
Chapter 1

Mathematical prerequisites

This chapter contains some basic material from mathematics and probability
theory. To some extent the purpose is to provide the notation, in particular in
relation to multilinear forms, differentials, moments and cumulants. Another pur-
pose is to list some results to be used later on. Most of these results are well known,
but a few are more advanced, especially those in Section 5. Proofs are omitted for
most of the results, and references are given only to less familiar results. In some
cases proofs are given even for well-known results, mainly because the technique
used is in line with the theory developed in later chapters and thereby gives some
useful background knowledge.

Notations and concepts used in subsequent chapters are described in Sections 1-
4. Sections 1 and 3 consist entirely of such notations although the induced norms
described in the paragraphs containing equations (1.19) to (1.25) are rarely used
and may be skipped at first reading. In Section 2 the notations are described in the
first part, ending at expression (2.12), the remaining part of the section contains
results that may be looked up in connection with their applications. Similarly, in
Section 4 the notation part ends with Definition 4.8. The rest of the section and
the lemmas 4.4 and 4.5 are used for reference purposes only. Section 5 contains
some results that, although they are essential for the theory developed, are of a
technical nature and may be consulted when needed.

1 Multilinear mappings between vector spaces

In this section we introduce some notations for multilinear mappings from one
finite-dimensional vector space to another, together with some basic definitions
and results.

Throughout this section let V, W, VΊ, V2,... denote finite-dimensional real vector
spaces. Occasionally, in later sections, we shall be dealing with complex vector
spaces, but the modifications required for these cases are quite trivial and will not
be commented upon.

Definition 1.1. A mapping A : V\ X X Vk -* W is said to be k-linear if, for
any j = 1,..., k, the mapping

Vj π-> A(υ1,...JυjJ...JΌk)i Vj G F, (1.1)

is linear in Vj for any fixed set of Vi's, i φ j . The space of k-linear mappings of
Vι X X Vk into W is denoted Lin(VΊ,..., Vk\ W).

Notice that the space of fc-linear mappings between finite-dimensional real vector
spaces is also a real vector space of finite dimension. For the special case V\ = =

1



2 SECTION 1.1 Multilinear mappings between vector spaces

Vk we use the abbreviation Lin^V; W) to denote the space of fc-linear mappings

of Vk into W.

Definition 1.2. A k-linear mapping A G Lin^F; W) is said to be symmetric if,
for all vι,..., vk G V and any permutation σ on the set {1,..., fc},

A(υu..., vk) = A (v σ ( 1 ) , . . . , vσ{k)) . (1.2)

The space of symmetric k-linear mappings ofVk into W is denoted SymA:(V
r; W).

In the case W = R we speak of fc-linear forms and of fc-linear symmetric forms.
The space V* = Lin(V R) denotes the dual space of V, and it is a vector space of
the same dimension as V.

We generally use superscripts on vectors to denote repetitions, i.e.,

vk = (v,...,v)eVk (1.3)

for v e V,k £ N. Thus, in particular, if A G Lin^F; W\

A(vk) = A(Ό,...,V) eW. (1.4)

In coordinates the objects above may be written as follows. Let the vector spaces
be equipped with bases and use square brackets to denote coordinates, i.e., [vι]i de-
notes the ith coordinate of v\ G VΊ, etc. Then a fc-linear mapping A G Linjt(VΓ; W)
has a coordinate representation of the form

which expresses the j th coordinate of A(^i,..., vk) G W, and we have used some
generally adopted tensor notations, cf. McCullagh (1987), namely that indices may
appear as superscripts as well as subscripts and that summation over any index
that appears twice in a term is understood. In the case W = R the coordinates
of A make a fc-dimensional array of numbers. If k = 2 it reduces to the familiar
matrix representation of a bilinear form.

A key feature of symmetric A -linear forms is that they are determined by their
values on the 'diagonal', i.e., by the values of the form in (1.4). Explicitly, this
follows from the polarization identity, cf. Federer (1969, Section 1.9.3),

A(vu...,vk) = (fc!2fe)-1^(Π«i) AU^αjvj)] , (1.6)

for any A G SymA.(V
Γ; W), v i , . . . , vk G V, where the first sum is over all sequences

.,Oίk) G {-1, l} f c. Notice that we use the word 'diagonal' in a different sense
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than a matrix diagonal. The relation does not imply that, e.g., a bilinear symmetric
form is determined by the diagonal values in a particular matrix representation.

Any function, / : V H-> W, of the form

f(v) = wo + A1 (v) + A2 (v2) + ... + Ak (vk), (1.7)

where WQ G W and Aj G Sym^V;W)\j = l,...,fc, is called a polynomial on V
with values in W and the A^s are called the coefficients. The largest j for which
Aj is non-vanishing is called the degree of the polynomial.

