
Chapter 2

The class of analytic models

1 Introduction

Let {Pβ : β E B C V} be a statistical model, i.e., a family of probability
measures on some space E, parametrized by β which takes values in (a subset of)
a vector space V of finite dimension, dim V = p, say. Let f{y,β),y G E, denote (a
version of) the densities with respect to some measure v on E.

For asymptotic considerations it is often convenient to be able to expand the
densities as

f(y\β) ~ /(y; A>)eχ P | A ( / ? - β0) + ±D2(β - βo)2 + •••}, (1.1)

where Dk = -D^log/(y;/?0) is the A th differential of the log-likelihood function
evaluated at βo. For asymptotic calculations based on the distribution Pβ0 the
natural procedure would be to base the calculations on a truncated version of this
series. If this is 'legitimate' the model is simplified to a curved exponential family.
The problem is what magnitude of error is the result of such a truncation, partly
for the approximation of the density itself when it is used, e.g., in the construc-
tion of the maximum likelihood estimator, and partly for the approximation of
the measure Pβ for the purpose of investigating properties of estimators and test
statistics.

It is the purpose here to define a class of models, the analytic models, which is
large enough to cover a wide range of statistical models, and which at the same
time is sufficiently well-behaved to allow expansions like the one above. It will
be shown, as a goal in itself, that a model which is analytic satisfies most of the
commonly used conditions of asymptotic likelihood based inference — except that
it may be discrete as well as continuous. To some extent this is the content of the
lemmas in Section 3, but in particular this claim will be justified in Chapter 5.

One way of defining the class of analytic models is to take as the starting point
the requirement that the infinite series in the exponent in (1.1) is absolutely con-
vergent, not for all β in the parameter space, but for all β in some neighbourhood
of βo This neighbourhood may not depend on the observation y. In combination
with a uniform moment condition on the I V s this condition guarantees that the
model can be embedded locally into an infinite-dimensional exponential family,
and it turns out that many of the properties from curved exponential families are
preserved. That the embedding is only defined locally is a major difference com-
pared to theories of infinite-dimensional exponential families as defined by various
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26 SECTION 2.1 Introduction

authors, since it is a much weaker requirement than the convergence of the expan-
sion throughout the sample space. This is demonstrated by a number of examples
of analytic models in the next chapter.

The requirement of the absolute convergence of the Taylor series expansion of
the log-likelihood function around a fixed point is formulated below as the re-
quirement that the log-likelihood function is analytic at that point. One of the
regularity conditions of asymptotic results which is most difficult to verify is often
an integrability condition on the remainder of a Taylor series expansion of the
log-likelihood or a related function, usually formulated as an integrability condi-
tion on the supremum of a certain derivative within a neighbourhood of the fixed
parameter point. This supremum stems from the 'intermediate point' evaluation
of the remainder of the Taylor series expansion in question. Thus, if g(z) is some
real (or complex) function, the remainder

9(z) ~ 9(zo) - Σ l

is usually bounded by {(K + 1)!}"1 |5X + 1(^*)| \z - zo\
κ+ι when g is K + 1 times

continuously differentiate. In statistics, when g is random, the moments of this
bound will generally be in question and they are often hard to estimate. Now, if
g is analytic, i.e., its infinite Taylor series expansion is absolutely convergent and
represents the function in a neighbourhood of the chosen point, then the remainder
above may be written as

K+l

which only involves derivatives at the point ZQ. Despite the fact that this sum is
infinite it is often much easier to handle than the supremum of a certain derivative
over some neighbourhood. Therefore it may be easier to verify regularity conditions
if it can be assumed that the functions involved are analytic.

For statistical models, however, it is not sufficient to assume that the likelihood
function is analytic; for most results moment conditions on the derivatives are also
required. Hence the definition of analytic models involves a moment condition
on the log-likelihood differentials as well as the condition that the likelihoods are
analytic, as the two major requirements.

A quite different approach towards the definition of this class of models starts
from the orders of magnitude of the cumulants of the log-likelihood differentials,
usually in terms of powers of n""1/2 where n is the sample size. Anyone who has
been, deriving higher order asymptotic expansions in relation to likelihood based
inference will have noticed that the second order terms, i.e., the terms of order
n""1/2, involve the third cumulant of the score statistic Di, the covariance between
Dι and Z^? and the mean of JD3, while the third order terms, i.e., the terms of order
n" 1 , involve the fourth cumulant of Di, the covariance between D\ and D3, the
third (mixed) cumulant of D\, D\ and D<ι, and so on. The rule is that an increase
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by one of either the order of the cumulant or of the order of one of the differentials
involved, is accompanied by a decrease of the order of magnitude by the factor
n" 1 / 2 , not in the magnitude of the cumulant itself, but in the order of magnitude
of the term in which it appears. On further exploration, cf. Section 4, this fact may
be used to define not only the class of analytic models, but also the 'asymptotic
rate' n""1/2. The idea is to postulate bounds on the infinite number of cumulants
of log-likelihood differentials, in which powers of the quantity corresponding to
n" 1 / 2 appear as factors. The existence of such bounds is the essential requirement
for the model to be analytic, and the factor itself is the quantity defined as the
'index' of the model in Section 5. In several ways the index takes over the role of
n" 1 / 2 for general sequences of models, and in Chapter 4 it is shown that several
asymptotic results can be derived from the condition that the index tends to zero
for a sequence of analytic models.

In Section 2 below we define the class of analytic models by the first approach,
i.e., by the requirement that the log-likelihood function is analytic combined with
a moment condition. The equivalence with the other definition, in terms of bounds
on the cumulants of the log-likelihood differentials, is proved in Section 4. Some
basic auxiliary results for analytic models are derived in Section 3. As mentioned
above the index of an analytic model is defined in Section 5 where its behaviour in
connection with independent observations is also investigated. Some possibilities
of obtaining analytic models from other analytic models are explored in Section 6.
These include analytic reparametrizations, and reductions by sufficiency and an-
cillarity.

While the material until Section 6 is being used in later chapters, the last two
sections give some independent results for potential use in asymptotic theory, but
not developed further here. Thus Sections 7 and 8 can be read independently
of each other, or omitted at first reading. In Section 7 we justify the type of
approximation of the model by a curved exponential family as discussed in the
beginning of this section. The relation to the asymptotic sufficiency of a finite
number of the log-likelihood differentials should be noticed here. In Section 8 we
explore the alternative approach to the truncation of the Taylor series expansion
of the exponent in (1.1), namely to keep the infinite series and work within the
infinite-dimensional exponential family. This approach is not carried far here, but
some elementary properties of the infinite-dimensional family are derived.

2 Definition of an analytic model

Let {Pβ : β £ B CV} be a, family of probability measures dominated by some
measure i/ona measurable space E, where B is a subset of the finite dimensional
real vector space V with dimF = p and equipped with an inner product norm
denoted || ||. We let f(y;β) denote the density of Pβ with respect to v at y G E.
Since these densities are not generally uniquely determined by the measures and,
furthermore, smoothness properties as well as some statistical concepts depend on
the choice of densities, we shall think of these as part of the model. Hence we refer
to the model as {(£, i/), /(•; β):βeB CV}oτ often as { /(y; β) : β G B C V } or
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even f(y; β) in somewhat more imprecise notations when the rest is understood. In
examples, when the distributions of the model are stated, we shall usually assume
that the obvious choice of densities has been made.

When log f(y,β) exists and is k times differentiable with respect to β at some
point βo we let the ^-linear symmetric form

Dk (β0) = Dk

β log f(y; βo):Vk->R (2.1)

denote the fcth differential of log/ with respect to /?, i.e.,

Dk(β){υk)= -^logfiy β + hv), h 6 R, (2.2)

evaluated at h = 0, is the fcth derivative in the direction υ, where we have used
the abbreviation vk = ( υ , . . . , v) £ Vk.

Recall that two measures P and Q, say, are said to be equivalent, or mutually
absolutely continuous, if for any measurable set A, P(A) = 0 if and only if Q(A) =
0.

Definition 2.1. A statistical model {(E,v)J( ,β) : β £ B C V } is said to be
analytic at a point βo £ int(5) if there exists a neighbourhood U (βo) C B and a
measurable set E\ C E such that the following conditions hold:

(i) The measures { Pβ : β £ U(βo)} are mutually absolutely continuous,
(ii) The set Eλ satisfies Pβo(Eι) = 1, and f(y βo) > 0 for all y £ Ex.

(Hi) For all y £ E\ the function β H-» /(y; β) is measurable with respect to the
Borel σ-algebra on V and analytic as a function ofβ in U(βo).

(iv) There exist a constant ρ(βo) > 0 and a function M( ; β0) : E -> R such that
M(Y,/?o) has finite exponential moments with respect to Pβ0 and

\Dk(β0)(vk)\ < k\M(y]βo)p(βo)k-1\\v\\k (2.3)

for all v £ V, k £ N and y £ £Ί.

Definition 2.2. A statistical model is said to be analytic in Bo C B if Bo is a
subset of B C V and the model is analytic at every point /Jo E ί o

REMARK 2.3. Some comments to Definition 2.1:
(1) It should be noted that although the name 'analytic' for brevity is used for

these models one should not think of the definition as a requirement that
the densities are analytic plus some regularity conditions. There is a strong
moment condition (iv) on the derivatives of the log-likelihood function also,
whereas the conditions (i) and (ii) are more like regularity conditions.

(2) Notice that the measurability condition on the density function and the
requirement that it is positive, together imply the measurability of the
derivatives of the log-density. In fact, the measurability is also implicit in
the assumption of integrability, cf. the moment condition (iv). In the sequel
we shall usually omit comments on measurability considerations.
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(3) The concept of analyticity of the model at βo does not depend on the choice
of norm on V. A change of norm is simply compensated by a corresponding
change of M(y;βo) and ρ(βo).

(4) The definition depends on the model also through the choice of versions
of densities. This may not be ideal, but, as indicated above, as long as
likelihood inference and other inferential procedures are depending on this
choice such a dependence seems unavoidable if statistical properties are to
be shown to follow from the definition. Also, in this way, it is guaranteed
that we are working with densities chosen in a sensible manner. When (i)
is satisfied it is, of course, always possible to take v = Pβ0 and f(y,βo) = 1
in which case (ii) is automatically satisfied.

(5) To clarify the meaning of the condition (iv) consider the log likelihood
function, g(h) = logf(y;βo + hυ),h G R, in a particular direction v G V
from βo. As a function of h G R it is analytic at zero, because of (iii), with
derivatives

</*)(/*) = Dk(β0)(vk), k € N

satisfying inequalities of the form \g(k\h)\ < k\MCk where M depends
on y G E\ and C on vy C being proportional to ||v||. Since the radius of
convergence is at least C~λ we see, e.g., by taking ||ι;|| = 1, that (iv) implies
the radius of convergence at βo of log f(y β) to be bounded below by some
positive constant that does not depend on y G £ i , but, possibly, on the
model and on βo. As a second implication of (iv), notice that the factor
M(Y;/?o), having exponential moments, ensures the same property for all
derivatives of the log-likelihood derivatives, even in some uniform manner.
In particular all moments of these derivatives exist for an analytic model.

3 Basic lemmas for analytic models

In this section we shall establish some properties of analytic models. Thus, it
will frequently be assumed that we have to do with an analytic model, i.e., that the
conditions of Definition 2.1 hold. To avoid repetitious statements of trivial kinds
we shall then refer to the functions />(/?o)> M(y; βo) and the set U(βo) as any given
such for which the conditions hold, even though these objects are not uniquely
determined by the model. For similar reasons we shall avoid the statement for
all y G E\ by assuming without mentioning that the model is restricted to the
set El, or equivalently simply by convention. Also, unless otherwise stated, the
norm || || refers to a given inner product norm on V, as in Definition 2.1, but often
results are extended to cover the case when a semi-norm fulfils condition (iv) in
Definition 2.1. We shall frequently use abbreviations like M(y) and p for M(y β)
and />(/?), respectively, evaluated at the obvious point, usually /?o, but for ease of
reference such notations will be mentioned in connection with their application.

The results in this section are all of somewhat technical nature and mainly
intended for use in later proofs, although they also illustrate the mathematical
nature of the models considered.
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Lemma 3.1. Assume that the model {f(y,β) : β G B C V} is analytic
at βo and that || || is a semi-norm on V satisfying the condition (iv) of Defini-
tion 2.1. Then there is some positive constant α < p(βo)^1 and an s > 0 such that
Eβexip{sM(Y;βo)} is bounded uniformly in β in the set

Uα(βo) = U(β0) Π{βeB:\\β- βo\\ < α }. (3.1)

Proof. We use the abbreviated notations M(y) = M(y;βo),p = p(βo) and
Dk = Dk(βo). Notice that M(y) is non-negative. For β G Uα(βo) and s > 0 we
have

Eβexp{sM(Y)} = jexV{SM(y)}(f(y;β)/f(yyβ0)) dPβo(y)

= Jexp {sM{y)

where w = /? - /30, because f(y]β) and hence log f(y;β) is analytic in /? in Uα(βo)
for sufficiently small α. To see this, notice that f(y βo) > 0 and that the ra-
dius of convergence for the Taylor series expansion of \ogf(y;β) is at least-p"1

independently of y. Thus,

EβexφM(Y)} < ίexφM(y)
J

<Eβΰexj>{M(y)[S + α

which is finite for sufficiently small α and s. |

In the sequel we shall be using the norm of a symmetric fc-linear form B on V
which should be recalled to be given by

\\B\\=sup{\B(vk)\:\\v\\<l}, (3.2)

cf. (1.1.19), a definition which is extended to cover semi-norms also.

Lemma 3.2. Assume that the conditions (i)-(iii) of Definition 2.1 hold. Then,
for any K G N, condition (iv) is equivalent to the condition that both of (1) and
(2) below hold:

(1) (Di(/?o),..., Dκ(βo)) has exponential moments with respect to Pβ0.
(2) The condition (iv) in Definition 2.1 holds for k > K + 1.

