " 1 , while

2^(0) = G(oo) - Km [uG'(u)] = 0.

Thus since

for u > (nα + I ) " 1 , there exists a unique positive number

(32) ύ = ύnΰi>(nα+l)-1

such that Lα(0) = 1 = G(0). From (31) the point u is the unique positive solution
to

(33) G(ύ) = 1 + uG\u).

The line Lα is tangent to the graph of G at (ώ, (?(&)) and elsewhere lies strictly
below this graph, except at the point (0,1) where they coincide. In fact, for every
point u > ύ, Lu is tangent to the graph at (u,G(u)) and elsewhere lies strictly
below the graph, i.e.,

(34) ^ Λ , r / \ ί = G(v) if v = u,
u > u =ϊ LJv) < J) ( .r , n" v y 1̂  < G(v) if v ̂  0, w.

If we set t = θu"1 with u > ώ, it follows from (27), (34), and the linearity of

Lu( ) that

Fθ(t) =

>

= Lu{u)

= G(u)

(35) =

Here we have used the exchangeability of (VFi,..., Wn) and the fact that
Since u > u iff t < θίΓ1, we have derived the following result:
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PROPOSITION 3.1. Let u = ύna denote the unique positive solution to (S3),
where G = Gna is given by (28). Then Fρ(t) > Fβ(t) whenever t < θύ~*, i.e.,

(36) t*{θ,θ)>θύll ||

Thus the lower tail probabilities of Σ θiYi are bounded below by those of θ Σ Y%
for sufficiently small t. In order to show that the same is true of the upper tail
probabilities when t is sufficiently large, we must modify (34) to show that Lu{v)
lies above the graph of G, at least for t; in the support of t~λ Σ 9%W^ for sufficiently
small u.

For each u 6 (0, (πα + 1 ) " 1 ) there exists a unique point v(u) > (na +1)"1 such
that Lu(v(u)) = G(v(w)), i.e., such that

(37) G(v(u)) = G(u) + (v(u) - tι)G'(tt).

For each u it is clear that

ί = G(v) if t> = u or v = t (u)
> G{v) if 0 < t; < v(u) and i; φ u.

For w 6 (0,(nα + I)"1) the function v(u) is strictly decreasing and satisfies

t;(0) = oo, vdna + l)-1 = (nα + l)~1.

Therefore, v(u)/u strictly decreases from oo to 1, so there exists a unique point

(39) ϋ = ί ί n α , n < ( n α + l )- 1

such that

(40) v(ύ) = nύ.

Hence

(41) u < ϋ =*• tiβ" 1 ̂  fit W7,- < nύ =

so for / = θu'1 it follows from (38) and (41) that

Fθ(t) =

<

(42) = F-Θ(t)

as in (35). Because u < ύ iff ί > βδ"1, we thus have the following result:
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PROPOSITION 3.2. Let u = unot^n denote the unique solution to (40) in the in-
terval (0, (nα + 1)"1), where υ(u) is defined by (37). Then Fβ(t) > Fβ(t) whenever

(43) r(M)<*ei». II

To be useful, of course, Propositions 3.1 and 3.2 require estimates for u^ and
Unat,n- To estimate the former, set v = πα and x = u~x

y then use (29) to rewrite
(33) as

(44) Γ s"-1 e'sds = Γ(i/) - x^e"*

or, equivalently,

(45) Γsu-χe-ads^xue"x

Jx
The substitution w = s — x converts (45) to

Jo \ xj x + w

then integration by parts yields

(47) / fl + ̂ J e^dtϋ = 1/+ 1.

This integral strictly decreases from 00 to 1 as x increases from 0 to 00, hence x
is the unique solution to (47).

A rough lower bound for x = a~* is obtained by expressing (47) as

(48) Γ(ι/ + 1)E(W^ + x~xγ = v + 1

where W ~ G(ι/ + 1,1), then applying Jensen's inequality to obtain

(49) *" > [(rfiTTi))1'1'" TTί] ' ~(€"irV = ° 58l/" "
A sharper bound may be obtained when v > 1 (in fact, equality holds when v = 1):

(49α) u ; 1 > ( J ^ 4 . 1 ^ ) " - \\ ~ ( e ~ i ) " 1 ^ = ° 5 8 ι / a s 1/ -• oo.

A lengthier argument yields a better bound when v > 1:

(50) ύ ; 1 > e-("-i)/a"I^/(H-i) ^ e-i/2,, ^ 0
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These bounds are crude, however, as seen from the following result and tabu-

lation. (We warmly thank Russell Millar for suggesting this approach.)

PROPOSITION 3.3. ύ"1 ~ v as v -+ oo.

PROOF. By (45), x = ώ"1 is the unique solution to the equation

(51) /„(*) = Γ y^e-^y-^dy -1 = 0.
J\

Since fv(-) is strictly decreasing on (0,oo),

(52) fv(a) > 0 => x > α.

Now define

- 1 Γ^
- Γ(v)J.

c

(53) = P[C?(v,i)>χ]_££I.