We shall frequently need mappings obtained from, e.g., A G Lin(VΊ,.. >Vk]W)
by 'plugging in' some of the arguments. Thus, for fixed v\ G V,..., vm EVym < fc,
we let

(1.8)

denote the mapping

(1.9)

although this is, strictly speaking, misuse of notation. In coordinates A(υι,..., vm)
would be the k — m+1 dimensional array with entries

[ii(i*,...,*»)]J-+ 1-< 4 = [Aft-Hvih -••[vm]im. (1.10)

In particular, any bilinear form, A G Lin2(F; R) may in this way be identified with
a linear function of V into V*, by the identification

Όι »Ά(vι) G Lin(F R) = V*

v2) (1.11)

Thus, notationally we do not distinguish between the two mappings A G Lin2(V; R)
and AeL'm(V;V*).

A bilinear form A G Lin2(T^;R) is said to be positive semi-definite if, for all

vev,
A(υJυ)>0 (1.12)

and positive definite if, for all v φ 0,

A(v,t;)>0. (1.13)

A symmetric positive definite bilinear mapping, A G Sym2(F;R) defines an inner
product on F, denoted

{V\,V2)A = A(vuv2), vuv2 G F, (1.14)

or just (^1,^2) if A is understood. This inner product induces a norm on V,

IMU = ««,«>Λ) 1 / 2 , vev. (1.15)
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A real vector space equipped with an inner product is called a Euclidean space. If it
is only assumed that the symmetric bilinear form A above is positive semi-definite
then we refer to (1.14) and (1.15) as a pseudo inner product and a semi-norm,
respectively. An inner product norm on V is a norm that is induced by an inner
product by (1.15). Similarly we shall speak, slightly incorrectly, of an inner product
semi-norm for a semi-norm induced by a pseudo inner product.

Any two norms || ||i and || ||2, say, on a finite-dimensional real vector space V
are equivalent in the sense that there exist two positive constants a and 6, say,
such that

αlMli < NI2 < δ|M|i

for all v eV.
To any inner product corresponds a uniquely determined Lebesgue measure,

namely the one that assigns unit volume to the unit cube spanned by an orthonor-
mal basis. The Lebesgue measure induced by A G Sym2(V;R) is denoted λ^.

If A G Sym2(V;R) is positive definite, it has an inverse A" 1 G Sym2(V*;R)
which is also positive definite and is defined as follows. Consider A as a mapping
in Lin(Vr;Vr*), cf. (1.11). This mapping can be shown to be one-to-one and onto
V* such that it has an inverse A"1 G Lin(VΓ*;VΓ). By the reverse construction of
(1.11), A""1, defined in this way, can be identified with a mapping in Lin2(V*;R),
defined by

A-\vlv*2) = υl (A-\vD) e R, (1.16)

where v^v^ G V*. This mapping, A" 1 G Lin(V*;R), can be shown also to be
symmetric and positive definite. Hence, it induces an inner product on V*, denoted

(vlv*2)A = A - ^ t J) G R, vlv; G V\ (1.17)

although the notation with subscript A""1 would be correct, according to (1.14).
Because A and A""1 are mappings in different spaces there is no risk of ambiguity
by using A as subscript, which we prefer when the inner product is constructed as
above, starting from A. In coordinates, A""1 is the usual matrix inverse of A, i.e.,

[AfiA-1]^ = δl (1.18)

where 6%

k is the Kronecker delta that equals 1 if i = fc, 0 otherwise.
Any vector v G V may also be considered as an element of V**, the dual of V*,

by the identification υ(υ*) = v*(υ), for υ* G V*, and, in fact, V may be identified
with V**. Hence, the construction above that leads from an inner product on V to
an inner product on V* may also go the opposite way. Finally, an inner product
A on V may also be used to identify V and V*, simply by identifying υ G V with
A(υ) £V*. In this way any orthonormal basis on V is mapped into an orthonormal
basis on V* with respect to the inner products induced by A, and the coordinates
of v and A(v) would be the same with respect to two such corresponding bases.
The matrix of A with respect to such two bases would, of course, be the identity
matrix, and any mapping defined on either of V or V* would be identified uniquely
with one defined on the other, with the same coordinate representation.
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Assume now that V is equipped with an inner product ( , )A and consequently
with the norm || ||>i If W 1S also equipped with a norm, | | say, not necessarily
induced by an inner product, then a norm, also denoted \\-\\A (when the norm on
W is understood, e.g., if W = R), is induced on SymA.(F; W) through the definition

\\B\\A = s u p { IJB (vk) \:veV, \\v\\A < 1 } , (1.19)

when B G Symjk(Vr;W). An important inequality, due to Hόrmander (1954),
cf. Federer (1969, Section 1.10.5), that we shall use frequently, is

\B(vt,.. .,vk)\ < | |5 |UIMU IHU> ( L 2 °)

for all v i , . . . ,Vk G V, but it depends on the fact that the norm on V is induced
by an inner product. For later use we record that the process can be continued to
the space dual to Sym f c(F; W). Thus, if D G Lin(Symfc(V; W);R), then

<\}, (1.21)

Notice that a set {v\,..., Vk} of vectors in V define such a mapping J9, namely by

D(B) = B(vr,...,vk), (1.22)

in which case

IPIU<IKIU IKIU (i 23)
follows immediately from (1.20).