Proof. As above, the abbreviations M(y), p and D^ implies evaluation at β = /?o
Assume first that (iv) in Definition 2.1 holds. Then (2) above is trivial and for
any k G N, (iv) immediately shows that Dk(υk) has exponential moments for any
fixed υ £ V. Hence the vector (2?i,... ,-D/c)5 being of finite dimension, also has
exponential moments.
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Next, assume that (1) and (2) above hold for some fixed Jί, with a function M
that we denote MK, and />/<- in place of p. Let

M(y) = sup I Mκ(y), ^ 1 ^ ) 1 / ( A 1 HI*) : * = 1, , * , * € V \ {0}

where p = px , if this is different from zero, otherwise we may take /> = 1, say.
Now, by construction, the inequality in (iv) in Definition 2.1 is fulfilled for all
k G N and all v E V. Furthermore M(y) has finite exponential moments because
it is bounded by a maximum of a finite number of variables with finite exponential
moments. |

Lemma 3.3. Assume that the model {f(y,β) : β G B C V} is analytic at
βo and that || || is a semi-norm satisfying condition (iv) in Definition 2.1. Let
(Ak : k G N ) be a sequence of linear mappings from Symfc(V;R) to R or C, i.e.,
mappings from the spaces of Dk's. Assume that for some c > 0,α < p(βo)~1 and
m > 0 the Afc's are bounded by

M l < £α** m , (3.3)

where the norm is induced by the norm in (3.2) by the definition

\\Ak\\ = sup{ |A,(5) | : B G Symfc(V;R), | | £ | | < 1}, (3.4)

cf. (1.1.21). Then the infinite sum

(3.5)

is absolutely convergent almost surely (u) and, given α and m, for sufficiently small
c it has uniformly bounded exponential moments with respect to Pβ for β in some
neighbourhood of βo. The same conclusion holds for sufficiently small α when m
and c are given.

Proof. From (iv) in Definition 2.1 it follows that ||2?*(A))|| is finite for all k G N
and hence that

\S\ <
k-l
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where the argument βo has been omitted from M and p. The sum in the last
expression is convergent and since the sum is also non-decreasing in a the assertions
concerning exponential moments follow from Lemma 3.1. I

The inclusion of the factor km in (3.3) facilitates application, but it is easy to
see that the result is equally strong without this factor.

The result in Lemma 3.3 is used first of all to demonstrate the existence of the
infinite-dimensional exponential family investigated in Section 8.

The main point of the following lemma is that, in analogy with analytic func-
tions, a model that is analytic at some point is also analytic in a neighbourhood
of this point.

Lemma 3.4. Assume that the model { f(y; β) : β G B C V } is analytic at
βo and that || || is a semi-norm satisfying condition (iv) in Definition 2.1. Let
Uα(βo) denote the set defined in (3.1). Then for any α < p(βo)"1 the following
two assertions hold:

(1) /(y; β) > 0 for all β G Uα(β0) and y G Et.
(2) There exists a constant p > 0 and a function M : E\ —> R that has expo-

nential moments with respect to PβQ, such that

\Dk(β)(vk)\<k\M(y)pk-1\\v\\k (3.6)

for all β G Uα(βo), v G V and y G E\. For some sufficiently small α > 0 the
following two assertions hold:

(3) The random variable M(Y) in (3.6) has uniformly bounded exponential
moments with respect to all Pβ,β G Uα(βo)-

(4) The model is analytic in Uα(βo) and the set E\, the (semi)-norm used in
(iv), the constant p, and the function M(y) in Definition 2.1 may be chosen
independently of'β G Uα(βo)

Proof. From the conditions in Definition 2.1 we know that f(y βo) > 0 and
that f(y β) is analytic for any y G E\. Hence, for any fixed y G ία, log f(y β)
is analytic in the subset of U(βo) on which f(y;β) > 0. Condition (iv) in Defini-
tion 2.1 implies that within any of the sets Uα(βo) with αp(βo) < 1, the function
log f(y;β) has an absolutely convergent power series expansion around /?o, imply-
ing that f(y;β) is positive on this set. To prove (2), consider a fixed β G Uα(βo)-
Let w = β — βo and use the usual convention that an omitted argument implies
evaluation at β0. Then

OO .,

Σ (7=1)1
j—k

j=k
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which proves (3.6) if we take p = p/(l — ap) and M(y) = M(y)/(1 — α/>)2.
Since the bound (3.6) holds for /?o, in particular, it follows directly from Lemma

3.1 that M(Y) has uniformly bounded exponential moments with respect to all β
in Ua(βo) for sufficiently small a > 0. Thus, (3) and hence (4) is proved. I

Lemma 3.5 Assume that the model {f(y]β) : β G B C V} is analytic at β0.
Tien any integral of the form

kl (β)(vk>)) {Dkm (β)(vk

m-)) f(y; β) du{y) (3.7)

is analytic at βo and its derivatives at βo can be found by successive differentiation
under the integral sign.

Proof, Let G(y, β) denote the integrand and DkG(y) its fcth differential with
respect to β at βo. As usual we frequently omit the argument βo from any function.
We know that for sufficiently small α > 0 the integrand is analytic in the set Uα(β)
defined in (3.1) for any fixed i/, and therefore it equals the sum of its Taylor series
expansion at βo For each fixed y the differentials satisfy inequalities of the form

\DkG(y) {wk) I < c{y)k\ α{y)k\\w\\k, k G N (3.8)

for some α(y) and c(y), and any w G V. We shall prove that the integrals of the
differentials satisfy similar inequalities except that α and c, may not, of course,
depend on y. Then it will follow from the theorem of majorized convergence that
integration and summation can be interchanged and hence that the integral has
an absolutely convergent power series expansion around βo with terms bounded
by a geometric series. Hence the integral is analytic and the sum of the integrals
of the individual terms is its Taylor series expansion around βo, proving that the
derivatives of the integral are identical to the integrals of the derivatives.

Each of the components Dkj(β)(vj3) in G(y β) has a Taylor series expansion
with terms satisfying (3.8) with c(y) = M(y), and α(y) — p which is independent
of y. Hence, the product of these m components has a Taylor series expansion in
which the fcth term is bounded by

cM(y)mαk\\β-β0\\k, (3.9)

for some constants c and α that do not depend on y but, possibly, on fci,..., km

and on ϋ i , . . . , % . In fact, any α > p will do here with a proper choice of c. An
expansion of f(y,β)jff(y,βo) as in the proof of Lemma 3.1 yields

f(y,β)/f(y;βo) < eχP γjM{y)P

k-ι\\β - βo\\k , (3.10)
U=l J



34 SECTION 2.3 Basic lemmas for analytic models

where the individual terms in the sum are bounds for the corresponding terms in
the Taylor series expansion of the exponent. Therefore, if we multiply together
the bounds from (3.9) and (3.10), and expand in powers of \\β -/?o||, then the
individual terms of the expansion will also be upper bounds for the corresponding
terms of the expansion of the entire integrand. By use of (1.2.22) and (1.2.27) we
get the following expression for the Kth. term of the product of the bounds in (3.9)
and (3.10),

K

\\β - βo\\κ < cM(y)maκ + Ϋ^cM{y)maκ-k^Y/k\ f[ ({pj~^
( k=\ ' a j-\

= \\β - βo\\κ I cM(y)maIζ + £ cM(y)maκ-k ^ M{y)Σa'pk~ Σa' / [ ] aj\

= \\β-βo\\KlcM(yΓaκ + cΣaK-kΣ-,M(yr+mpk-n(k-Λ\, (3.11)
n = l

where ^ α denotes the sum over T(k), i.e., over all sequences (αi , . . . ,<*&) 6 N§
with Σjoij = k. If s > 0 is chosen such that Eexp{sM(y)} = C(s) < oo, then

Έ{M(y)n} <n\C(s)s-n

for all n £ N and therefore the integral of (3.11) is bounded by

\\β-βo\\κ{cm\C{s)s-maκ

-maκ< \\β-βo\\κ{cm\C{s)s-ma

+ c 2 a«->C{8)s-<»(k + m)» Σ *" V" n (*) }
fc=l n = l \ / J

< 11/9 - βo\\K I cm!C(β>-mακ + c^ακ-*C(θ>-m(fc + m)m β + p\ \

which by,simple considerations shows that the integral of the Taylor series expan-
sion is bounded by a geometric series. Hence the lemma follows from the argument
given above.

Note: It would not have been difficult to show directly that the differential of
Gin a neighbourhood of βQ is bounded by an integrable function, and therefore
integration and differentiation can be interchanged. Also, it is easy to see that
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the derivative will be a linear combination of terms of the same form, showing
that repeated differentiation of the integral is permissible by differentiation of the
integrand. However, to show that the function is analytic an argument like the one
above is required, or a direct evaluation of the integral of the derivatives, which is
more difficult. |

Lemma 3.5 implies that the equation

j f(y; β) dv{y) = J exp{log /(y; β)} du(y) = 1 (3.12)

may be differentiated repeatedly under the integral sign. Thus, the lemma implies
the validity of the usual relations between moments of the log-likelihood deriva-
tives. These moments are defined as the multilinear forms

(3.13)

for vi,..., vm 6 V. Then the first three of the relations between these, evaluated
at any β where the model is analytic, are

μι = 0 ,

μ<ι + μn = 0,

= 0eLin3(V;R) (3.14)

where sym{ } denotes the symmetrized version of the multilinear function in
question, obtained by averaging over all permutations of the arguments.

It follows from Skovgaard (1986a), see also Lemma 6.6, that the same results
hold if moments are replaced by cumulants throughout. These cumulants of the
log-likelihood derivatives are defined as the multilinear forms

X * .••*»(/*) = cumβ(Dkl(β),...,Dkm(β)) : V ^ X xVk--,R,

(3.15)

where it should be noticed that the variables Dkj(β)(vjJ) are one-dimensional,
and that the multilinear form Xki—km(β) is symmetric under permutations within
each of the components Vkj, but not in general for other permutations. The same
is true for the moments defined in (3.13). The conclusion of the previous lemma is
that the relations, of which the first three are given in (3.14), hold for the moments
and for the cumulants of the log-likelihood derivatives.
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In particular, the Fisher information, /(/?), which by definition equals the sym-
metric positive semi-definite bilinear form χn(β) satisfies the equality

I(β) = Xn(β) = -X2(β) (3-16)

if the family is analytic at β.

There are a few conditions to check before the result in Skovgaard (1986a) can be
applied, but these follow from Lemma 3.5. It is a trivial consequence of Lemma 3.5
that all the cumulants in (3.15) are analytic at /?o, because they are polynomial
functions of the moments in (3.13).

Corollary 3.6. Assume that the model { f(y;β) : β G B C V } is analytic at β0

and that p(βo) = 0 in Definition 2.1. Then Pβ is constant as a function of β in a
neighbourhood of β0.

Proof. From (iv) in Definition 2.1 it is seen that D<ι(βo) = 0 for all y G E\.
By Lemma 3.5, this implies that I(βo) = ~X2(A)) = 0. Thus Dι(βo) is seen
from (3.14) and (3.16) to be degenerate at zero, just as Dk(βo) for any k > 2.
Therefore the Taylor series expansion of log f(y; β) around β0 is constantly zero.
Since log/(y;/?) is analytic in some neighbourhood of βo independently of y G E\,
cf. (4) of Lemma 3.4, it follows that f(x',β) and hence Pβ is constant in this
neighbourhood. |

The following lemma gives one of the few available global properties of analytic
models and shows that the class of analytic models does not comprise models for
which the support of the distribution depends on the parameter.

Lemma 3.7. if a model parametrized by β G B C V is analytic in an open,
connected set BQ G B, then any two measures Pβ± and Pβ2, β\,βi G Bo, are
mutually absolutely continuous.

Proof. Let β\ G Bo be an arbitrary fixed point and consider the subset, S say,
of Bo on which the measures are dominated by Pβλ. By the assumption that the
model is analytic in Bo it follows that each measure in Bo dominates all measures
in a neighbourhood. Since dominance is a transitive relation it follows that the set
S is open. Now, consider a sequence of /3's in 5, that converges to a point βo in
Bo- Because the model is analytic at /?o, the measure at this point is dominated
by all measures in a neighbourhood and hence eventually by one of the measures
in the sequence considered. Thus, S is also closed in Bo and since it is not empty
it equals the entire set 2?Q. I
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4 Equivalent definitions

The main result in this section is Theorem 4.2 below that gives three conditions
that each may replace condition (iv) in Definition 2.1. The implication of the
theorem is that the bound in (iv) may be proved on the basis of certain inequalities
for the cumulants of the log-likelihood derivatives rather than from bounds on the
random variables themselves. The key to this result is the lemma given below
which, in turn, relies heavily on the result in Lemma 1.5.3.

Lemma 4.1. Assume that the model {f(y;β) : β G B C V} satisfies the
condition (ii) of Definition 2Λ and that f(y]β) is infinitely often differentiable at
βo for all y G E\. Assume also that two constants c > 0 and τ > 0 exist such that
the cumulants of the log-likelihood derivatives at βo, defined in (3.15), satisfy the
condition

. Aτ(A>) {vkm) I < c2(m - 1)! k\mrkm-2\\υ\\km (4.1)

for all v G V, k G N, and m > 2, where || || is some inner product semi-norm
on V. Then there exists a function H( βo) of E into R such that on a set of
βo-probability 1,

\{Dk(βo) ~ Xk(βo)}(vk)\ < ck\H(y;βo)p(βo)k-1\Πk (4.2)

for all υ ζV, where p — (2ey/p)τ, p = dim V, and moreover

Eβΰ (exv{δH(Y;β0)}) < 7(ί>)exp {2p(eδ)2/(l - δp/c)} (4.3)

for all δ < c/p, where η{p) is some constant depending on the model only through
the dimension p.

Proof. As in previous proofs we omit the argument βo from the various functions.
Notice first that if r = 0 then all D^ are degenerate, except possibly Dι which
has a normal distribution because all cumulants after the first two vanish, and the
result is easy. Thus, we assume that r > 0. We also exclude the trivial case c = 0
from the proof. Let p = (2ey/p)τ and define for each fixed v G V, k G N and h > 0
the event

Ak(h; v)={yeE: \(Dk - χk)(vk)\ < ck\ hp^Wvf } (4.4)

and let

Ak(h) = Γ\υ€VAk(h;v),

= D(ζL1Ak(h)J

= inf{Λ : y G A(h)} G [0,oo]. (4.5)

The mth cumulant of Dk — χk satisfies (4.1) for all m G N while the first cumulant
is zero. Hence, the Taylor series expansion of the cumulant generating function in
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terms of the cumulants is bounded by a geometric series in powers of fc!rfc||t;||fc,
and consequently the cumulants identify the distribution and for any positive t <
(k\τk\\v\\k)~1 we have

Eexp{t\{Dk-χk}(vk)\}

< Eexp {t{Dk - χk}(vk)} + Eexp {-t{Dk - χk}(vk)}

= exp > —-
m=2 m'

oo o

+ exp

oo 2

< 2exp ^ - ^ ^ ( m - l ) ! λ ; ! m τ ' " n - 2 | M | f c m

m=2

The event Ak(h) involves the simultaneous occurrence of the events Ak(h; υ) for all
v. To obtain a bound for the probability of this event we use the result in Lemma
1.5.3. Assume for the moment that || || is a norm, i.e., the inner product is positive
definite. Let (vi,..., υp) be a basis on V that is orthonormal with respect to this
inner product. Consider the finite set of vectors

For the number of elements \Vk\ in Vk we have the estimate (1.5.8)

\k\

and the result in Lemma 1.5.3 tells us that for all v G V with ||τ;|| < 1,

\(Dk - χk)(vk)\ < (eyP) f csup { \(Dk - χk) (wk) I : w € Vk } .

