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This paper contains inequalities for the expectations of
permutation-invariant concave functions and Schur-concave
functions of the partial sums of nonnegative exchange-
able random variables. Two majorization inequalities
are derived, and an application in reliability theory is
presented.

1. Introduction and Summary, For fixed n > 1 let X = (Xi,...,Xn)
denote an n-dimensional random vector with density function /(x) that is abso-
lutely continuous w.r.t. the Lebesgue measure or the product measure of counting
measures. XL, . . . ,Xn are said to be exchangeable^ if / is invariant under permu-
tations of its arguments. This paper develops inequalities for the expectations of
functions of partial sums of Xi,..., Xn.

The notion of majorization defines a partial ordering of the diversity of the
components of vectors. Let a = (αi, . . . , αn), b = (61,..., bn) be two n-dimensional
vectors and let α^j > > α[n], 6[X] > > 6[n] denote their ordered components.
a is said to majorize b (in symbols a >- b) if

Σjδ w forΛ= l , . . . , r c - 1

and Σiα t = ΣΊbi. It is known that a y b iff there exists a doubly stochastic matrix
Q such that b = aQ, i.e., b is an "average" of a. A function φ : Rn -> R is said to
be a Schur-concave function if a y b implies ^ ( a ) < Φ0>). For a comprehensive
treatment of majorization and Schur functions, see Marshall and Olkin (1979).
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In an earlier paper Marshall and Proschan (1965) proved the following in-
equality: Let Xi, . . . ,X n be exchangeable and let φ : Rn —• R be Borel mea-
surable, permutation invariant, and concave. If αχ9.. . , α n are more diverse than
61,. . . , bn in the sense of majorization, i.e., if a >- b, then Eφ{b\X\,..., bnXn) >
Eφ(α\X\,..., αnXn) provided the expectation exists. This inequality yields a num-
ber of useful results and implies many previously-known results as special cases
(see, e.g., Corollaries 1-3 in their paper). In this paper, we prove some related re-
sults and discuss an application in reliability theory. The results (Theorems 1 and
2) involve the expectations of functions of partial sums of exchangeable random
variables, and depend on the notion of majorization in a different fashion. For
fixed k < n, let r = (7*1,..., r^) be a vector of positive integers such that ΣJτ t = n.
Let Xi, . . -,Xn be exchangeable random variables and let Y r = (Yf , . . . , Ŷ  )
denote a k-dimensional random vector such that

. y( r) — vn γ.

that is, Y>v' is the sum of rj such X t 's and Ŷ  , . . . ,Y^ do not contain any
common elements. Let s = (si,...,Sfc) denote another such vector and Y^5) be
defined similarly. Let φ(y) = <£(yi,.. .,yjt) denote a real-valued function that is
permutation invariant and concave. We show that (Theorem 1) if s >- r and if the
Xt 's are nonnegative exchangeable random variables, then Eφ(Y^) > Eφ(Y^).
The reasons for considering such a random vector Y and for studying inequalities
of this type arise from certain applications. One such application concerns the
optimal arrangement policy for parallel and series systems in reliability theory,
and is given in Section 4. In Theorem 2 we show that, by imposing an additional
condition on the joint density /, the same inequality holds for all Schur-concave
functions φ.

Since the theorems apply to nonnegative random variables only, a natural ques-
tion is whether the same statements hold for random variables which may take
negative values. We show in Section 3 that the answer is negative even for i.i.d.
normal variables.

2. The Main Results. For the theorems stated in this section, the density
function / of X = (Xi,.. ,Xn) is assumed to be absolutely continuous w.r.t. the
Lebesgue measure or the product measure of the counting measures. The proofs
will be given for the former. For the product of counting measures, simply change
the integral signs to summation signs.

THEOREM 1. If (i) f is permutation invariant and / = 0 for any X{ < 0
(i = 1,..., n), (ii) 0(yi,..., yk) is a permutation invariant concave function, and
(in) s >- r, then

(i)

holds provided that the expectations exist.