We shall extend the definitions in (1.19) and (1.21) to cover the case when \\-\\A

is a semi-norm on V. Then the definition (1.19) implies that \\B\\A may be infinite,
namely if B(υk) is non-zero for some υ / 0 with \\V\\A = 0. We shall then refer to
(1.19) as an extended norm on Symk(V;W). Notice that the inequality

\B(vk)\<\\B\\A\\v\\k

A (1.24)

is still valid whenever \\B\\A is finite. In fact, also (1.20) holds for an extended
norm whenever \\B\\A is finite. This is seen by the following continuity argument.
Choose a sequence of inner product norms, || ||n? indexed by n G N, such that \\v\\n

is decreasing and converges to \\V\\A for any v eV. For any B for which ||i?||,4 is
finite (1.24) holds, also if | |Ί; | |A is replaced by \\v\\n. Thus

and consequently (1.20) holds if we replace \\VJ\\Λ by | |vj | |n for all j . A simple
continuity argument now shows that (1.20) holds for the semi-norm \\-\\A also.
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Next, we admit the extended norm \\B\\A to be used in the definition (1.21). It
is easy to see that this defines a semi-norm, i.e., \\D\\A

 m a Y be zero for non-zero
D, but infinite values cannot occur. The inequality

\D(B)\<\\D\\A\\B\\A (1.25)

holds whenever ||-S||yi ι s finite, and the inequality (1.23) is therefore still valid.
Finally we recall that the transpose (or the dual) of a linear mapping, / G

Lin(y; W)y is the unique linear mapping, fτ G Lin(W^*;y*), satisfying

«*{/(«)} = {/TK)X«) (1-26)

for all v G V and w* G W*. The matrix representing fτ is the transpose of the
matrix representing /, when dual coordinate systems are used on (V, V*) and on
(W,W*).

2 Differentiability of functions between vector spaces

Throughout this section {7, V,W, and Vί,V2,... denote finite dimensional real
(or complex) vector spaces. We assume that all vector spaces are equipped with
norms, denoted || | |. It does not matter for the concepts of differentiability that are
introduced below, which norms are chosen because all norms on finite dimensional
vector spaces are equivalent.

First we need to define the o and 0 symbols. Let g and h be two functions
defined on a subset of V in which #o is &n inner point. Then we write g(x) =
o(h(x)) as x —• XQ if for any e > 0 a neighbourhood, U say, of XQ exists such that
\\g{x)\\ < e\\h(x)\\ for all x G U, where ||Λ(α:)|| = \h(x)\ ifh(x) is real. The notation
g(x) = O(h(x)) as x -» xo implies the existence of a neighbourhood U of xo and
a constant c > 0 such that ||fif(x)|| < c||/ι(x)|| for all x G U.

Definition 2.1. A function f : B —> W9 B C V, is said to be differentiable at
xo G int(B) if there exists a linear function, Df(xo) say, ofV into W, such that

f(x) = f(xo) + {Df(xo)}(x - xo) + o(||* - soil) (2.1)

as x —• xo. The function Df(xo) G Lin(F; W) is called the (first) differential off
at x0.

Notice that because any function in Lin(y W) is continuous, any function that
is differentiable at xo is also continuous at.zo

Definition 2.2. A function f : B —» W, B C V, is said to be differentiable in
Bo if Bo C B is an open subset ofV and f is differentiate at any point in Bo* If,
furthermore, the function

Of : Bo -> Lin(F W)

x H+ Df(x) (2.2)
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is continuous at XQ G BO or in Bo, then f is said to be continuously differentia We
at #o or in Bo, respectively.

If / : B - • W is differentiable in Bo C B C F and the function in (2.2) is
differentiable at aio 6 So? then / is said to be twice differentiable at #o In that
case the function

D(Df)(x0) G Lin(V; Lin(F; W)) (2.3)

may be identified with a function, denoted D2 f(x0), in Lin2(V; W) by the identi-
fication

{D2f(x0)}(vuv2) = {(DiDfXxo))^)}^), (2.4)

where i>i,i>2 G V. The function D2f(xo) is called the second differential of / at
xo This process may be repeated to the following inductive definition of higher
order differentials.