Therefore, for fixed v ζV with ||υ|| > 0, consider the estimate obtained by use of
Chebychev's inequality in the form of (1.4.36) with t — ftp (cfc!rfc||ΐ;||fc) , where
δ < c/p,

< exp {-

2exp | y ί 2 * ! 2 τ 2 f c - 2 | M | 2 * / (1 - i/b!r*||t>||fc) j
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< 2exp ί-62kh + ±δ*(2ejp)2/(l - δp/e)\ . (4.6)

Thus, it follows that

h}<l- P(A(h))

fc=i vevk

OO

2 IWexp {-δ2kh + 2p(δe)2/(l - δp/c)}
k=l

1 oo

} J^(fc +p)pexp {-δ2kh} . (4.7)

As the final step we obtain

E(exp{Λff(y)}) =

- 2 * + 1 exp

= l 2 " + 1 exp {2K^e)2/(l - δp/c)}

from which the inequality (4.3) follows because the sum is convergent for any p.
Notice that it is permissible to interchange integration and summation, leading to
the last equality above, because the functions involved are positive. Evidently, the
inequality implies that the function H(Y) is finite with probability one.

Now consider the modifications required for the general case of a semi-norm || ||
generated by a pseudo inner product ( , •). Let (vi,..., vp) be a basis on V which
is orthogonal with respect to this pseudo inner product and has either \\VJ\\ = 1 or
\\vj\\ = 0 for all j . For each n G N consider the inner product that is obtained from
( , •) by defining (vi,..., υp) to be orthonormal, except that any base vector Vj with
\\VJ\\ = 0 is replaced by nvj, which consequently is defined to have unit length with
respect to this new n-norm, denoted || | |n Notice that, as n tends to infinity, the
n-norm decreases monotonically towards the original semi-norm. Now define the
events in (4.4) and (4.5) as before, except with the norm || | | n in (4.4). Denote
the events defined in this way by Ajt>n(/ι; v), AkiU(h) and An(/ι), respectively. The
event Ak,n {h/(ey/p)k; v) contains Ak (h/(ey/p)k] υ) for which we still have the last
estimate in (4.6), which trivially is valid for any δ > 0 if \\υ\\ = 0. Therefore the
estimate in (4.6) applies to Ak,n {h/(ey/p)k; υ) also, and Lemma 1.5.3 provides the
same bound for 1 - ¥{AkiTl(h)} as is obtained by summing only over v G V* in
(4.7). For n G N, the events Ak}n(h) form a decreasing sequence of events, the
probability of which are bounded below by the same number. Hence, this bound



40 SECTION 2.4 Equivalent definitions

applies also to the intersection which is the event Ak{h). Thus, the bound in (4.7)
still applies and the argument is completed as before. |

We are now in position to prove the main theorem in relation to the definition
of analytic families. It implies that instead of obtaining uniform bounds for the
random log-likelihood derivatives as in condition (iv) in Definition 2.1, it is suf-
ficient to obtain uniform bounds for their cumulants. This may not always be
easier in concrete examples, but for theoretical considerations in relation, e.g., to
convolutions of experiments, it turns out to be useful.

Theorem 4.2. Assume that the conditions (ii) and (in) of Definition 2.1 hold for
the model { f(y; β) : β G B C V } , and let ( , •) be a given pseudo inner product
on V with corresponding semi-norm || ||. Then (iv) in Definition 2.1 is equivalent
to each of the conditions (v), (vi) and (vii) below. We include the condition (iv)
in the list to facilitate comparisons.

(iv) There exist a constant ρ(βo) > 0 and a function M( ;/30) : E —• R such that
M(Y,/?o) has finite exponential moments with respect to Pβ0 and

\Dk(βo)(vk)\ < k\M(y;βo)P(βo)
k-1\\υ\\k (4.8)

for all v G V, k G N and y G Eι.
(v) 'Mixed cumulαnt condition': There exist two constants λ(βo) > 0 and

c(β0) > 0 such that

<c(/?0)
2(m-l)! I Π ^ H M X(βo)

ki+-+k--2 (4.9)

for all m > 2,fcj G N,υj G V j = 1,... ,ra.
(vi) 'Directional mixed cumulant condition': There exist two constants λ(βo) >

0 and c(/?o) > 0 such that

2 (4.10)

for all v G V,m> 2,kά G N j = l,.. .,ra.
(vii) 'Pure cumulant condition': There exist two constants τ(βo) > 0 and c(/?o) >

0 such that

(4.11)

for all υ G V, m G N, k G N, km > 2.
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Moreover, if (iv) holds and

C(s) = Έexp{sM(Y;βo)} < oo

then (v) and (vi) hold with c(β0) = 2C(s)/s and λ(A>) = m<ιx{p(βo),2C(s)/s},
and if (vi) holds then (vii) holds with the same value of c(/30) as in (vi) and
τ(βQ) = 2λ(/?0).

Proof. Throughout the proof the value βo is fixed and if the argument or sub-
script β is omitted the value βo is understood. We shall prove the theorem by
showing that (iv) implies (v), (vi) implies (vii), and (vii) implies (iv). That (v)
implies (vi) is trivial.

Assume first that (iv) holds and let i71 ?..., vm be arbitrary fixed vectors in V.
Notice that if s > 0 is chosen such that Eexp{θM(y)} = C(s) < oo, then

E{M(Y)m}<m\s-m

3=0 •>•

= m\s-mC(s) (4.12)

for any m € N. Now, consider the mixed cumulant of the m real random variables

for kj G N, Vj G V j = 1,... ,m > 2. In terms of the moments of these random
variables, the mixed cumulant may be written

), (4.13)

where the sum is over all partitions S — (5Ί, . . . ,
into A non-empty subsets, and

A = 1,..., m, of {1,..., m}

μ(Sα) = E Xi (4.14)

for α = 1,..., A, cf. (1.4.16). From (iv) and (4.12) we obtain the estimate

A

π
o = l

μ(Sα)

A

α = l
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\ A

| ! , (4.15)
α = l

where \Sa\ is the number of elements in Sa. On combination of (4.13) and (4.15)
we obtain

( \ A

Π i w \\υj\\ki) }s~m Σ c w Λ ( A - χ ) ! Π I5"i! ( 4 1 6 )
j=l / S α = l

It is fairly straightforward to see that

(4.17)

and since C(s) > 1, the right side in (4.16) is bounded by

α = l

ft {*;«*'

which shows that the condition (v), and hence also (vi), holds with c = 2C(s)/s
and λ = max{p, 2C(s)/s}.

Assume now that (vi) holds. We need to show (vii) for m = 1, k £ N, only.
Suppose for the moment that we can rely on the relation

jDkf(y-β)dv(y) = O (4.18)

at β = β0 for any k 6 N. Then χi(A>) = 0, and for k > 2 it follows from (1.2.26)
that for any v G V,

0 = I (£>* exp{lo

Σ Σ |ί Π^! Π

where the derivative is evaluated at βo and Sm(k) is the set of sequences defined
in (1.2.24). Because the same identity holds for cumulants of the ZVs as for the
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moments, cf. Skovgaard (1986a) and Lemma 6.6, we get

Σ Σ ^τ{Π α i ! } χ«i «m(t>*)

Thus, from (vi) and (1.2.27) we obtain

k tf

= c2k\λk-2\\v\\kk-1(2k-k-l)

from which it follows that (vii) holds for m = 1 with r = 2λ and c unchanged.
The only missing point is to show the validity of (4.18) for any k G N. We

shall prove that in some neighbourhood of β0 the derivatives of exp{log/(y;/3)}
are bounded by integrable functions. Any such derivative is of the form of a
polynomial in the ZVs multiplied by f(y β). As an intermediate step we shall
provide bounds for the Dfc's. Let t/o £ E be an arbitrary point, except that we
might need to avoid a null-set, and notice that, by assumption, f(yo\β) is analytic
in some neighbourhood of βo. Since f(yo',βo) > 0, the function logf(yo;β) is also
analytic in some neighbourhood of βo and therefore there exists an R > 0 such
that

\{Dklogf(yo;βo)}(vk)\<klRk\\v\\k

for all k £ N and υ G V. According to Lemma 4.1 we then have, for (almost) all
yeE,

\{Dklogf(y;β0)}(vk)\ < \{Dklog f(y; β0) - χk} (vk)\

+ \{Dklogf(y0;βo)-Xk}(vk)\ + \{Dklogf(yo;βo)}(vk)\

< ck\ \\v\\kpk-λ[H(y) + H(y0)] + k\ \\v\\kRk (4.19)

where p = (2ey/p)X and it should be noticed that H(Y) from Lemma 4.1 has
exponential moments. It follows that the radius of convergence of the Taylor
series expansion of log f(y β) around βo is at least (p + J?)"1. Thus the expansion
of log f(y\β) is valid and absolutely convergent in some neighbourhood of βo that
does not depend on y and therefore the same is true for the derivatives of this
function. Hence, from (4.19), in some fixed neighbourhood of βo with \\β - βo\\ < η
for any η < (p + i?)"1,

\{Dklogf(y;β)}(vk)\ <
i=o
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= k\ \\υ\\k {cp"-1 [H(y) + H(y0)} /(I - ηp)k+1 + Rk/(1 - ηR)k+1} (4.20)

for any k 6 N, and

exV \log f(y β)-log f(y;βo)\

< exp f; 1* ! ηk {c/-1 [H(y) + H(y0)) + Rk}

= exp {eη [H(y) + H(y0)} /(I - ηp) + ηR/(l - ηR)}

< exp {δ [H(y) + H(y0) + 1]} (4.21)

for any fixed 6 if η is chosen accordingly. On combination of (4.20) and (4.21) we
see that any derivative of exp {log f(y,β)} is bounded in a neighbourhood of βo
by a function of the form

q{H(y)}exp{δH(y)}f(y;β0)

for some polynomial q. Since H(Y) has exponential moments it follows that any
such function is integrable with respect to v. Hence, it is permissible to interchange
repeated differentiation at βo and integration of f(y, /?), and the proof that (vi)
implies (vii) with c unchanged and r = 2λ is completed.

Assume now that (vii) holds. Then, in particular, for any k > 2 and v EV,

\χk(vk)\<c2k\τk-2\\v\\k

while χi(v) is finite for any v E V because cumulants of higher order, i.a., the
variance, exist. Since V is of finite dimension it follows that | |χi | | < oo, i.e., there
exists a constant α > 0, say, such that

|χi(v)| < α|M|

for all υ 6 V. By use of Lemma 4.1 we then obtain

\Dk(vk)\<\{Dk-χk}(vk)\

< ck\ pk-χH{y) \\v\\k + k\ (cV- 2 J { f c > 1 } + αr*" 1) \\v\

for all k G N, where p = (2ey/p)τ. Since H(Y) is known from Lemma 4.1 to have
finite exponential moments it is easy to see that (iv) is satisfied if M(y) is chosen
appropriately and p possibly modified compared to above if r = 0. I
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5 The index of a model

The classical first order asymptotic theory of likelihood based inference is based
on a local approximation of the model with a normal linear model. More precisely,
a typical proof of asymptotic normality of a local maximum likelihood estimator,
or of the asymptotic chi-squared distribution of the likelihood ratio test statistic,
requires a normal approximation to the score statistic, Dι(βo)J and a proof of the
asymptotic equivalence between the maximum likelihood estimator and an affine
function of the score statistic. The latter approximation requires that higher or-
der derivatives of the log-likelihood function are bounded in certain ways. Higher
order expansions of the Edgeworth type on which, e.g., the Bartlett adjustment of
the likelihood ratio statistic is based, require the derivatives of the log-likelihood,
suitably scaled, to decay at a certain rate and, moreover, that also their standard-
ized cumulants decrease in powers of this rate, typically y/n~τ for the case of n
independent replications. In more general settings the rate may be different, e.g.,
in stochastic processes.

In this section we shall introduce a quantity, referred to as the index of a model
at a given parameter value, which will play the role of yjn~λ for asymptotic like-
lihood based theory. When there is any risk of confusion with other quantities
referred to as the index it will be called the index of linear normality, because it
may be thought of as a measure of the deviation from a normal linear model in an
absolute sense. Thus, it provides a bound for this deviation contrary to curvature
measures that provide bounds for or approximations to second order terms only,
see, e.g., Beale (1960), Efron (1975), and Bates and Watts (1980). As a conse-
quence it is possible to prove, e.g., that the standardized distribution of a local
maximum likelihood estimator converges to a normal distribution for any sequence
of models for which the index tends to zero. This and other related results con-
cerning asymptotic properties will be treated separately. We adopt the notation
from sections 2 and 3, in particular, the ZVs from (2.1), the Fisher information
I{β) from (3.16), and the cumulants of the log-likelihood derivatives from (3.15),
i.e., the χ's. In this section we shall frequently be working with the (semi)-norm on
V defined in terms of the Fisher information instead of a pre-given (semi)-norm.
Thus, consider the (pseudo) inner product

= I(β)(vuv2), vuυ2 G V, (5.1)

and the corresponding (semi)-norm

\Mi(β) = (v,υ)nβ)j (5.2)

cf. (1.1.14) and (1.1.15). Thus, lengths in V are measured in terms of units defined
via the Fisher information, the effect of which is the same as a kind of standardiza-
tion. E.g., the variance matrix of the score statistic, D\(β), is the identity matrix
when the Fisher information is used to define the orthonormal bases on V and V*.

Definition 5.1. For any model {f(y,β) : β G B C V} that is analytic at a
point β0 G int(j?) we define the index, X(βo), of the model at β0, or more precisely
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the index of linear normality, as

λ(Λ) = inf { λ > 0 : \Xkl...km(βo) (* i\ . . . ,

(5.3)

The quantity may take the value +00.

Notice the similarity with the condition (v) in Theorem 4.2. The difference is
that we use the Fisher information (semi)-norm instead of a pre-defined norm,
and consequently the factor c2 in (v) is not needed because the inequality (5.3)
is automatically satisfied for Σkj = 2. It follows from Theorem 4.2 that the
index is finite whenever the Fisher information is positive definite because of the
equivalence of any two norms on a finite dimensional vector space.

As mentioned above the use of the Fisher information norm has the effect of a
standardization. However, the effect is not the same as would have been obtained
if we had instead considered the standardized cumulants of the ZVS *n (5.3). This
latter approach would have implied a standardization in terms of the variances,
(χkk(βo))-, of the ZVs, which only for the score statistic, Dι(βo), corresponds to
our approach.