Inequalities for Exchangeable R.V.'s 87

PROOF. It is well-known (Marshall and Olkin (1979), Chapter 2) that it suffices
to assume that

Sl > Γi > T2 > S2 = t, Π + Γ2 = Si -r S2 = d

and Γj = Sj for j = 3,. . . , k. Let us define

and Yj = y/ r ) = YJS) for j = 3,. . . , k. Let

(2) g(zl9z2) = g(zuz2 |xo,lfe, •-.,?*)

denote the conditional density of (Zi, Z2) given Xo = (X<+i,.. .yXSl) = X
Yj = yj (j = 3,. . . , k). Then it is easy to check that g(zιy z2) — g(z2, z\) and that

= / J
^( + z2 + u2,

u2,2/3, , Vk)g(zu z2)dzxdz2

+φ(zχ + u2,z2 + uuy3,...,yk)}g(zuz2)dz1dz2

where (uuu2) = (Σ "4 t + 1Xi,Σ^ r i + 1x t ) . Now let (υuv2) = ( Σ ^ + I x t ,θ). Since
xt > 0, there exists an α = ^ € [0,1] which satisfies

ux,z2 + u2) = α(,zi + V l , z 2 + v2) + (1 - α)(zχ + v2,z2

u2, z2 + uι) = (1 - α)(zχ +vχ,z2 + v2) + α(zχ + v2,z2

for every point in {(^1,^2) ' zi > ^2}- Thus for every fixed (xo,j/3,.. -yyk)
every such (zι,z2)y

φ(zι +UUZ2 + U2, 2/3, , yΛr) + Φ(Z1 + ^2, ̂ 2 + tli, 2/3, -, Vk)

+(1 - α)φ(zι + vu z2 + υ2, ̂ 3, -.., Vk) + Oiφ(zx + Ό2J Z2 + vu y3,..., yk).

Consequently, we have
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uy3j..., yk)}g(zu z2)dz1dz2

and the conclusion follows by unconditioning. ||

In the next theorem we change the condition on φ to be any measurable Schur-
concave function, and impose a stronger condition on the conditional density g.

THEOREM 2. If (i) f is permutation invariant, / = 0 for any X{ < 0 (i =
1,..., n), and such that the conditional density g(z\, z2) defined in (2) is a Schur-
concaυe function of (zι,z2) for every fixed (xo, 2/3,..., yk) o,nd every t > 0, (ii)
φ(yi,.. .,yfc) is a Borel-measurable Schur-concave function, and (in) s >- r, then
(1) holds provided the expectations exist.

PROOF. We shall follow the notation developed in the proof of Theorem 1
and compare Eφ(Y^) with Eφ(Y^) for s y r. Again it suffices to assume that
Si > rι > r2 > s2 and rj = Sj for j > 2. Then the conditional expectation of

given (Xo, Y3,..., Yk) = (xo, »3,. , Vk) is

Δ = j j{φ*(z1 + ulyz2 + u2) - φ*(zχ + uΎ + u2, z2)}g(zu z2)dzxdz2

where

Φ*(yu 2/2) = Φ(yi,y2,2/3,, -..,

and g is the conditional density of (ZιyZ2). It is straightforward to verify that,
after following the same steps as in the proof of Theorem J.I in Marshall and Olkin
(1979, p. 100), we have

= I j
J JZi>Z2

Since φ* and g are Schur-concave functions and U{ > 0 (i = 1,2), we have

(zuz2-uχ) y (zι

and Δ > 0. Thus the conclusion follows by unconditioning.
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REMARK. Proschan and Sethuraman (1977) previously proved that if Xi, . . . ,
Xn are i.i.d. nonnegative random variables with a common density that is log-
concave, then the conclusion in Theorem 2 holds. Their proof depends on an
application of the main theorem in their paper and on a TP2 property of the
convolution of log-concave densities given in Karlin and Proschan (1960). It is
noted here that their result now follows immediately from Theorem 2. This is
so because if Xχy.. . ,Xn are i.i.d. random variables with a common density that
is log-concave, then Σ{2X{ and Σ ^ ^ 2 X t are independent random variables with
a common density that is also log-concave (see e.g., Das Gupta (1973, Theorem
4.2)). Consequently, the joint density of ίΣ j 2 X;,Σ^i 2 X;J is a Schur-concave
function and Theorem 2 applies.

In most applications, the assumption on the Schur-concavity of the conditional
density #(21, Z2) is not easy to verify. It is clear that if the following conjecture
concerning the convolution of Schur-concave random variables is true,' then the
assumption holds when / (the joint density of X) is a Schur-concave function. We
state the conjecture in a more general form without assuming that the random
variables are nonnegative.

CONJECTURE. For n = mk and X = (Xi,.. .,Xn) let

Zj = Σ (JLl) m +l^> J = 1? 2, . . ., fc.

If the joint density of X is a Schur-concave function of x for x G $ n , then the
joint density of Z = (Zi , . . . , Zk) is a Schur-concave function of z for z G $tk for
all positive integers k and m.

It is not yet known to us whether this conjecture is true for continuous ran-
dom variables. However, the following counterexample shows that at least for the
discrete case, it is not true.