Definition 2.3. A function f : B -> W, B C V, is said to be A: times (con-
tinuously) differentiable at xo G int(5) if it is k — 1 times differentiable in a
neighbourhood Bo ofxo, and the function

D^f-.Bo^Lm^V W) (2.5)

is (continuously) differentiable at XQ In that case we define the kth differential of
f at XQ as the k-linear function

Dkf(x0)eLmk(V;W),

{ ( *7 ) ( *o ) ) ( t> f c ) }K .. .,**_!), (2.6)

where t>i,... ,v^ G V.

For a function of several variables we shall use the notation D*f for the kth.
differential of / with respect to the variable x.

If / is k times differentiable at xo then (2.1) generalizes to the fcth order Taylor
series expansion

l
(2.7)

as x -> xo, where (x - xo)* = (x - ^o , . . . ,x - %o) G Vk by convention, cf. (1.3).
To avoid the many parentheses required for such expansions we shall prefer the
simpler, though less precise, notation

/(*) = /(*o) + Df(xo)(x - xo) + + yDkf(x0)(x - xo)k + o (||x - xo||*) (2.8)

as x —> Xo, instead of (2.7) when there is no risk of ambiguity. Notice that the
expansion (2.8) looks exactly the same as for one-dimensional functions. This is
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no coincidence since (2.8) is really an expansion of the function /(ar0 + h(x - Xo))
as a function of h G R. More precisely, this follows from the identity

Dkf(x0)(x - xo)k = ( | - ) f(xo + Kx - xo)) (2.9)

evaluated at h = 0. This identity holds whenever f is k times differentiate at x$.
More generally we have

Dkf(x0)(vu . . . , vk) = — • ^ - / ( x o + M i + • + hkυk), (2.10)

evaluated at hi = 0,..., hk = 0, where /ij G R and Vj G V for j = 1,..., fc.
An important, well-known result is the following. The proof may be found, e.g.,

in Federer (1969, Section 3.1.11).

Lemma 2.4. if / : B -> W, B C V, is k times differentiable at 2?o £ B, then
Dkf(xo) G Symk(V;W), i.e., the kth differential at xo is symmetric.

Thus, from the fact that a symmetric fc-linear function is determined by its
values on the diagonal it follows that the fcth differential is determined by the fcth
derivatives of the one-dimensional 'directional' functions in (2.9).

It may be seen from (2.10) that the coordinate representation of Dkf(xo) is the
(k + l)-dimensional array of partial derivatives

evaluated at x = x0, where fj{x) is the jth. coordinate of /(x) 6 W and X{ is the
ith coordinate of x € V. Thus, except for the error term, the coordinate version
of (2.8) is

m j l Ij o\n ojzm
m=l

It is often necessary to provide a bound for the remainder in Taylor's formula (2.8).
If we let

* 1
Rk(x) — f(x) — /(#o) ~ / —\Dm f(xo)(x — xo)m, (2.13)

m=l

and assume that / is k + 1 times continuously differentiable at any point XQ +
h(x - XQ) with 0 < h < 1, then

(2.14)



CHAPTER 1 Mathematical prerequisites 9

Hence, for any such function we deduce that

\Rk(x)\ < TΓ^TTT sup { \Dk+1f (a* + h(x - x0))(x - xo)
k+1 | : 0 < h < 1 }

- ( i T T ) ! l | x " * o l | f c + 1 sup { l ^ * * 1 ' ( x o + h { x ~ X o ) ) l ' : ° - Λ -**
(2.15)

Of course, the result (2.14) and the first inequality in (2.15), identified through
(2.9), hold under the weaker condition that the function h -* /(x0 + h(x - xo)) is
(k + 1) times continuously differentiate on 0 < h < 1.

Beside the elementary rules of differentiation we shall need a few results on
higher order differentials that we record below for later reference.

For a product, (fg)(x) = f(x)g(x), of two functions f,g : B —* R where B C V,
Leibnitz' rule, cf. Federer (1969, Section 3.1.11), states that

Dk(fg)(x)(vk) = 2J ( . ) {&f(x)(v>)} {Dk->g(x)(vk->)} (2.16)

for υ G V, whenever / and 5 are fc times different!able at a: G int(J9). We shall
need this formula in a slightly more general setting, in particular as a formula for
the differentiation of a composite linear function with respect to a parameter. For
this purpose we only need to generalize the product from above to a more general
kind of product, namely any mapping π G Lin(Vi, V2\ W) for which a constant
c > 0 exists, such that

(2.17)

for all vι G Vτ and v2 G V2. Then, if ft : B -> Vt and f2' B-+ V2j where B CV,
are both fc times differentiate at XQ G int(i?), Leibnitz' rule applies to the product
mapping

π(fuf2):x^π(fi(x)j2(x))eW

in the form

( ) { t f - i ) ) , (2.18)

for all t; G V. As mentioned above, the main application of (2.18) is to compositions
of linear functions depending on a parameter. Thus, if fβ : V\ —• V2 and ^ :
V2 —• V3 are linear functions indexed by a parameter /? G 5 C V, say, then
differentiation of the composition gp 0 /^ with respect to β obeys (2.18) in which
7Γ denotes composition of the two linear functions.