In asymptotic theory we shall typically consider a sequence of models for which
the index at a given parameter point tends to zero. To see why this limiting value
is of importance assume that the index of a model equals zero at a point /?o Then
the only non-vanishing cumulants at βo are χn(/?o) = -X2(A)) Thus, only the
first differential of the log-likelihood at βo is stochastic while the third and higher
order differentials vanish. This implies that we have the expansion

log/(»;/?) = log/(!Γ,A>) + Di(βo)(β - βo) + \x2(βo)(β - βo)2 (5.4)

which is known from Lemma 3.4 to be valid in a neighbourhood of β0 that does not
depend on y. Moreover, the /^-distribution of the score function, Dι(βo), is exactly
normal with mean zero because all of its cumulants vanish, except the second.
Thus, the model agrees in a neighbourhood of βo with a Gaussian shift experiment,
cf. LeCam (1986, Section 9.3). In terms of the minimal sufficient statistic, JDI(/?O),

the model is a linear normal model on a finite dimensional vector space. Any such
model is of the form (5.4) and hence characterized by the property that the index
is zero. Therefore, if the index tends to zero for a sequence of models a certain,
quite strong, form of convergence to a linear normal model, or more precisely to a
Gaussian shift experiment, is guaranteed.

If the model is analytic in the entire parameter space B C V, then X(βo) = 0
at some fixed point βo G B is seen to imply that λ(/3) = 0 for all β G B because
the Taylor series expansion (5.4) is of finite length and hence of infinite radius of
convergence.
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Less drastic demands than λ(βo) = 0 may also imply simplifications of the
model. To see this assume that instead of the inequality (5.3) we have

λΛr(A) m " 2 λL(A)* 1 + - + *-- M (5.5)

for two constants XN(PO) and AL(/?0), still considering only m > 2. The two
possibilities XN(PO) == 0 and Ajr/(/30) = 0 are of special interest. First notice that
the expansion

log f(y β) = log/(y;A>) + D1(β0)(β - ft) + |^2(/?o)(/? - βof + (5.6)

is known to be valid (and absolutely convergent) in some neighbourhood of β0

that does not depend on y. Now, if AΛΓ(/3O) — 0 all cumulants of order three
and higher vanish and consequently the ^-distribution of (Dι(βo),D2(βo)i •) is
exactly normal. Thus, the model agrees locally with a non-linear normal model
which reduces to a linear normal model if and only λχ,(/?o) = 0, also. Usually, in
the case Xwiβo) = 0, the statistic (Di(/?o),i^2(/?o)? •) will be concentrated on a
finite dimensional linear subspace and then (5.6) takes the form

log f(y;β) = log f(y;βo) + g(β)(X), (5.7)

where X G W, g(β) G W*, and W is a finite dimensional real vector space. In
terms of the sufficient statistic X this model is a non-linear normal regression model
with known variance. However, (5.6) allows also for the possibility of infinite-
dimensional observations.

In the second case, λ^(/?o) = 0, all differentials Dk(βo) are degenerate, except
the first differential Dι(βo) which is then sufficient. Then (5.6) reduces to the form

log/(</;/?) = log/(y; A,) + Dλ{β0){β - β0) + h(β), (5.8)

for some analytic function h : U(βo) —• R, defined on some neighbourhood of /?o
This is the form of an exponential family with canonical parameter β and canonical
sufficient statistic D\(βo). We shall refer to such a model as a linear exponential
family as opposed to a curved exponential family for which the canonical parameter
might be a non-linear function of /?.

It appears that in (5.5), λN(βo) is & measure of deviance from a normal model
while AJL(/3Q) is a measure of deviance from a linear exponential family, or equiva-
lently a measure of insufficiency of the score statistic. However, the two quantities,
λτv(A)) and AL(/?O)? are not well defined from (5.5) unless one of them is zero. One
might be decreased on behalf of the other, still fulfilling the inequality (5.5).
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Another justification for the consideration of the index of a model is provided by
the case of independent replications. Assume that a model for Y G E is analytic
at βo G B C V and let Xkx—kmiβo) denote the cumulants and λ(βo) the index at
/?o Let Yi,...,Yn be independent random variables from this model. Then the
differentials of the log-density at βo for the model for (Yi,..., Yn) will be given by

A>) (5.9)
t = l

for k G N, where Dk,i{βo) denotes the fcth differential corresponding to Y{. Also,
in obvious notation,

x£U.(A) = nχkl...km(βo) (5.10)
for all &i,.. 9fcm ε N and m G N. In particular, I^n\βo) = nl(βo) denotes the
Fisher information based on the n observations.

Theorem 5.2. Consider n independent replications from a model { f(y β) : β G
B C V } which is analytic at β0 G int(5). The model based on the n replications is
analytic at βo and the index, \(n\βo), at β0 from this model satisfies the relation

λ^(βo) - λ(A))/>. (5.11)

Proof. It is trivial to check that the conditions (i)-(iϋ) of Definition 2.1 hold
for the model of (YΊ,..., Yn) if we take J5f as the set of probability one and the
product of the densities as the density with respect to the n-fold product of the
underlying measure v with itself. The relation (5.10) immediately shows that if
any of the cumulant conditions (v), (vi) or (vii) holds for the model for a single
observation then it also holds for the model for n observations, thus proving that
the latter model is also analytic at β0. A simple substitution of (5.10) and the
relation between the Fisher informations into (5.3) shows that the indices satisfy
the relation (5.11) whether they are both finite or infinite. |

An obvious extension is to consider independent but not necessarily identically
distributed observations from analytic models.. Let Y\ G ϋα,...,Yn G En be
independent random variables, the model for each of which being parametrized
by β G B C V and analytic at βo. Denote the cumulants of the log-likelihood
derivatives from the entire experiment by

(5.12)

expressed here in terms of the corresponding cumulants from the individual models.
Let l(n\βo) denote the Fisher information for the entire experiment and let Ii(βo)
be the Fisher informations for the individual models such that

li(βo). (5.13)
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Theorem 5.3 Let Y = (Yi,...,Yn) be such that Y1,...,Yn are independent
and that the model for each of the Y* 's is analytic at β0. Then the model for Y is
analytic at βo and, with notation from above, the index X^n\βo) of the model for
Y at βo satisfies

λ(n)(/?o) <αn = sup{ αn(v) :veV}, (5.14)

where αn{v) > 0 is given by

an{vf = s u p { λ , ( / ? o ) 2 [ / ί ( / ? o ) ( « 2 ) ] / Σ 7 i ( / 3 o ) ( f 2 ) : i = l » ( 5 . 1 5 )

in terms of the indices and the Fisher informations from the models for the Yi 9s.

Proof. The conditions (i)-(iii) of Definition 2.1 are easily verified for the model
for Y with the obvious choices of density and underlying measure on the product
space. As the set E\ in the definition we take the product of the corresponding
sets for the models for each of the Yί's. Since any of the cumulants in (5.12) for the
model for Y is the sum of the corresponding cumulants from the individual models
it is trivial to see from any of the cumulant conditions (v)-(vii) in Theorem 4.2
that it holds for the model for Y because it holds for the models for the Y '̂s. To
obtain the inequality for the index consider the following computation in which we
notationally suppress any dependence on βo,

n

Σ J*) (ΊM vk
Kki-km\υl >-">V

t = l

t = l

For each factor of the form Xiy/I^v*) we have the upper bound

If we use this estimate for Σkj — 2 of the factors in the last sum in (5.16) and

leave y/{Ii(vl)Ii(v^)} in the sum we obtain
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where the product should be read as 1 if m = 2. This computation shows that
(5.3) holds with λ = an because of the Cauchy-Schwartz inequality

1/2 / ^ Λl/2

(Σ<0
applied to b{ = y/U{v\) and C{ =

Theorem 5.2 is, of course, a special case of Theorem 5.3. The bound (5.14) for
the index in Theorem 5.3 may not be optimal but turns out to be good enough in
many situations, provided that the indices for the models for the YJ's are all finite.
The reason is that if the bound an does not tend to zero for a sequence of models,
then the contribution from one of the n random variables will be non-negligible,
asymptotically speaking. In that case expansions of the usual type will hardly be
valid. There are, of course, cases where, e.g., a first order expansion may still be
valid if it is the behaviour of higher order cumulants that prevents the bound in
(5.14) from converging to zero.

As argued above it is of interest what happens as the index tends to zero for
a sequence of models. In this connection we shall be needing bounds for the
log-likelihood derivatives similar to those in (iv) in Definition 2.1 and (4.1) in
Lemma 4.1, but in a slightly different form and, as (4.1), expressible in terms of
the index. These bounds are given in the following corollary.

Corollary 5.4. Assume that the model {f(y\β) : β G B CV} is analytic at
βo and that the constants λ > 0 and c > 0 satisfy the directional mixed cumulant
condition (vi) in Theorem 4.2, where || || denotes a given semi-norm. Then for all
y G E, k G N, and υ G V we have

\Dk(β0)(vk)\ < k\\\v\\k{c2pk-2I{k>1} + cpk-1H(y;β0)}, (5.17)

where p = 2(ey/p)λ, /{.} is the indicator function of the set in question, and
the function H(- βo) of E into R is finite with probability one and satisfies the
exponential moment inequality (4.3). In particular, when the Fisher information
semi-norm is used, (5.17) holds with c = 1 and λ equal to the index λ(/3o).

Proof. We split Dk(βo) into a deterministic and a random part,

Dk(βo) = χk(βo) + {Dk(β0) - χk(βo)}.

The random part is known from Lemma 4.1 to be bounded by the second term
in (5.17) and for k > 2 the first term is the bound for Xk(βo)(vk) proved in
Theorem 4.2, in fact with p = 2λ. Finally we know from Lemma 3.5 that χi(/?o) =
0. I

It is natural for an analytic model to define the index λ(βo; v) in direction υ G V
from βo, for v φ 0, as the index at β0 for the submodel with parameter space

{βo + hυ:heR}.
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Then the inequality (5.3) holds for all υ = v\ = = vm if λ(/?o) is replaced by
λ(/?o; v). While this concept is obviously of relevance to properties of the submodel,
it is not very useful for the full model. The reason is that although the inequality
(5.17) then holds with p(βo) replaced by p(βo; v) = 2(eλ/p)λ(/3o; t>)> the function H
will also depend on the direction and we have no uniform control on the magnitude
of if, as we have from (4.3) in Lemma 4.1.

We already know from Lemma 3.4 that if a model is analytic at a point then
it is also analytic in a neighbourhood of the point. It is a trivial matter to show
that if the index is finite at such a point then it is finite in a neighbourhood and,
in fact, bounded in such a neighbourhood, but this property turns out to be too
weak for our purposes. As seen in Corollary 5.7 below, the bound for the index in
a neighbourhood of a point can be given purely in terms of the index at the point.
The following lemma provides the tools for the derivation of that result.

Lemma 5 5. Let the model { f(y; β) : β E B C V } be analytic at βo and assume
that the constants c > 0 and λ > 0 satisfy the mixed cumulant condition (v) in
Theorem 4,2 for some semi-norm || ||. Then for any β in the set Uα(βo), cf. (3.1),
with α = (2A)-1, the bound

(5.18)

holds for all kj G N, Vj £ V, j = 1,... ,m > 2. in particular, (5.18) holds with
c = 1 and λ equal to the index of the model at βo when the Fisher information
semi-norm is used.

Proof. To expand χkx-kmiβ) around βo we need an expression for any deriva-
tive of Xkι—km(β) at /?o From Skovgaard (1986a), see also Lemma 6.6, it follows
that these derivatives are obtained by replacing χkλ...km by the corresponding mo-
ment μki~-km from (3.13), for which we have the expression (3.7), differentiating
this repeatedly under the integral sign, and then substitute χ's for μ's throughout
the resulting expression. To obtain the derivatives of (3.7) we write f(y β) as
exp{log/(j/;/?)} and use Leibnitz' rule (1.2.16) generalized to a product of several
functions combined with the rule (1.2.26) for higher order differentials of the com-
posite function exp{log /(j/; /?)}. We use 7 to denote the number of differentiations
of this function, and obtain

|{J> X*,
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X

*Σ Σ
(m+r-l)!

Σ
r=0

( m + r Γ
r

(5.19)

where SV(7) is the set of sequences defined in (1.2.24) and the last sum is over all
sequences ( α i , . . . , am) G NQ1 and ( δ i , . . . , 6 r) € N r with Σ aj + Σ &j = s Obvious
modifications of the expressions are required for the terms with 7 = 0 but the last
expression may be seen to be valid without such reservations. This expression may
now be used to obtain a bound for the Taylor series expansion for Xki—km{β)' For
w = β - βo sufficiently small we get

5=0 *'
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which equals the right hand side of (5.18). These computations are valid whenever
λ||w|| < | , provided that β is within the set U(β0) on which log f(y β) is known
to be analytic. |

Lemma 5.6. Let the model { f(y;β) : β e B CV} be analytic at β0 with finite
index \(βo). Then for any β in the set Uα(βo) from (3.1) denned in terms of the
Fisher information semi-norm, with α = j λ ^ o ) " 1 , and any υ G V, we have

\I(β)(v2) - I(βo)(v2)\

< I(βo)(v2) {(1 - X(βo)\\β - βo\\m)Γ
2 (1 - 2X(βo)\\β -

(5.20)

Proof. The quantity I(β) = Xn(/?) is, of course, one particular of the cumulants
considered in Lemma 5.5, and the proof of (5.20) is obtained by mimicking the
proof of that lemma, except that c = 1, that the index λ(/30) replaces λ, that the
Fisher information semi-norm is used, and that we subtract the zero-order term
I(βo)(v2) from the Taylor series expansion used to obtain the bound. From (5.19)
it is seen that the bound for this term, corresponding to s = 0, equals the term
itself. Therefore the bound (5.20) is obtained from the bound (5.18) applied to
this particular cumulant, simply by subtraction of I(βo)(v2). |

Corollary 5.7. Assume that the model {f(y\β) : β G B C V} is analytic at
βo with finite index λ(βo). Then it is analytic with finite index at any β in the
set Uα(βo) from (3.1) defined in terms of the Fisher information semi-norm, with
α = αo/λ(βo), where α$ is a universal constant, and for any such β we have the
inequality

Kβ) < Kβo) h {X(βo)\\β ~ βo\\i(βo)) , (5.21)

where h : [0,αo) —• R+ is a continuous function satisfying h(0) = 1. In fact,
possible choices of αo and h are

Λ / ϊ i ~A 7θ ί Ti OO\

4 4

and
h(x) = z3(2-z2)-3'2 (5.23)

where z = {(1 - z)(l ~ 2*)}-1.