EXAMPLE. Consider k = m = 2, and assume that ( X ^ X ^ - ^ X i ) takes only
integer values 0,1,2,3. Let Zx = Xx + X2, Z2 = X3 + XA Then P[Zχ = 4, Z2 = 2]
is the probability of the set of the following points:

(3,1,1,1), (1,3,1,1), (2,2,1,1), (2,2,2,0) (2,2,0,2)
(3,1,2,0), (3,1,0,2), (1,3,2,0), (1,3,0,2)

Similarly P[Zχ = Z<ι — 3] is the probability of the set consisting of

(2,1,2,1), (2,1,1,2), (1,2,2,1), (1,2,1,2),
(2,1,3,0), (2,1,0,3), (1,2,3,0), (1,2,0,3),
(3,0,2,1), (3,0,1,2), (0,3,2,1), (0,3,1,2),
(3,0,3,0), (3,0,0,3), (0,3,3,0), (0,3,0,3).

If the joint density of (X\, X2, X3, X4) takes values of 1/14 for each of the points
(3,1,1,1), (2,2,2,0), (2,2,1,1) and each of their permutations, and zero otherwise,
then it is a Schur-concave function on the product of integer space, and we have
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3. An Example For Random Variables Which Are Not Nonnegative.
It might be tempting to think that results similar to our Theorems 1 and 2 also
hold when the condition that Xt > 0 a.s. is removed. This is not true even for i.i.d.
normal variables. In the following, we give an example to show that the conclusion
of Theorem 2 does not hold without this condition. An example for Theorem 1
can be obtained similarly.

Consider, for n = 2m, independent normal variables Xi,. . . ,X n with mean
zero and variance one. For t < m consider

Y\ == Σ t = 1 X t , 12 = Δjt+ιXi)

and denote W = Y1-Y2yV = Y1 +Y2 = ΣyXf . Then (W> V) has a bivariate normal
distribution with means zero, variances n, and correlation coefficient (2t/n) — 1.
Thus the conditional distribution of W given V = v is normal with mean ~(2£—n)v
and variance &\y\v=v = ^(n ~~ -0/n Now choose n = 4, s = (3,1), r = (2,2).
Clearly the conditional density function #(21,22) of (^1^4) given Xo = (X
is Schur-concave. For an arbitrary but fixed e > 0 let us define

_ /

"1
_ J -(yi - ί/2)2 for 0 < I y

0 otherwise,

then φ is also Schur-concave. From the joint distribution of (W, V) clearly we have

E [{φ(XuΣ
4

2Xi) - φ(ΣlXi,Σ4

3Xi)} I ΣiXi = o]

= -Var((Xx - Σ4

2Xi) \ V = Σ\X{ = 0) + Var((Σ?X, - Σ4

3Xi) \V = 0)

= (-3 + 4) = l > 0 .

Thus by continuity there exists a small c > 0 such that

E [φ(X1,Σ
4Xi) - φ(Σ\XuΣ

4Xi)\

= Γ E [{- I Xx - Σ\Xi | 2 + I Σ\Xi - Σ\Xi |2} | Σ ^ . = v] dP [E^X,- < v] > 0.

4 An Application in Reliability Theory. In this section we state an ap-
plication of Theorem 1 in reliability theory. Consider n exchangeable components
with life lengths Xi,.. .,Xn which are obviously nonnegative. If the components
are manufactured independently, then the joint density / of the X 's is the prod-
uct of the common marginal densities; otherwise if they are manufactured under
the influence of some common factors or under a common environment, then it is
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well-known that / is a mixture and the random variables are conditionally i.i.d.
In either case / is permutation invariant.

Suppose that a system consists of k subsystems, and that the j-th subsystem,
consisting of rj > 1 such components, is required to operate properly with one
component in operation and the others in a standby capacity (j = 1,..., k). Then
the life length Yj of the j-th subsystem is Σ^;;;J^_ 1 + 1 X t . Let Y(1) < Y(2) <
••• < Y(k) denote the order statistics of Yί,...,Y& and r = (ri, . . . ,r*) be an
allocation vector such that rj > 1 and Σ*rj = n. When the subsystems are
connected in series, then the life length of the system is Y^y On the other hand
if they are connected in parallel, then it is Y(k) Now for fixed ct > 0, Σf Cjy^ is a
permutation invariant and concave (convex) function of (yi,..., yk) if c\ > > Ck
(if ci < < Ck). Consequently, Theorem 1 provides a partial ordering for the
expected life length of the system for series and parallel systems. In particular,
for series systems the optimal allocation policy is such that | rj - ry | < 1 for
all j φ j ' , and for parallel systems an optimal policy is that ri = n — fc + 1 and
r2 = = rjb = 1.
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