Related to the products is the differentiation of reciprocals. We shall give this
result only in a special case. Consider a function / G Lin(V W), where dim(F) =
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dim(l^). Let R denote the mapping

) (2.19)

defined on the subspace of one-to-one linear mappings of V into W. Then R is
indefinitely often differentiate at any point f0 in this space and

DkR(fo)(hk) = (-l)kk\ /Q-1 O h o f-1 o . o h o / - 1 e Lin(W; V) (2.20)

for any K N and h G Lin(V; VF), where h appears k times and /o appears k + 1
times on the right. A more familiar expression of this result is in terms of the
Taylor series expansion

(/o + h)-1 ~ fc1 - fό'hfo1 + fo'hf^hfc1 - G Lin(W; V). (2.21)

Also the chain rule generalizes to higher order differentials, cf. Federer (1969,
Section 3.1.11). Thus, consider two mappings / : B\ —• B2 and g : J32 —v W,
where B\ C V\ and ,02 Q V2, and assume that they are fc times differentiable at
xι G int(J9χ) and 2̂ = /(#i) ^ int(^2), respectively. Then the composite function
g o / : B\ -> W is fc times differentiable at a?i and

(2.22)

for any w G VΊ, where Γ(/:) is the set

T(k) = «( («!, . . .,α f c) G Ng : ^ j α , - = fc} . (2.23)

Notice that in (2.22) each component of the form D^ f(xι)(v^) is a vector in V2.
Sometimes it is more convenient to apply the formula for higher order differentials
for composite functions in terms of the sets

Sm(k) = { (αi,... ,αm) G N m : ΣaJ = k } » ( 2 2 4 )

defined for m, A; G N satisfying m < k. Each sequence α in 5m(fc) corresponds to a
sequence α(α) = (αi , . . . ,αjt) in T(fc), namely by identifying α^ with the number
of α's from the sequence in Sm(k) that are equal to j . Now, it may be seen that
for any function a H-> 5(0;) on Γ(A ) this identification induces a function 5, say, on
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Sm(k) for m = 1,..., k, namely by g(a) = g(a(a)), satisfying

Σ (Παi !)~ *( °o = Σ Σ —&*)- (2 25)

By use of this relation we may re-express formula (2.22) as

Dk(gof)(Xl)(vk)

= Σ Σ ^{D

" i = l o€Sm(fc)

(2.26)

For computations related to expressions of the form (2.22) or (2.26) we shall be
using the relation,

Σ (IM~'= Σ±-UΆ (2 27)

where Tm{k) is the subset of T{k) on which Σ otj = m. From this it is furthermore
seen that

- I ) * " 1 , (2.28)

for any 7 G R, cf. Federer (1969, Section 3.1.24).

3 Analytic functions between vector spaces

In this section let V and W denote finite dimensional normed real (or complex)
vector spaces and consider a mapping / : B —• W where B C V. The definition
of analytic functions in this setting, cf., e.g., Federer (1969, Section 3.1.24), does
not rely on complex function analysis, but agrees with the traditional definition of
analytic functions in that framework.

Definition 3 1. A function f : B —> W, B C V, is said to be analytic at a point
xo € int(J3) if it is infinitely often differentiate at xo and satisfies the following
two conditions:

(1) There is a constant c < 00 such that

\\Dkf(x0)(v
k)\\<k\ck\\v\\k (3.1)
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for all k β N.
(2) For all x in some neighbourhood of XQ,

'(*) = Σ ^ * / ( * o ) ( * - *o)fc (3.2)

Notice that the sum in (3.2) converges absolutely in some neighbourhood of XQ
because of (1). The condition (2) then states that the function actually agrees
locally with the sum. That this is not a consequence of (1) is seen, e.g., from the
standard counter example,

/(x) = exp(-l/ |x |)

of a function of R into R. For this function all derivatives vanish at x = 0.

Definition 3.2. A function f : B —> W, B C V, is said to be analytic in Bo C B,
if Bo is an open subset ofV and / is analytic at every point in BQ.

Polynomials are analytic at all points of their domain, linear combinations of
analytic functions are analytic and compositions of analytic functions are analytic.
Also the inverse mapping of an analytic mapping is analytic at any point at which
the differential is non-singular, cf. Federer (1969, Section 3.1.24).

It is evident from the definition that a Taylor series expansions of an analytic
function in a sufficiently small neighbourhood is bounded by a geometric series,
i.e., a series of the form

oo

c £ > f c (3.3)
fc=0

for some c > 0 and 0 < α < 1.
The main virtue of analytic functions in the present context is that the remainder

from the Taylor series expansion,

Rk(x) = /(*) - /(xo) - 2 j ^J9"7(so)(s - *o)m

τ n = l

around a point £o at which the function is analytic, may be bounded in terms of
the derivatives at xo only. More precisely, if / : B —• W is analytic at x0 € int
and c is the constant from (3.1), then

oo 1

m=k+l

= ck+1\ x-x0\\
k+1/(l-c\\x-x0\\), (3.4)
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for all x in some neighbourhood of x$. In fact, (3.4) holds for all x satisfying
||# — XQ\\ < C1 < oo if / is analytic in this area.