Proof. Let x = X(βo)\\β - βo\\i(β0) < j For any υ G V with |M|/(/?0) > 0 simple
manipulations of (5.20) yield

= {I(βo)(v2)/I(β)(v2)}1/2
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if z2 < 2, where z is defined below (5.23). Notice that this inequality for z is
guaranteed by the choice of αo in (5.22). Now consider the inequalities defining
the index in (5.3) at the point β in Ua(βo) From Lemma 5.6 we know that if

Ilvjll/(A)) = 0 f°Γ a n y °ί ^ e v i s t ' i e n a ^ s o II v j 11/(0) = 0 a n ( * ^ e inequality (5.3)
will be satisfied for any choice of λ(/3). Hence we exclude such v/s in the sequel.
Also notice that if A:i + \- km > 3 and m > 2 then

Hence, with x and z as above, it follows from Lemma 5.5 that

< (m - 1)! { Π ( M N f e ) ) } λ(/?0)
Σfc'-2(l - x)"Σ^(1 - 2*)

< (m - 1)! { Π (MM!?;,)) } Kβo)Σk>~2

as was to be proved. The case Y^kj =2 in (5.3) is satisfied by definition of the
Fisher information semi-norm. Thus we have proved that the mixed cumulant
condition (v) in Theorem 4.2 holds. It is easy to see that the conditions (i)-(iii)
are satisfied at β in Ua(βo) and hence that the model is analytic throughout this
neighbourhood. The computation above shows that the index is finite in this set
and satisfies the inequality (5.21). I

The importance of Corollary 5.7 is not so much the explicit expressions for αo and
h in (5.21), as their existence. In particular, the result implies the continuity of the
index at any point βo where it is finite. Given e > 0, it follows immediately from
the corollary that X(β) < λ(βo) + € in some neighbourhood of /?o, proving the upper
semi-continuity of the index. The lower semi-continuity follows directly from the
definition of the index in (5.3) because it is a supremum of continuous functions.
To formulate the definition of the index precisely as a supremum, attention should
be restricted to vectors Vj with ||VJ||/(^0) > 0. In fact, the lower semi-continuity
also follows from Corollary 5.7 used "the other way around", i.e., to give a bound
for λ(βo) in terms of λ(/3), re-expressed in terms of the 7(/?o)-norm by use of
Lemma 5.6. A reasonable conjecture is that the index is analytic at any point
where it is finite.

Incidentally, Lemma 5.6 also leads to the following result.

Corollary 5.8. Assume that the model {f(y,β) : β G B C V } is analytic in
an open connected subset BQ C B. Suppose that there is a point β0 G Bo at
which the index is finite and that ||v||j(/?0) = 0 for some fixed vector v eV. Then
1111 =0forallβeB0.

Proof. Let
A = {β€B0:\\υ\\m = 0 } .
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The set A is non-empty because it contains βo From Lemma 3.5 we know that
the mapping β »-»• J(/3) is continuous, and hence the same is true for the mapping
υ ι-> \\v\\β. Thus, A is closed relative to Bo because it is the intersection of Bo with
a closed set. From (5.20) it follows directly that A is open. Since Bo is connected
and open we conclude that A = Bo. |

The importance of Corollary 5.8 is that it shows that for any analytic model
with finite index it is always possible to find a linear reparametrization of the
model such that the Fisher information becomes positive definite, without changing
the model viewed as a family of probability measures. To see this notice that if
I(βo)(v2) = 0 for some v / 0 then the model is constant along any line of the
form β = βι + hv e Bo where h e R, because I(β)(v2) = 0 for all β e Bo, and
hence Corollary 5.4 shows that all derivatives of log f(y\β) vanish in the direction
v. Thus a new parametrization of the model may be obtained by projecting the
parameter space onto a subspace of dimension one less than V, along the direction
υ. This process may be repeated until the Fisher information is strictly positive
for all vectors v / 0 .

The following lemma shows that, conversely, the index is finite if the model is
constant in any direction in which the Fisher information is zero.

Lemma 5.9. Assume that the model { f(y]β) : β G B C V } is analytic at the
point βo G int(JB). Then the index, λ(βo), of the model at βo is finite if and only if,
for any v φ 0, v G V, the condition ||v||/(/50) = 0 implies that the model is constant
on a line segment of the form

{βh = βo + hv:he(α,b)} (5.24)

with α < 0 and b > 0.

Proof. Consider the linear subspace

N = {veV:\\v\\I(βΰ) = 0}

and let L be a complementary linear space, i.e., a subspace of V such that any
vector v ELV can be uniquely represented as a sum

v = vN + υL

where vjγ G N and VL G L. Then, if the model is constant on a line segment of
the form (5.24) for any v G JV, it follows that

Dk(β0)(vk) = Dk(βo)(vk

L)

for all k G N and v G V, and consequently that



56 SECTION 2.6 Inυariance properties

for all fci,..., km G N and υly..., vm G V. Let || || be any given norm on V and
consider the mixed cumulant condition (4.9) in terms of this norm. Because the
Fisher information norm ||v|| j(0o) i s positive definite on the subspace L there exists
a constant a > 0 such that

for all v G V. Hence a suitable modification of the constants c and λ in the
mixed cumulant condition shows that this condition also holds with the Fisher
information semi-norm in place of || || and it is concluded that the index at βo is
finite. The converse statement is contained in Corollary 5.8. I

6 Invariance properties

The title of this section refers to operations on analytic models that lead to other
analytic models - not to invariance of the models in any stronger sense. Such oper-
ations include analytic reparametrization, reductions by sufficiency and ancillarity,
and products of analytic models in the sense of independent observations as we
saw in the previous section.

Consider a model { f(y; β) : β G B C V } assumed to be analytic at βo G int(J3).
Let us first investigate the problem of reparametrizations. As in the previous
sections V denotes a finite-dimensional real vector space. Suppose that we have a
mapping, conveniently, although somewhat incorrectly, denoted /?,

β:A-+B, (6.1)

where A is a subset of a finite-dimensional real vector space W. Assume also that
there is a point c*o 6 int(A) with /3(αo) = βo and consider the model

{/(y α) : a G A C W}, f(v,a) = /(y;/J(α)), (6.2)

parametrized by a G A. This setup includes smoothly parametrized sub-models
as well as one-to-one reparametrizations. Recall the notation for the log-likelihood
differentials, (2?*), and their cumulants, (x/d.../^), from (2.1) and (3.15). The
corresponding quantities defined in terms of the parameter a will be equipped
with a tilde, e.g.,

Dk(a) = Dklσgf(y;a). (6.3)

The log-likelihood differentials in the reparametrized (sub)-model may be ex-
pressed in terms of the D^s from the original parametrization as

Σ #̂

(6.4)
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with w E W and k E N, which is obtained by differentiation of the logarithm of
both sides of (6.2) by use of (1.2.26). The set Sm(k) is defined in (1.2.24). The
relation is noticed to be linear in the original ZVs.

Theorem 6.1. The model {f(y;a) : a E A C W} defined in (6.2) above is
analytic at the point αo E int(A) if the mapping β : A -> B is analytic at αo and
the model {f(y;β) : β E B C V} is analytic at β0 = /?(α0). Moreover, if the
semi-norm || || and the quantities c>0,XN>0 and XL > 0 satisfy the cumulant
condition

ι λ£*'- m (6.5)

for all kj E N, Vj E V and m > 2, and if for some α > 0 and R > 0 the inequality

\\Dkβ(αo)(wk)\\ ^ αA;! J?^" 1 ! !^ !^ (6.6)

hoids for some semi-norm || || on W and all k ^N and w E IV, then

. (6.7)

Finally, if for some R > 0 the inequality

\\Dkβ(αo)(wk)\\I{βo) < klR^UDβiαoXw)]^ (6.8)

hoids for all k eN and w E W, and the index of the model parametrized by β is
λ(βo), then the index at αo of the model (6.2) satisfies the inequality

Koto) < λ(βo) + # . (6.9)

Proof. Assume that (6.5) holds and that the model parametrized by β is analytic
at βo. Consider the conditions (i)-(iv) in Definition 2.1. Choose a neighbourhood
U(α0) such that the mapping α »-> β(α) is analytic in U(α0) and β(α) E U(βo)
for all α E U(OLO), where U(βo) is the neighbourhood from Definition 2.1. Then
it follows immediately from (i) that the measures {Pα = Pβ(α)} are mutually
absolutely continuous on U(αo) and that f(y; α) is strictly positive for all y in the
set Eι from Definition 2.1. That the condition (iii) is satisfied for the new model
(6.2) for all y E E\ follows from the fact that a composition of analytic functions
yields an analytic functions. It would be fairly easy to show directly that also (iv)
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holds for the new model but we shall continue to establish (6.7) which, by use of
Theorem 4.2, shows that (iv) holds and hence that the model (6.2) is analytic at
α 0 .

We use the identity (6.4) to obtain bounds for the cumulants of the log-likelihood
differentials in the new model through the following computation involving the
sequences bs = (6 5 i , . . . ,6 s n ) in Sn(ks) from (1.2.24) for which we use the identity
(1.2.27). Thus, notationally discarding the arguments αo and βo, we get

kl km

Σ Σ - Σ
ni=l όieSnjί/t!) nm=lfcm

x Xn,.-»» {(Db»β(wb»)t...,(Db^β(wb^),...,(Db— β(wb—)}

ki km I m / , . ns

Σ - Σ Σ Π BΠv-

= (αc)2(m - 1)! I Π (* ! HHI*')

{ 771

ΓJ (*,! ||tι [

which equals the right hand side of (6.7) and hence proves that the model (6.2) is
analytic at αo

Assume now that (6.8) holds and that λ(βo) is the index at β$. To investigate
the index, λ(αo), of the new model we need to consider the Fisher information at
α 0 . This is given by the equality

ϊ(ao)(w2) = vaΓ/3o

= I(βo)(Dβ(ao)(w))2.

Thus,

| M | ί ( β o ) = \\Dβ(ao)(w)\\nfh)

Therefore the inequality (6.8) is a recast of (6.6) with a = 1 and with the Fisher
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information semi-norms on V and W. Since (6.5) holds with c = 1 and λx, = λ^ =
λ(/?0) the result (6.9) follows from (6.7). I

We could, of course, have formulated the result given in (6.9) in terms of two
quantities λjv and XL as in (6.7). The result in that case is seen directly from
(6.5) and (6.7) if we let a = c = 1 and replace the semi-norms with the Fisher
information semi-norm. In the light of the discussion in Section 5, this shows that
the quantity λ v, in some sense bounding the deviation from a normal model, is
not increased by a reparametrization, whereas λ^ may well be affected, e.g., if a
linear model is reparametrized by a non-linear mapping. The quantities Xjs? and
XL are, however, only certain kinds of bounds and should not be taken as absolute
measures, although the fact remains true that an analytic reparametrization of a
normal model, i.e., a model with λjv = 0 in (6.5), remains normal.

The result of the theorem, that an analytically parametrized sub-model of an
analytic model is itself analytic, is a useful tool for proving that a model is ana-
lytic. For example, in Chapter 3 we shall use this result to establish the (rather
trivial) result that a curved exponential family is analytic whenever the canonical
parameter is an analytic function of the parameter of the model.

As a special case it follows from (6.9) that if the parametrization β : A —> B is
linear, the index of the model parametrized by α is bounded by the index of the
original model parametrized by β. In particular, a one-to-one linear reparametriza-
tion does not change the index of an analytic model.

Next, let us turn to changes in the space of observations. We shall consider
changes of the underlying measure, by marginalization, and by conditioning. For
any such operation there will always be a choice of versions of densities in the
derived model, and it is usually possible, in non-discrete models, to choose versions
such that the conditions in Definition 2.1 for analyticity of the model break down.
However, with sensible choices of densities several operations of the kind mentioned
above lead to analytic model when the original model is analytic.

Lemma 6.2. Assume that the model {(ϋ?,z/), /(•;/?);/? G B C V} is analytic at
βo G int(J5) and let v be a measure dominating Pβ for all β in the neighbourhood
U(βo) from Definition 2.1. Then there exist densities f(y β) of Pβ with respect to
v for β G U(βo) and a measurable function h : E —• R+ such that

f(v,β) = f(V',β)h(y) (6.10)

for all β G U(β0) and all y G Ei, where Eι is a set with Pβo(E\) = 1. The model
{(/),/(•;/?);/? e B CV} is then analytic at β0.

Proof. It follows from the Lebesgue decomposition theorem and the assumptions
that it is possible to choose a set E\ such that the measures v and v are mutually
absolutely continuous on this set and such that PβQ{E\) = 1. As the function h
we then take the Radon-Nikodym derivative h(y) = (dv/dv)(y). The set of points
on which h(y) = 0 is a null-set which therefore can be discarded from E\, thus
proving (6.10). For y G E\ the density f(y;β) is now positive whenever f(y β)
is positive. Thus, the conditions (i)-(iii) of Definition 2.1 are satisfied for / ( ? )
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Also, the log-likelihood derivatives are unchanged as well as their distributions.
Therefore (iv) also holds, and the lemma is proved. |

It follows from the lemma that the choice of underlying measure is completely
immaterial for the theory outlined so far, and, in fact, also for that in the se-
quel, since the log-likelihood derivatives and their distributional properties are
unaffected by this choice. A convenient choice, at least for the development of
theoretical results, will often be to take v = Pβ0 and f(y βo) = 1 for all y, in
which case condition (ii) in Definition 2.1 is automatically satisfied. Also, this
choice simplifies considerations related to marginal and conditional distributions
as will be seen later in this section.

Now, let
t:E-+ E (6.11)

be a measurable mapping from the measure space (E,v) to another space E
equipped with the measure v. The next lemma takes care of the case when /
is sufficient.

Lemma 6.3. if tie model {(£, i/),/(•;/?);/? G B C V} is analytic at β0 G int(J9)
and the mapping t in (6.11) is sufficient, then the model {(£?,£),/(•; β);β E B C
V} is analytic at βo if the densities /(*;/?) oft(Y), of the distributions induced by
the distributions (Pβ) ofY, are chosen appropriately. Furthermore, there exists a
v-measurable function h : E -> R+ such that

) (6.12)

for all y in a set of Pβ0-probability one.