Then for any 0 < δ < 1, it follows from the Law of Large Numbers and Stirling's
formula that

(Yl - δ)uYe

(54) ^ 1

as v -» oo, since (1 - <!>)e* < 1. Thus, by (52) and (54),

άi,)"1 > 1,

while (z/ώ^)"1 < {y + ϊ)/v by (32), hence the asserted result follows. ||

The following tabulation obtained by Russell Millar indicates that the conver-

gence of (yuv)"1 to 1 is slow:
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1
2
5
10
20
100

1,000
10,000
100,000

1.000
.809
.728
.730
.756
.840
.930
.973
.990

By Propositions 3.1 and 3.3, the crossing point t*(0, θ) satisfies

(55) liminf **(0»f) > i uniformly in 0.

nα-+oo naθ "~

In order to estimate ά^αn? s e ^ v — n a a n d ^ = u~\, then combine (37) and
(40) to obtain

)zue-z.(56) / sv e sds = (n —
Jz/n

The substitution y = s/z converts (56) to

f1

Jl/ny

Since the integral strictly increases from z/"1(l -n"" i /)(< n — 1) to oo as z increases

from 0 to oo, z is the unique solution to (57).

To apply Jensen's inequality, express (57) as

where Y is a random variable with pdf p(y) given by

0 otherwise.

Then

uln"*1 - 1)
EY =

hence
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n - 1 >

nv - 1

[ J
2 L y ( n - 1 ) 1 1

^TΪ ί " (n"+1 - nj Γ

It can be verified that the term in square brackets is positive, hence by taking
logarithms we obtain the following upper bound for z = fi~J:

Λ

(60) ~ (u-

as n —> oo or v —• oo. But (60) is not sharp, as the next result indicates.

PROPOSITION 3.4. ώ~* ~ i/ as n —• oo w zϊΛ α yϊa:ecί.

PROOF. By (57), z = δ~^ is the unique positive solution to the equation

(61) /„,„(*) = jl y^e^-yUy - (n - 1) = 0.
n

Since f^n{') is strictly increasing,

(62) / ^ ( α ) > 0 = > ar < α.

Now define

KM = zue-*U,n{z)/T{v)

Then for any 0 < 6 < 1 and n > 2,

(64) - 1

as n ->oo, since i/ = nα and (1 + 6)e~δ < 1. Thus (62) and (64) together imply
that

limsup(ί/ίtι/>n)~1 < 1,
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while (vύ^n)"1 > {y + 1)/^ by (39), so the result follows. ||

Once again, the convergence of (i/ϋ^n)"1 to 1 is slow. The following tabulations
are given for the case a = 1, so n = v\

W

2

5

10
20

100
1,000

10,000
100,000

1.88
1.92

1.87
1.72

1.39
1.14

1.05
1.02

Propositions 3.2 and 3.4 imply that for fixed α the crossing point f ( 0 , θ)
satisfies

t*(θ θ}
(65) limsup — - < 1, uniformly in 0.

n—*oo nθίθ

Thus, by (55) and (65), we have derived the following approximation for the unique
crossing point of FQ and Fgi

PROPOSITION 3.5. t*(θ,θ) ~ nαθ as n ~> oo, uniformly in θ for fixed θ and

a.

The relation (7) in Section 1 follows immediately from this proposition.

The normal approximation to the distribution of X) Y{ suggests the conjecture

that

(66) t*(θ, θ) = naθ + 0((πα)1 / 2) as na -> oo

uniformly in θ for fixed θ. To support this conjecture, consider the behavior of

ί*(0,0) when

(67)

k n~k

where Λ e { l , . . . , n — 1}. For each real number c, define

(68) tna(c) = na + c(n

Since θ = 1 for each fc,
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Fβ(tnα(c)) = p{(nα)-^2[G(nα,l)-nα]<c}

(69) -> Φ(c)

as nα —• oo, where Φ denotes the standard normal distribution function.
Now consider the following two special cases:

(i) kα —• k0 < oo: here, as nα —»• oo,

(c)) = P[G(kα, 1) < kα +

(70) - P[G(ko,l)<ko].

(ii) kα —*• oo, A / n —»• 7 € [0,1): here,

(71) - . Φ(c 7

χ / 2 ).

Thus, if we define

in case (i),
in case (ii),

it follows from (69)-(71) that

{ > 0 if c < c0

= 0 ifc = c0

< 0 if c > c 0 .

This implies that when (67) holds, then

(74) f(0, θ) = tnα(c0) + o{{nαγ'2) as nα -> oo

in both special cases (i) and (ii), hence the conjecture (66) holds in these cases. In

fact, in case (ii) it is true that

ί*(0,0) = nα + o((nα) 1 / 2) as nα -> oo.

(This approach gives no information for the third special case where 7 = 1* e.g.,

A; = ra-l.)

The conjecture (66) likely follows from an appropriate uniform exponential

bound for the tail probabilities of the weighted sums ]Γ) 0,-ϊί, but we do not pursue

this here.
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