Inequalities similar to (3.4) hold for the derivatives of / at any point where /
is analytic. In particular, if / is analytic at a o E 5 , so is any of the functions
x •-> Dkf(x).

4 Moments and cumulants of random vectors

Throughout this section let V be a finite dimensional real vector space, V* its
dual, and let X be a random variable with values in V and with a distribution
denoted P. Some definitions of moments and cumulants are given below, but only
for cases in which all moments up to a certain order exist. Thus, we do not extend
the definitions to cases where, e.g., a certain moment exists for one coordinate,
but not for another.

Notice that for each t £ V* the variable t(X) is a one-dimensional real random
variable. Our definitions of moments and cumulants are based on such random
variables.

Definition 4.1. The random variable X £ V is said to have finite kth moment
if

E{\t(X)k\}<oc

for any t € V*. In that case the kth moment of X is defined as the k-linear
symmetric form

(4.1)

Notice that because μk is a A -linear symmetric form it is determined by its values
on the diagonal, i.e., by the values μk(tk), t G V*. The coordinate representation
of μk is

[μk)h...ik =

/**(<*) = [μ*]ΰ ΰ[*] < 1 •••[<]'*, tev*, (4.2)

where [X]i and [t]% denote the ith coordinate of X and ί, respectively, with respect
to dual bases.

Definition 4.2. The characteristic function of the random variable X is the
function

= Eexp{tt(X)}. (4.3)
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It is well known that if the λ th moment of X exists then Dkξ(t) exists and is
uniformly continuous in t G V*, and that

Dkξ(0) = ikμk. (4.4)

Thus, in that case, we have the Taylor series expansion

as t —• 0. Since f(0) = 1 the equation (4.4) implies the existence of Logf(/) as a
k times differentiable function in a neighbourhood of t = 0.

Definition 4.3. If X has finite kth moment, then the kth cumulant of X is
defined as the k-linear symmetric form

κkeSymk(V*;R)

* * . . . , tk), (4.6)

where Log denotes the (principal branch of) the complex logarithmic function.

The A th cumulant is, as the moments, determined by the values on the diagonal,
i.e., by the values of κ>k(tk) for t E V*, which for any fixed t equal the A th cumulants
of the real random variables 2(X). It follows from above that if the fcth moment
of X is finite then

(4.7)

as J —• 0. For real random variables Xi,... ,Xk £ R we use the notation

to denote the joint cumulant of the variables, i.e.,

cum(Xi,... ,Xfc) = Γ f c — — L o g {Eexp ( i^Xi + + ihkXk)}, (4.8)

evaluated at Λj = = hk = 0, whenever this derivative exists. When X\ = =
Xk in (4.8) we abbreviate to

, . . . ,X). (4.9)

It follows that (4.6) can be expressed as
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and that, in particular,
**(<*) = cum* (ί(X)), (4.11)

which gives the definition of cumulants entirely in terms of cumulants of real
random variables.

If X has finite second moment its variance is defined as the bilinear symmetric
form

{var(X)}(*2) = κ2(t2) = var{/(X)} > 0. (4.12)

Thus, κ2 is (semi)-definite and defines a (pseudo) inner product on V*, denoted
( , ) K 2 , cf. (1.14). This (pseudo) inner product then induces a (semi)-norm on V*.
If κ2 is positive definite it has an inverse κ2

λ G Sym2(V;R), cf. (1.16), which is
also positive definite and therefore induces an inner product and a norm on V. We
shall frequently use this construction of an inner product from the variance of the
random variable considered.

If X\ G V\ and X2 G V2 are both finite dimensional random variables and
if (Xι,X2) G Vi X V2 has finite second moment, then we define the covariance
between X\ and X<ι as the bilinear form cov(Xi, X2) in Lin(VΓ

1*, V^ R) defined as

{cov(X1,X2)}(t1,t2) = cσvihiXJM^)), (4.13)

where the right side denotes the familiar covariance of real random variables.
By repeated differentiation of Log ζ(t) and of expLog£(tf) according to the for-

mula (2.22) we obtain the relations between moments and cumulants,

aeτ(k)

and

aζT(k)

(4.15)
whenever μk exists, where T(k) is the set defined in (2.23).