Proof. The relation (6.12) is Neyman's factorization criterion, except for the
strict positivity of h which is obtained simply by restricting attention to the set of
y's on which h is positive. The log-likelihood derivatives are seen from (6.12) to
be unchanged in the sense that

Dk log f(y;βo) = Dk log f(t(y);β0)

for all y E E. Since they depend on Y only through t(Y) their distributions are
unchanged by sufficient reductions. |

Incidentally, the proof of Lemma 6.3 included a proof of the minimal sufficiency
of the log-likelihood derivatives (Dι(βo), D2(βo), -. -), provided that they are suf-
ficient, because it was shown that they are functions of any sufficient statistic.
While these derivatives at a given fixed point are not, in general, sufficient for the
entire model, it is easily seen from Lemma 3.3 that they are sufficient, and hence
minimally sufficient, for the model restricted to a neighbourhood of any fixed point
at which the model is analytic. Notice that the minimal sufficiency does not imply
that the representation is minimal, e.g., some of the Z)̂ (/?o)'s might be degen-
erate. The minimal sufficiency only implies that the statistic contains no excess
randomness.
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Equally simple as a sufficient is the case of conditioning on an ancillary statistic.
Recall that an ancillary statistic is a mapping

a : E -+ E,

say, such that the distribution of a(Y), induced by the distribution Pβ of Y, does
not depend on β.

Lemma 6.4. Let the model {f(y;β) : β G B C V} be analytic at β0 G int(B)
and let α(Y) denote an ancillary statistic. Then there are versions of conditional
densities, f(y | αo;/?) say, of Y given α(Y) = α0 G E with respect to some
underlying measure on the level surface

such that
f(y,β) = f(y\α(y);β)h(y), (6.13)

where h : E —> R+ is some measurable function, and such that the model for the
conditional distribution is analytic for any α0 in a set of Pβ0-probability one.

Proof. The representation (6.13) is easily established, e.g., by taking conditional
Pp0-distributions given α(Y) as the underlying measures, in which case

f(y I α(y);β) = c{α(y)}f(y;β)/f(y;βo)

and h(y) = f(yiβo)/c{α(y)} would be proper choices, where c(α) is a normalizing
constant that does not depend on β because α(Y) is ancillary. Then h is positive
almost surely for β in some neighbourhood of βo and may therefore, if necessary,
be modified to be positive for all y. The possibility of obtaining (6.13) with a
function h that depends only on α(y) is not of relevance here. Based on (6.13) it is
trivial to verify that the conditions (i)-(iii) in Definition 2.1 hold for all αo = α{y)
where y belongs to a set of probability one, and that the log-likelihoόd derivatives,
Dk(βo), are the same as in the original model for Y and therefore still satisfy the
bound in (iv) in Definition 2.1. It only remains to be shown that M(Y;βo) has
finite exponential moments in the conditional distributions given α(Y). But for
any s > 0,

Eexp{*M(Y; A))} = E{E[exp{*M(Y;/?0)} | α(Y)}}.

Since the expectation on the left is finite for some s > 0 the same must be true for
the conditional expectations on the right, for almost all α(Y). I

As a final trivial case we consider a mapping which is a cut with respect to two
components of the parameter, cf. Barndorff-Nielsen (1978). Thus, let V = V\ X Vi
be the product space of two finite-dimensional real vector spaces and let
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where Bτ C Vi and B2 C V2 A cut in the model {f(y β) : β e B C V} is
a measurable mapping t : E ^ E such that the marginal distributions of /(Y),
induced by {Pβ β € J3}, depends on /? only through φ £ B\ while the conditional
distribution of Y given ί(Y) depends only on φ E B2.

Assume that the model { f(y β) : β E B CV} is analytic at βo = (φo,φo)- It
is obvious, except for some measure theoretical considerations, that we may write
the density /(y; β) as a product

f(y;β) = h(t(y);φ)f2(y;φ), (6.14)

where /i(t;<£),φ £ Bχy are the marginal densities of J(Y) and f2(y; V7)? Φ € B2, are
the conditional densities of Y given t(Y). Thus, it is clear that the log-likelihood
derivatives with respect to φ in the marginal models, and with respect to φ in
the conditional models, are the same as in the full model. The derivatives with
respect to φ depend on y only through t(y) and consequently their distributions
are unaffected by marginalization from Y to t(Y). Therefore the model based
on t(Y) is analytic at the point <£o, or at βo if β is considered as the parameter.
The conditional distributions of the log-likelihood derivatives with respect to φ
do, however, differ form their original distributions, but it is seen as in the proof
of Lemma 6.4 that these conditional models are also analytic at φo

For the general case of an (arbitrary) function t(Y) it will appear from the sequel
that the conditional distribution almost surely is analytic at βo if the original model
is analytic at this point. This result is, however, not very useful as long as it is not
coupled with some kind of uniformity in the conditioning variable of the bound (iv)
in Definition 2.1 or of any of the bounds in Theorem 4.2. Whether the marginal
distribution of t(Y) is always analytic is an open question. We can show that
the conditions (i)-(iii) of Definition 2.1 hold; the problem is the condition (iv). It
turns out, however, that there is a fairly simple representation of the log-likelihood
derivatives from the model for t(Y) in terms of the conditional cumulants of the
original log-likelihood derivatives given t(Y). Since this representation may be of
some independent interest in connection with particular cases, the remaining part
of this section will be concerned with its derivation and immediate consequences.

Thus, let
t:E-+ E

be a measurable mapping from E to another measurable space and consider the
model for t(Y) induced from the original model

which is assumed to be analytic at βo G int(J9). Let Qβ denote the distribution

of ί(Y) induced by the P^-distribution on Y, and let P£ denote (versions of)

the conditional distributions of Y given t(Y) = t G E. The distribution Pjf is

concentrated on the level surface

t}. (6.15)
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As the underlying measure for the model for t(Y) we now choose Qβ0 and note
that as densities in the model for t(Y) we may choose the functions /(•;/?) defined

by

(dQβ/dQβ0)(t) = f(t;β)

= Eβo{f(y,β)/f(y,βo)\t(Y) = t}

= ί exv{Di(βo)(β-βo) + lD2(βo)(β-βo)2 + }dPβ

t

o(y), (6.16)

where the last equation is known to be valid for β in some neighbourhood of /?o
We shall not discuss the proof of this (quite trivial) result.

Lemma 6.5. With notation and setup from above, the log-likelihood derivatives

Dk(β0) = Dk log f(t;β0), keN, (6.17)

are given by the equations

X cumβo{Dαi(βo)(vαη,...,Dαm(βo)(vα-) \ t(Y) = t} (6.18)

for v G V, where Sm(k) is the set of sequences defined in (1.2.24) and the joint
cumulant is the cumulant in the conditional Pβ0-distribution given t(Y) = t.

Before proving the lemma let us examine the equation (6.18). Notice its formal
similarity with the expression for a moment in terms of its cumulants. Thus,
if Dj(βo)(v^) were the jth cumulant of a random variable, such as (v,X), say,
Dh(βo)(vk) its fcth mean, and we forgot about the conditional cumulant on the
right hand side, then the same relation would hold. Furthermore, as one extreme,
suppose that t(y) is constant. Then the left hand side of the equation is zero and
the conditional cumulants equal the unconditional cumulants. In this case the
well-known relations between the cumulants of the log-likelihood derivatives are
recovered, cf. the discussion relating to equations (3.14)-(3.16) in Section 3. At
the other extreme, if t(y) = y, the relation (6.18) reduces to the trivial identity
between the D^s and the iVs, because the conditional distribution of any of the
Z)fc's is degenerate. The same identity arises, for the same reason, whenever t(Y)
is sufficient.

Thus, it is not surprising that the proof of the identity (6.18) is related to the
relations between the cumulants of the log-likelihood derivatives. To prove it we
need a generalization of the result in Skovgaard (1986a) on which the proof of
these relations may be based. In that paper the rule for differentiation of the
log-likelihood derivatives was given, but it turns out that this rule is not confined
to log-likelihood derivatives but applies more generally to statistics depending on
the parameter.
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Before we state this rule of differentiation, let us consider some formal differen-
tiations of moments. Thus, let g : E x B —> R and consider

DβEβ{g(Y;β)} = Dβ J g(y;β)f(y;β)dv(y)

= Eβ{Dβg(Y;β)} + Eβ{g(Y;β)D1(β)}. (6.19)

In particular, if

3=1

where gj : E X B -* R, then Leibnitz' rule for differentiation of a product, together
with (6.19), shows that

(6.20)

The, somewhat surprising, result is now that the same relation holds if expecta-
tions of products are replaced by joint cumulants of the factors throughout (6.20).
Of course, regularity conditions are needed to assure that differentiation and inte-
gration can be interchanged.

L e m m a 6.6. Consider a statistical model {(E, v)\ f(y; β)\β G ΰ C V} for which
there is some neighbourhood U(βo) of a point βo G int(f?), such that f(y]β) is
positive and differentiate as a function of β in U(βo) for all y E E. let D\(β) =
Dβlogf(y β), and for each j = 1,... ,m, let gj : E x B —• R be mappings such
that the mapping

is measurable for any β £ U(βo), and the mapping

is differentiate in β G U(βo) for any y G E. Furthermore, assume that there exist
functions Mo, M i , . . . , Mm from E to R such that each of the inequalities

\\Dβ9j(y;β)\\ < Mj(y), j = l m, (6.21)

and

\\Dβf(y;β)\\/f(y;βo)<Mo(y) (6.22)
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hold for all β G U(β0) and y G E, and such that

Mo(Y)) Π [\9i(Y\βo)\ + Mά{Y)} ( < oo (6.23)
jeJ J

for any subset J of {l,...,m}, including the empty set for which the product
should be read as 1.

Then for any v G V, we have

{Dβcumβ(gi(Y;β),...,gm(Y;β))}(v)

= cumβ, {D1(β0)(v),g1{Y; A,),... ,gm(Y;βo)}

Y;βo)(v),...,gm(Y;βo)}, (6.24)
t = l

where the differential of the function on the left is evaluated at β = /?o

Proof. We shall give a somewhat superficial proof of this lemma since its full
proof is almost identical to any of the two proofs given in Skovgaard (1986a). The
conditions given here are sufficient to assure that the expectation of the product
of any subset of the g^s can be differentiated by differentiation under the integral
sign as shown in (6.19) and (6.20). Since the cumulant on the left in (6.24) is a
polynomial in these expectations, we may differentiate this cumulant by differen-
tiation of the polynomial, i.e., by differentiation of moments of the g^s. Therefore
the conditions in the lemma are sufficient to validate the formal calculations be-
low. Alternatively, we might have used the analogue of the proof in Section 3 in
Skovgaard (1986a) in which the result is shown directly by differentiation of the
moments.

Let h = (Λi,..., hm) and consider the moment generating function

φ(h β) = /exp I Σhj9j(Y;β) 1 f(y;β)dv(y)

of the <7j's. Then, since the cumulants of the g^s are the derivatives of logφ(h;β)
we obtain the following relations in which all derivatives are to be evaluated at
hi = = hm = 0 and β = βo,

{Dβcumβ (gi(Y;β),... ,gm(Y;β))} (υ)

x exp { J>;<7;(</;/?)} f(y\βo)dv(y) / φ(h-β0)
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θ Θ θ

/(y) / φ(h;β0)

= cumft {DύβoXυ^g^Y βo),... ,gm(Y;βo)}

d dΣ
dhl d h

log /exp I [hiDβgi(y;βo)(v)] + Σhi9i(v>βo) \ f(v,βo)dv(y),
J { iΦi J

from which the result follows. In the third equality we have used the fact that in
the jth term of the first sum on the left hand side, differentiation of the exponential
or of the denominator φ(h βo) with respect to hj results in zero when evaluated
at hj = 0. The proof is identical to the one in Section 2 in Skovgaard (1986a)
where, unfortunately, the denominator φ(h] β) was missing in the expression just
preceding the last equality sign above. |

We may now return to the proof of Lemma 6.5.

Proof of Lemma 6.5. We apply Lemma 6.6 to differentiate cumulants in the
conditional distribution given t(Y) = t. From (6.16) we see that the density of the
conditional P^-distribution given t(Y) = t with respect to Pβ0-distribution may
be chosen as

(y) = {/(y;/3)//(y; A ) /

Provided that differentiation and integration can be interchanged it follows from
(6.16) that the differential D't(β)^ say, of the logarithm of the conditional density
is

D \β) = Dβlog{f(y;β)/f(t;β)} = D1(β) - Eβ{D1(β) \ t(Y) = ί }• (6.25)

To apply Lemma 6.6 with each of the functions gj(y; β) being of the form Dk(β)(vk)
we need to provide bounds for these functions satisfying the conditions of the
lemma. Instead of doing this we shall show directly that differentiation and inte-
gration can be interchanged for any integral of the form

J Dkl {β){vk* ) . . Dkm (β)(vk" ){f(y; β)/f(y; β0)}

from which it will also follow that the representation given above for the differential
of the log-density of the conditional distribution is valid. The omission of the
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normalizing constant f(t\β) from the conditional density is of no importance.
From Lemma 3.4 we know that we have bounds for the D^s of the form

for all k G N where M(Y) has finite (unconditional) exponential moments and the
bounds apply to a neighbourhood of /?o Furthermore, as in the proof of Lemma 3.1
we see that also the bound

log{/(y;/?)//(»;#>)} < M(y)\\β - βo\\ /(I - P\\β - βo\\)

holds in some neighbourhood of βo. From the equality

Eβ exp{sM(Y)} = E^ [Eβ { exp (sM(Y)) \ t(Y)}}

it is seen that M(Y) has exponential moments in the conditional distribution given
t(Y) = t for almost all t and hence that we have provided the bounds required
to prove that differentiation and integration can be interchanged for any of the
integrals of the type considered including the one with m = 0, i.e., without any of
the factors Dkj(β)(v^).

From (6.25) it follows immediately that the relation (6.18) holds for k = 1, or,
more correctly, that was seen from (6.16) to derive (6.25). Thus, we have

= Eβ{D1(β)\t(Y) = t}

for all β in a neighbourhood of βo. Now we may differentiate this equation repeat-
edly with respect to β by use of Lemma 6.6 because the expectation is identical
to the first cumulant. The next equation becomes

b2(β)(v2) = Eβ{D2(β)(v2) I t(Y) = t} + wΆτβ{Dί(β)(v) I t(Y) = t},

and the process continues, formally in precisely the same way as for the uncon-
ditional cumulants for which repeated differentiation leads to the well-known re-
lations between the (unconditional) cumulants of the log-likelihood derivatives.
Since these relations are identical to the ones in (6.18), except that the left hand
side is zero and that the cumulants are unconditional, it follows that (6.18) holds. |

From the representation (6.18) of the derivatives of log f(t\ β) we can now obtain
bounds for these to show that the function f(t',β) is analytic at βo for almost all
/. To see this we use the condition (iv) from Definition 2.1. Let M(y;βo) denote
the function from this condition and choose s > 0 such that

Eβo{exp(sM(Y;β0)) | t(Y) = ί} = Ct(s) < oo.
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Then, for any &i,...,fcm £ N and t; e V, condition (iv) in Definition 2.1 shows
that

= f }IMI f c l + " " + f c

By a fairly simple extension of Lemma 1.4.4, based on (1.4.16), it now follows that

-) | t(Y) = t}\

< (m - 1)! (j[ kjlj | | r | |
f c i+-+ f c - 7

f c i+-+ f c " . , (6.26)

where 7 = (1 + C i(s))max{/o,s-1}. But then, from (6.18) and (1.2.27) it follows
that for any k G N we have

Φk(βo)(vk)\

^ Σ Σ ^(U-
m=laeSm(k)

;

<(k-l)](2\\v\\Ί)
k, (6.27)

which proves that the Taylor series expansion of log/(£;/?) around βo is bounded
by a geometric series. We shall not go through a detailed proof that f(t; β) agrees
with its Taylor series expansion in some neighbourhood of βo and hence is analytic.
It is a simple consequence of the fact, derived from Lemma 3.4, that the bounds in
(6.27) hold uniformly in such a neighbourhood if p and M are chosen appropriately.

Thus /(y; β) is analytic at βo and it is then easy to see that the conditions (i)-
(iii) in Definition 2.1 hold for the model {/(tf; β)\β G B C V}. An investigation
of whether (iv) holds in general requires an investigation of the cumulants of the
jDfc's from (6.18). For apparent reasons we shall not attempt such an investigation.

Incidentally, the considerations above are sufficient to show that the models for
the conditional distributions given t(Y) = t are analytic because the conditional
P^-density of Y given t(Y) = t may be written

f(y;β)/{f(y;βo)f(t;β)} (6.28)

with respect to Pi . Hence the fcth differential of the conditional log-likelihood is

- bk{β)
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which deviates from Dk(β) only by a non-random analytic function. The verifica-
tion of (i)-(iv) in Definition 2.1 is then straightforward for (P^-almost) any fixed
t £ E. However, as mentioned earlier, this result is not very useful in itself without
some uniformity in t G E of any of the bounds in Theorem 4.2. To provide such
uniform bounds amounts to the same problem as proving that the model for t(Y)
is analytic.

7 Some approximation results

Assume that the model {f(y β) : β G B C V} is analytic at βo G int(5), and
consider for any fixed K G No the approximation

fκ(y;β) = /(y; A) expfAOW - A>) + + ^Dκ(βo)(β - A)*} (7.1)

to the density f(y]β) for β in some neighbourhood of /?0. In the case K = 0 the
right hand side is to be read as f(y,βo) In this section we shall obtain bounds
for the errors of various approximations based on (7.1). In particular we shall see
what happens with the derivatives of the log-likelihood function when /(y; β) is
replaced by a normalized version of fκ(y; /?), and derive a bound for the total vari-
ation between the two measures corresponding to these two densities. This latter
measure is closely related to measures of asymptotic sufficiency, cf. Michel (1978),
and to the deficiency as defined by LeCam, cf. LeCam (1986).

All results in this section will be expressed in terms of the directional mixed
cumulant condition (vi) in Theorem 4.2, i.e., in terms of a pre-given semi-norm
|| || and constants c > 0 and λ > 0. The results are then easily reformulated in
terms of the index λ(βo) at βo by substituting this for λ, 1 for c, and the Fisher
information semi-norm for || ||, throughout.

Observe that the integral of //<-(y; β) may not be 1. Therefore we may consider
the normalized version

fκ(r,β) = fκ(r,β)/ J fκ(y;β)dv(y). (7.2)

For any fixed K the family of measures f{y\β) constitutes a curved exponential
family of distributions with canonical sufficient statistic {D\(βo),..., Djζ(βo)) and
canonical parameter

Since it may be difficult to work out the normalization constant involved in the
computation of f(y; β) in (7.2) we shall consider an approximate version instead.
Let

ξκ(β) = «p l ^ l ^ X K + ^ / W - βo)
K+1} (7.3)
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and define
(7.4)

which is to be viewed as an approximation to /(y;/?). The following lemma pro-
vides a bound for the error of that approximation.

Lemma 7.1. Let the model {/(y /3) : β G B C V} be analytic at βo and
assume that the constants c > 0 and λ > 0 satisfy the directional mixed cumulant
condition (vi) in Theorem 4.2. Then, for any if 6 No and β in the set Uα(βo) from
(3.1) with α < j p " 1 , we have

Jfκ(wβ)dv(y)-1

< c p κ α κ + 1 ( l - αp)'1 exp{(cα)2/(l - αp)}C(δ) (cα + (δ - s)"1)

= O(XK) (7.5)

as λ —• 0 with α and c bounded, where p = (2eΛ/p)λ, s = cα/(l - αp) < δ < c/p
and

= EexV{δH(Y)},

H{y) being the function from Lemma 4.1 for which it is known that C(δ) is bounded
by a function depending on δ, c, p, and X, only.

Proof. Let

Rκ(β) = log f(y β) - log fκ(y;β) - log£*(/?)

= Σ hχ*(βo)(β - fo)k

+ Σ ϊf{^(A)-x*(A)}(/J-A) fc (7.6)
k=K+l

and notice that for β G Uα(βo) it follows from Lemma 4.1 and Theorem 4.2 that

\Rκ(β)\< £ c2pk-2αk+ f; cH(y)pk-1αk

k=K+2 k=K+l

= {cα + H(y)}cpκακ+i/(l-αp) (7.7)

where p = (2eλ/p)λ and if(y) is the function from Lemma 4.1. By use of the
inequality | exp z — 1| < \z\ exp \z\ we obtain

< J fκ(y;β)ξκ(β)\l-expRκ(β)\du(y)
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< f\Rκ(β)\exp I Σ έ \Dk(βo)(β - βo)k\\ dPβo(y)

< Eβo {\Rκ(β)\ exp ([(ca)2 + caH(Y)]/(l - ap))} .

The result (7.5) now follows by insertion of (7.7) and use of the inequality

E{H(Y)exφH(Y)} < Έexp{δH(Y)}/(δ - s) = C(6)/(6 - s)

for s < δ. I

For a sequence of statistical models we will typically be concerned primarily
with β's that, in terms of the Fisher information semi-norm, are within a fixed (or
slowly increasing) distance from /?o,such that the bound in (7.5) will be O(λ(βo)κ)
where λ(βo) is the index at /?o This type of asymptotics where the constant a is
fixed and λ varies, may be worth having in mind throughout this section. In the
case of n independent replications λ(βo) will be proportional to l/\/n? a s shown
in Theorem 5.2.

The point of Lemma 7.1 is to show that ζκ(β) πiay be used as an approximate
normalizing constant when it is difficult to obtain the exact constant. The result
shows that in the type of asymptotics mentioned above the exactly normalized
and the approximately normalized densities will deviate by a factor of order 1 +
0{\(βo)κ}, or in the case of n independent replications by 1 + 0{n~Kl2). This
is the typical order of magnitude obtained in approximation results based on the
truncated densities fκ(y\β)

For the proof of Theorem 7.3 below we need to be able to estimate sums of the
form given in the following lemma.

Lemma 7.2. For any α < 1, s € No and m £ No, we have

2 v .v -s
= 0(a*) (7.8)

as a —> 0.

Proof. The convexity of the decreasing function x —> ax shows that

αk < αxdx

Λ-i

for any k € N. By use of this inequality we obtain
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< (s + m)mas + I (x + m)maχ-* dx
Λ+i

<(s + m)mas + as+* / (5 + m + l + u)
mau du

Jo

<(s + m)mas + αs+2 /
Jo

from which the result follows by integration. |

We are now in position to establish the degree of approximation to the log-
likelihood function and its derivatives, involved in the replacement of f(y]β) by

/

Theorem 7.3. Let the model {/(y /3) : β G B C V} be analytic at β0 and
assume that the constants c > 0 and λ > 0 satisfy the directional mixed cumulant
condition (vi) in Theorem 4.2. Then for any m £ No, K £ No and β in the set
Uα(βo) from (3.1) with α < p""1, we have

\\Dm log f(y;β)-Dm log fκ(y;β)\\

i cpκακ+1-m{cα + H(y)}η(αp,K,m), ifrn < K,

cpκ {m\H(y)(l - αp)""1"1 + 007(0/), K, m)} , iίm = K + 1,
cm\pm-2(l - αp)-m-χ{c + ρH(y)}, ifm> K + l

= O(XK) (7.9)

as λ —>• 0, where

>y(αp,K,m) =

(K + 2)m + 2m{αpf'2 {{K + ZΠ-logiαp)}-1 + m! {-log(αp)}-"1-1} ,
p = (2ey/p)\, H(y) is the function from Lemma 4.1, and the bound should be
observed to depend on the model only through the quantities involved, i.e., through
c, α, X, m, K, and the function H.

Proof. Notice first that

log/(y;/?)-log/>;/?)

= Σ hxk(βo)(β-βo)k + Σ
λ X + 2 *

We differentiate this equation m times, use the bound from Lemma 4.1 for
Xk(βo) and the bound from Theorem 4.2 for Xk(βo), and obtain

\\Dm log f(y;β)-Dm log f(y;β)\\

< T n Mc\2\)k-2α
V J(k-m)l
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Σ
k= max { m, K+1}

oo

fc=max{O,K+l-m}

where p = (2ey/p)λ and #(i/) is the function from Lemma 4.1. When the first
sum in the last expression ranges from zero it equals m\pm~κ~2/(l — α/>)m+1,
otherwise Lemma 7.2 is used to obtain a bound for the sum. The second sum
is treated similarly, and after a few trivial majorizations the bounds in (7.9) are
obtained. |

The consequences of Theorem 7.3 is that statistical quantities that depend on the
likelihood function, such as maximum likelihood or Bayes estimators, can usually
be shown to deviate by 0(XK) only, when calculated from fκ(y\ β) instead as from
/(t/;/?). This does not, however, imply that their distributions, based on fκ{y\β)
O Γ f{y\β) > a r e n o t far apart. For the purpose of such distributional approximations
we need other types of bounds, such as the one derived in the following theorem
which in a certain sense generalizes the result of Lemma 7.1.

Theorem 7.4. Consider the approximation fκ{y\β) from (7.4) to a model
{/(y /3) : β G B C V} that is analytic at βo. Suppose that the constants c > 0
and λ > 0 satisfy the directional mixed cumulant condition (vi) in Theorem 4.2,
and consider any measurable function g : E -> R. Then, for β E Uα(βo) we have

\JA9(vWv,β)dv(y) - JA9(y)fκ(y;β)du(y)

< I \g{y)\\f{y\β)-ϊκ{y\β)\du{y)
JA

~ {L
X {Eexp[6H(Y)]γ-α {cα + (δ - ^ { ( l - α)"1}!1-*}

Ό(XK) (7.10)

as λ -> 0 with other constants being held fixed, where 0 < α < 1, p —

8=.{1 + (αp)κ/(l - α)}cα/(l - αp) < 6 < c/p,

and, by convention,
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equals sup{ \g(y)\ : y G A} for α = 0.

Proof. The first inequality in (7.10) is trivial and by use of Holder's inequality
we get

ί \9(y)\\f(y;β)-fκ(y,β)\dv(y)
JA

{J\\1/yy\{}^ιUή
where Rκ(β) is defined in (7.6). For the second integral on the right we use the
bound from (7.7) for Rκ(β) to obtain

-a)^(f2yDk(βo)(β-βo)k) dPβ0(y)\
l-α

x exp{[(cα)2 + cαΠ(y)]/(l - αp)}dPβo(y)

Cp CL I I CO, i l l — OL) -\- C p a I
< — exp < ±—'—* —'- \

1 — ap y 1 — ap J

T^Γ + rhp) H{y)]
(caf (1 -

<̂  si exp
"" 1 — ap 1 1 — ap I

Γ f r Ί 1 1 ~ O f

i Λ I- -I ^ /
The second inequality in (7.10) now follows by an application of the inequality

< r! exp{(£ - s)H(y)}/(δ - s)r, r > 1, (7.11)

with r = 1/(1 — α). The result in (7.11), which is trivial when r G N, may be
proved by use of Stirling's formula in the general case. |

As a special case, with g(y) = 1 for y G E, Theorem 7.4 provides a bound for the
total variation of the difference between the two measures with densities f{y\β)
and /(Ϊ/ /3). Since the statistic (JDI(/?O), .. .,Dκ(βo)) is sufficient for the family of
measures with densities fκ(y\β)> O Γ rather for the exactly normalized measures
Jκ(y\β) from (7.2), the result may be interpreted as a result of approximate suffi-
ciency. For a sequence of models with indices λn(/?0), say, we see that the statistic
(Dι(βo),... yDjζ(βo)) is an asymptotic higher-order (local) sufficient statistic with
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error term 0(Xn(βo)κ) as Xn(βo) —• 0> in terms of total variation. This result
relates closely to Michel (1978) where an error of order o(n~^K"2^2) was obtained
for the case of n independent replications when Dι(βo) was replaced by a sequence
of asymptotic maximum likelihood estimators.

Theorem 7.4 has been formulated more generally to cover also unbounded func-
tions 5, e.g., polynomial functions in the Dk(βo)^ that arise frequently as stochastic
expansions of estimators.

It is seen from Theorem 7.4 that for the measure of a set A, for which we take g
as the indicator function of A, we obtain a 'relative' error of order 0(\κ), relative
to Pβ(A)Q for any a < 1, but a = 1 is not included.

8 The generated infinite-dimensional exponential family

In this section we shall explore some properties of the exponential family of
distributions generated by the log-likelihood differentials at a certain parameter
value β0 G int(B) from the model {f(y;β) : β E B C V} . Throughout the
section the model is assumed to be analytic at the fixed point βo. Around βo we
then have the expansion

f(y;β) = f(y;βo)eχp{D1(βo)(β - βo) + \D2(β0)(β - βo)2 + •} (8.1)

as noted in the introduction to the present chapter. Because the model is as-
sumed to be analytic at βo it is known that this expansion is valid and absolutely
convergent in some neighbourhood of βo. The kth. term in the exponent may be
considered as a linear function of the statistic Dk(βo)- This leads us to consider
the extended family of densities of the form

/(»; θ) = f(y,βo)a(θ)exp{θ1[D1(βo)] + θ2[D2(β0)} + •}, (8.2)

where

θ = (0i,02,...), Ok e Lin(Sym*(y;R);R), (8.3)

such that θk maps Dk(βo) linearly into R and a(θ) is a normalizing constant.
Convergence and integrability must be assumed for the definition in (8.2) to make
sense. Obviously (8.1) is a special case of (8.2) with θk = (β — βo)k/kϊ viewed as
a linear mapping on the space of Dh(βo) The family of measures with densities
of the form (8.2) has the appearance of an exponential family except that the
sum in the exponent is infinite. Thus, the original model, or rather the model
in a neighbourhood of /?o, may be viewed as a curved sub-model of the infinite-
dimensional exponential family (8.2), with

(8.4)
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representing the canonical parameter as a function of the parameter β. In special
cases the 'canonical sufficient statistic' (J9i(/?o),i?2(/^o)? •) may be concentrated
on a finite-dimensional vector space, in which case (8.2) may be represented as a
finite-dimensional exponential family. Exponential families of infinite dimension
have been considered by, i.a., Soler (1977) and Johansen (1977), but in more
general settings. The type of families considered here are of a special structure
that allow us to show more specific results in certain connections.