A more advanced relation gives the joint cumulant in (4.8) in terms of moments
as

cum(Xu...,Xk) = Σ(-l)Λ-1(A-l)\μ(S1) μ(SA), (4.16)
5

where the sum is over all partitions S = ( 5 Ί , . . . , SA)] A = 1,..., fc, of {1,..., k}
into A non-empty subsets, i.e.,

and the subsets are pairwise disjoint, and

μ(Sa) = E I Π XΛ . (4.17)

I I
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The proof of this relation may be found in McCullagh (1987, Section 3.6.2).
Some inequalities for cumulants and moments in terms of each other follow from

(4.14) and (4.15). These are stated in the following two lemmas.

Lemma 4.4. If X G V has finite kth moment and there exist two constants
c > 0 and λ > 0 such that

\μj(f)\<cj\\ψ\y (4.18)

for all j = 1,..., k9 where || || is any norm on V, then

|ί|| fc. (4.19)

Proof. Insertion of (4.18) into (4.15) together with an application of (2.25) and
(2.27) yields

k

 k i m / * - i \

as claimed in the first inequality in (4.19). The second is trivial. |

Lemma 4.5. If X E V has finite kth moment and there exist two constants
c > 0 and λ > 0 such that

M | (4.20)

for all j = 1,..., k, then

M'fc)| < ̂ t ! ! ) ! ^ ! ^ (4.21)

where the definition x\ = Γ(x + 1) covers cases of non-integer valued c.

Proof. From (4.14) and (4.20) we see that

< Σ fc!

But all terms in this sum are positive and the sum equals the expression for the
kth moment of a Γ-distribution in terms of its cumulants. The redistribution
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with shape parameter θ and expectation θβ has jth cumulant (j — l)\θβi and jth
moment (Γ(0 + j)/Γ(0)) βi, so if we let θ = c and β = λ||t|| the claim is justified
and we see that the sum equals the right hand side of (4.21). I

In place of the characteristic function it is often convenient to work with the
moment generating function, μ : V* —* R, given by

μ(t) = Eexp{t(X)} < oo.

This definition is extended to admit complex arguments for which we need the
complex dual V£ = Lin(y C). A strict definition requires the extension of V to a
complex vector space, but for our purpose the representation V£ = V* + iV* will
suffice, where i2 = — 1.

Definition 4.6. Consider the set

Tc(X) = {teV£: E| exp{*(X)}| < oo }. (4.22)

The function μ : TC(X) -> C,

(4.23)

is called the moment generating function of X. The same name is used for the
mapping (4.23) considered as a function on the subset

τR(X) = Tc(X) n v*

of real linear forms on V.

Notice that we always have

TΛ(X) + iV* C Γc(Λ-), (4.24)

i.e., if z = t\ + it2 € VQ, where ^1,̂ 2 E V*, is a complex linear form on V, then
z e Tc(X) if *i e TR(X), simply because \expz(X)\ equals exp/i(X).

The name, moment generating function, refers to the fact that the moments are
the derivatives of μ at zero, if these exist. Obviously,

ξ(t) = μ(it) (4.25)

so that μ is always defined on iV*y and the moments may always, if they exist, be
found as derivatives of μ(z) at z = 0 for purely imaginary arguments z.

Definition 4.7. The function

κ(z) = Logμ(s) = Log{Eexp^(X)}, (4.26)



18 SECTION 1.4 Moments and cumulants of random vectors

z G V£9 defined on the subset of TQ(X) on which μ(z) does not meet the non-
positive real axis, is called the cumulant generating function. The same name
applies to the function (4.26) restricted to the subset obtained by considering
z eV* only.

Of special interest are the random variables for which the moment generating
function is finite in a neighbourhood of the origin in V*.

Definition 4.8. A random variable X G V is said to have finite exponential
moments if

μ(t) = Eexp{*(X)} < oo (4.27)

for all t G V* in some neighbourhood of zero.

It follows easily from Holder's inequality that a finite sum of random variables
with finite exponential moments, itself has finite exponential moments.

Lemma 4.9. A random variable X G V has Unite exponential moments if and
only if

E{exp(s||X||)} < oo (4.28)

for some s > 0, where || || is any norm on V.

Proof. If (4.28) holds then (4.27) holds for all t G V* with ||/|| < θ, because
\t(X)\ < \\t\\ \\X\\. Assume now that (4.27) holds and that X = Xxvx + - + Xpvp,
where (υi,..., vp) is a basis on V and X\,..., Xp are real random variables. Then

But each of the variables Xj are linear functions of X and therefore

E exp{Sj IX I \\vi\\} < Eexp{S j | | V j | | Xj} + Eexp{- 5 j \\Vj\\ Xj)

which is finite for sufficiently small Sj > 0. The result now follows from Holder's
inequality. |

In some cases we consider a family {Pβ]β G B} of distributions for a random
variable X, where β ranges over some set B. Then we say that X has uniformly
bounded exponential moments with respect to β G B, if there exists an s > 0 such
that

sup{ Eβ exp(θ||X||) : β G B } < oo. (4.29)