The study of these generated exponential families is not carried far here and
there may well be prospects for further developments. For asymptotic analyses in
relation to sequences of statistical models it may not make much difference for the
results whether calculations are done on the infinite-dimensional exponential family
as an entity, or a truncation is applied before further calculations are carried out,
as in Section 7, but once the theory for the infinite-dimensional case is developed
it may turn out to clarify calculations and results.

Notice that it is not in any ways attempted to restrict the original models consid-
ered by some requirement that (8.1) should converge for all β. This model can be
any analytic model which can then, in a neighbourhood of some fixed point only,
be embedded into a model of the form (8.2) spanned by the original model. This
approach corresponds closely to the patching of local representations of a differ-
entiable manifold, and an analytic model could be viewed as an analytic manifold
with local embeddings into infinite-dimensional exponential families. Since we
are going to study the vicinity of one fixed point only, we shall not develop that
approach.

To define the family (8.2) more precisely consider the space

JDoo= x Sym^V R) (8.5)
A : = l

in which the sufficient statistic (Dι(βo),D2(βo),...) takes values, and the space

Θoo= x Lin(Symfc(y;R);R) (8.6)
k=l

of sequences (0i,02, ) of linear forms on the spaces of the ZVs. Instead of
defining the exponential family as in (8.2) we modify the expression slightly by
subtracting the mean from each of the D^s, Thus, let

Tk = Dk(β0) - χk(β0) G Symfc(F; R) (8.7)

and define the canonical parameter space

Θ = { θ 6 Θoo :μ(θ) = Jexp{0(T)}dPβo(y) < 00} (8.8)

where

f>(Γ f c ) (8.9)
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is implied to converge for P^-almost all y G E if θ G Θ. The generated ex-
ponential family is now defined as the family of probability measures on E with
densities

/(</; θ) = exp{0(T) - κ(0)}, Θ G Θ, (8.10)

with respect to P^o, where

= logμ(θ). (8.11)

The probability measure with density /(y; 0) is denoted PQ and for the measure
PβQ we use the abbreviation Po.

Notice that we have limited the canonical parameter space to linear forms of the
form (8.6) on the space of the sufficient statistic, rather than admitting arbitrary
linear forms.

The subtraction of the means from the ZVs in the definition (8.10) compared to
(8.2) is a technical adjustment that admits us to prove the convergence of Θ(T) for
a larger set of 0's, but if Σ θk (χk(βo)) is convergent it is seen that this adjustment
is absorbed into the normalizing constant, and the two definitions (8.2) and (8.10)
coincide.

Lemma 8.1. in the exponential family

/ β ) ; β e θ } (8.12)

from (8.10), generated by the model {f(y β) : β G B C V} which is assumed
to be analytic at βo, any two measures are mutually absolutely continuous. The
canonical statistic

is a minimal sufficient statistic for the family, i.e., it is sufficient and is a function
of any sufficient statistic.

Proof. Since any measure in the family has a density with respect to Po that is
positive and finite on a set of Po-probability one, any such measure and Po, and
hence any two measures in the family, are mutually absolutely continuous.

The statistic T, and hence D, is obviously sufficient for the model (8.12). We
shall show that it is minimally sufficient. Since the original model {f(y β) :
β G B C V} , when restricted to some neighbourhood of /3Q, is a sub-model
of the model considered here, according to Lemma 3.3, it suffices to show that
D is minimally sufficient for this sub-model. This follows, as noted in Section 6,
from Neyman's factorization criterion, because the log-likelihood derivatives at /?o,
based on the derived model for any sufficient statistic g(Y)1 say, are identical to
the log-likelihood derivatives for the original model. Hence the Dfc(/?0)V depend
on Y only through g(Y). I

We shall see later, in Lemma 8.5, that the minimal sufficient statistic is, in fact,
also complete. The precise statement of this result requires an accurate specifica-
tion of the σ-algebra considered and is furthermore conveniently postponed until
we have examined the parameter space a little closer.
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Suppose that the semi-norm || || on V is given and that the two constants c > 0
and λ > 0 satisfy the mixed cumulant condition (v) in Theorem 4.2. Define the
semi-norm

*P.!λ fe-\ 0 € Θ λ , (8.13)
k=l

where

Θ λ = { θ G Θoo : £ \\θk\\k\ A*"1 < oo } (8.14)
A ; = l

and ||0fc|| is the semi-norm of θ* induced by the semi-norm on V as shown in
(1.1.21). It is easily verified that || ||λ is a semi-norm on the real vector space Θλ
where addition is defined as component-wise addition and scalar-multiplication as
the multiplication of all the components, 0*, by the scalar. If the semi-norm on V
is, in fact, a norm, then so is that on Θλ which is then seen to be a Banach space.

Lemma 8.2. In the setup from above any θ = (#i,#2, •) £ ®λ satisfies

Σ> <oo (8.15)
fc=l

for Po-almost all y G E, and

| | i } (8.16)

for all h < (A||0|^)~x, where Eo refers to the Po-expectation. Furthermore, for
any θ G Θλ, we have

\cuτnm{θ(T)}\<c2(τn-l)\λm-2\\θ\\ΐ (8.17)

for any m > 2, where the cumulant is from the Po-distribution, while Eo{ #(T)} =
0.

Proof. For any k € N, let

α* = 11**11*! A*" 1 ,

such that ||0||λ = Σ«fc From the mixed cumulant condition (4.9) it follows that
for any k 6 N and m > 2, we have

|cumm{0fc(Tjb)}| < c\m - l)!fc!mλ f c m-2 | |0 f c |Γ

<c\m-l)l\m-2αf,
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while Έ{θk(Tk)} = 0, where the distribution considered is understood to be Po
here as in the sequel. Thus, from Lemma 1.4.11 we have

OO 9

<\{c\h\akf

2(\l

/(I -\h\akλ)

for any \h\ < (akλ) 1 , and hence

Έexp{h\θk(Tk)\}<

<2exp{±(chak)
2/(l-hakλ)}

for 0 < h < (aiςλ)"1. Now, for each TV E N consider

N

MN =

and use Holder's inequality with exponents ak/Mjγ for k = 1,..., N to show that

Eexp\hjΓ\θk(Tk)\\ < f[(Eexp{(hMN/ak)\θk(Tk)\})a*/MN

ak/MN

for 0 < h < (λ|| ^||λ)"" -It now follows from the theorem of monotone convergence
that the last bound also holds for the expectation of the limit exp{h Σ |0*(ϊ*)|},
thus proving (8.16). Since this expectation is finite for some positive h it follows
that the sum (8.15) is finite almost surely.

For the cumulants of Θ(T) we use the mixed cumulant condition (4.9) to show
that

|cumm{0(T)}|

f ; c u m { θ k l ( T k l ) , . . . , θ k m ( T k m ) }
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oo m

oo

Λ 2 / ^ -I \| \77l —2

L=i

for all m > 2, as claimed in (8.17). That the expectation is zero is evident. Notice
that all considerations in the proof are valid also for the cases λ = 0 or || θ\\χ = 0. I

In the mixed cumulant condition (4.9) there is a choice of semi-norm which
is, to some extent, arbitrary. It is natural to wonder how this choice affects the
result concerning the existence of exponential moments in (8.16). A proportional
change of semi-norm leaves the result in (8.16) unaffected if the constants c and λ
in (4.9) are scaled proportionally to compensate the change of semi-norm. More
precisely, if | |υ | | is multiplied by a certain constant factor, and c and λ are divided
by the same constant, then the resulting effect on || 0||λ is a multiplication by this
constant and therefore c\\ θ\\χ and λ|| 0||λ are unaffected. However, more generally,
some choices of semi-norms in (4.9) may provide more effective bounds than others
and will thereby provide more effective results in Lemma 8.2 also.

The following two lemmas show that, just as for the finite-dimensional exponen-
tial families, the cumulant generating function is convex and analytic on an open
set contained in its domain. The proofs of these assertions are quite similar to the
ones from the finite-dimensional case, see, e.g., Barndorff-Nielsen (1978).

Lemma 8.3. The cumulant generating function n, defined in (8.11), is convex
on Θ. If #i, 02 6 Θ are not identical and satisfy

κ(αθλ + (1 - α)0 2 ) = κ(

for some α with 0 < α < 1, then PQ is constant on the line

θh= θ + h(θ2 - 0χ), ΛeR,

which is then contained in Θ for any 0 £ Θ.

Proof. Let 0χ and 0̂  be fixed points in Θ and let 0 < α < 1. Since 0i(T) and
02(T) are both (almost surely) convergent series, cf. (8.8), then

= αft(T) + (1 - α)ft(T)

is also convergent, and it follows from Holder's inequality that

μ{αθι + (l-α)θ2}

= Jexp{α0χ(T) + (1 - α)02(T)}dPo(y)

l - α
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implying that

niaθi + (1 - a)θ2} < aκ(θi) + (1 - α)κ(ft)

with equality if and only if ^ ( T ) - #i(T) = a for some constant a on a set of
Po-probability one. In that case we know that for any θ G Θ and h G R, we have

which shows that the two probability measures PQ and PQH are identical. |

To show that the cumulant generating function is analytic we need to extend the
Definition 1.3.1 of analytic functions to cover infinite-dimensional vector spaces.
There are only two changes compared to the finite-dimensional case. The first
change is that the differential at a given point, cf. Definition 1.2.1, is required to
be a continuous, or equivalently a bounded, linear mapping. The second 'change'
is that the choice of norm on an infinite-dimensional space is of importance for the
concepts of differentiability and analyticity. In our case we choose the norm || ||Λ
and show that K is analytic with respect to this norm.

Lemma 8 4 The cumulant generating function K, denned in (8.11), is analytic
on the subset

1 (8.18)

of &χ equipped with the norm \\ \\\. Also the moment generating function μ,
defined in (8.8) is analytic on this set.

Proof. It follows directly from Lemma 8.2 and Lemma 1.4.11 that for any
θ G Θλ with | |0 | |λ < λ" 1 we have the infinite series expansion

Λ m!
m=l

where the sum is absolutely convergent. It is easily verified, along the lines of the
proof of Lemma 8.2, that the mapping

(θ1,...,θm)^cum{θ1(T),...,θm(T)}

is a continuous m-linear mapping with respect to the norm || ||λ. The inequal-
ity (8.17), already used to verify the series expansion, shows that these m-linear
mappings satisfy inequalities of the form (1.3.1). It now follows, e.g., from Federer
(1969, Section 3.1.24), that the existence of an infinite series expansion of the func-
tion K on the set in question, with terms that are continuous m-linear functions
satisfying inequalities of this form, implies that K is analytic on the set given in
(8.18). Since μ(θ) = exp{κ(θ)}, this function is also analytic on the same set. |
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It is a consequence of the results above, in particular of the inequality (8.16),
that the moment generating function μ may be differentiated infinitely often at
any point θ G Θλ with ||0||λ < λ""1 by differentiation of

exv{θ(T)}dP0(y)

under the integral sign. The proof of this assertion follows the line of proof from
the finite-dimensional case.

Our next result states that the statistic T, or equivalently D, is a complete
sufficient statistic in the generated exponential family. Recall the definition that
a sufficient statistic t(Y), say, is complete if, for any measurable real function
g{t(Y)} the identity

Ep<7θ00> = 0 (8.19)

for all measures P in the model considered, implies that

g{t(Y)} = 0 (8.20)

almost surely, i.e., on a set of P-probability one for all P in the model. In our
case, when considering the statistic t(Y) = T G Doo, cf. (8.5), we need to define
the σ-algebra on D ^ with respect to which the function g considered in (8.19) is
required to be measurable. The natural choice might seem to be the σ-algebra that
contains all sets of the form (g o /)""1(A), where A is a Borel subset of R. Since
all our considerations relating to the sequence T are, however, based on limits
of functions of the finite-dimensional projections (TΊ,.. . ,TΛΓ) we need to restrict
attention to the Borel-σ-algebra generated by these finite-dimensional projections.
Thus, let σ̂ Γ denote the smallest σ-algebra on D ^ containing any set of the form
{(Ti,... ,7V) G A} where A is a Borel subset of R^. Any such set A is called a
cylindrical subset of Doo, and it follows from Definition 2.1 that T(y) is measurable
with respect to this σ-algebra. The Borel product σ-algebra, or just the Borel σ-
algebra, on Doo is now defined as the smallest σ-algebra containing σ v for all
JVGN.

Lemma 8.5. Consider the generated exponential family (8.11), possibly re-
stricted to any parameter space &Q C &, say, which contains a neighbourhood
with respect to the \\-\\\-norm of a point ΘQ G ΘΛ with \\ΘQ\\\ < λ" 1. For any
function g : Do© —*• R which is measurable with respect to the Borel product
σ-algebra on D ^ and the Borel σ-algebra on R, the relations

Eθ \g(Ύ)\ < oo, and Eθ g(T) = 0 (8.21)

for all θ e ΘQ imply that g(T) = 0, PQ-almost surely. Thus, T is a complete
sufficient statistic in any such sub-family of the generated exponential family.

Proof. The proof is essentially the same as in the finite-dimensional case, cf.,
e.g., Johansen (1979, Theorem 2.6). Consider a function g satisfying (8.21). Define

0+(y) = max{0,(7(T)}, g~(y) = max{0,-</(T)}.
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Then (8.21) implies that

Jg+(y)dPΘ(y) = Jg-(y)dPθ(y)

for all θ 6 Θo and hence that

y"exp{(0 - θo)(Ύ)}g+(y)dPθo(y) = Jexp{(θ - Q>)(T)}g-(y)dPθo(y)

for all θ E Θo, where 6b is the point from the statement of the lemma. Consider
the two measures with densities g~*~(y) and g~~(y), respectively, with respect to
PQ0 and notice that these are defined on the product Borel σ-algebra. It follows
that the two moment generating functions for any finite-dimensional projection
(ϊ\ , . . . ,T/v) of T induced by these two measures exist and are identical on a set
containing zero as an interior point. Hence the finite-dimensional projections of the
two measures agree and consequently they are identical. Thus g*(y) = g~(y) °n a
set of PQ0-probability one. Since PQ and PQ0 are mutually absolutely continuous,
the completeness of the statistic is proved. The sufficiency is trivial. |