If a random variable X has finite exponential moments, then the moment gener-
ating function, μ, is analytic in the set

{z G VI : z = ίi + t*2; tut2 G V*; h G int (TR(X))} , (4.30)

where TR(X) is defined in Definition 4.6. Hence, it follows by analytic continu-
ation that μ is determined throughout this set from its derivatives at zero. We
conclude that for a random variable with finite exponential moments, the moments
determine the distribution uniquely. It is useful to be able to see whether this is
the case from the moments themselves, without the assumption that X has finite
exponential moments.
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Lemma 4.10. Assume that X £ V has finite moments of all orders, satisfying

|<<*!λ* | | ί | | * (4-31)

for some c > 0, λ > 0 and all k £ N and t € V*. Then the distribution is uniquely
determined by the moments, X has finite exponential moments, and for any t € V*
with \\t\\ < λ-1,

"(*) = Σ έ μ * ( t * ) (4 32)

where the sum is absolutely convergent.

For the case of one-dimensional random variables the proof of Lemma 4.10 may
be found in Feller (1971, Chapter XV, Section 5). The extension to several dimen-
sions is trivial.

From Lemma 4.10 it is easy to extend the result to the cumulants for which the
inequalities will often be given in the form (4.20).

Lemma 4.11. Assume that all cumulants of X G V exist and satisfy

|κ*(ί*)|<c(*-l)!λ*||t||* (4.33)

for some c > 0, λ > 0, and all k G N and ί G V * . Then the distribution ofX is
uniquely determined by its cumulants, X has finite exponential moments, and for
anyte V* with \\t\\ < λ" 1 ,

*W = Σ Πκ*(<*) ( 4 3 4 )

where the sum is absolutely convergent.

Proof. . From Lemma 4.5 and the inequality

it follows that the assumption and hence the conclusion of Lemma 4.10 holds with
λ replaced by any A, say, with λ > λ and a suitably chosen constant c. Then we
know that μ(z) and hence κ(z) is analytic in a set containing the subset of V£ on
which ||tf|| < λ""1, and the result follows from the theory of analytic functions. |

It is not implied by Lemma 4.10 or Lemma 4.11 that a distribution with the
given series of moments or cumulants exists, only that there is at most one.

For later reference we conclude this section with a few well-known lemmas.
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Lemma 4.12. If X G R is non-negative with probability one, then

r°°
EX= ?(X>x)dx<oo. (4.35)

Jo

Proof. From Tonelli's theorem it follows that the two integrals can be inter-
changed in the computation

rOO ΛθO ΛOO

EX= xdF(x)= / / I{y<x}dydF(x)
Jo Jo Jo

= Γj>(X>y)dy.
Jo

I

Lemma 4.13. For any positive random variable X with μ(t) < oo for some fixed
t G R, we have

F(X >x)< μ(t) exp(-ίx). (4.36)

Proof. This is Chebychev's inequality applied to exp(/X). |

5 Some inequalities for symmetric multilinear mappings

In this section let V and W denote finite dimensional real vector spaces and let
p = dim V. We assume that W is equipped with a norm denoted | |, and that V
is equipped with an inner product ( , ) and a corresponding norm denoted || ||.

Recall from (1.19) and (1.20) that for any A G Symk(V;W),

, . . . , i ; f c ) | : ||u; || < 1; j = 1,... ,fc}. (5.1)

To estimate factorials we shall need Stirling's formula in the form

kϊ = (2ir)1/2(Jfc + l)k+* e"( f c + 1)(l + δk), (5.2)

where δk = O(k"1) as k —• oo and 0 < δk < 1/23 when k > 1. In particular, we
shall be using the following consequence,

fc!"1ibfc<(7rJb)-1/V (5.3)

for all k > 1. This follows by simple manipulations from (5.2).
Lemma 5.1 below gives, like (5.1), a bound for off-diagonal values of a symmetric

multilinear mapping in terms of diagonal values, but for the case when the diagonal
values are bounded by a geometric average of factors of the form | H | t , for some
semi-norms || ||; that need not be generated by (pseudo) inner products.
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Lemma 5.1. Let A G Symk(V;W) and assume that there exist m semi-norms
on V, denoted || | | i , . . . , \\ \\m, m e N, such that for some constants c > 0 and
α i , . . . , α m > 0 with α\ -\ h αm = k, the inequality

\A(vk)\<cf[\\v\\r (5-4)

holds for all v G V. Then, for all vι,..., vk G V,

ί
where

7(jfc) = k\ ~Ύkk < (>κk)-ιl2ek. (5.6)

Proof. The polarization identity (1.1.6) shows that

where the subscript α to the sum and the supremum refers to all sequences
( α i , . . . , α * ) in {-1,1}*. Hence (5.5) follows with η{k) = A:!"1^. The second
inequality in (5.6) is just (5.3). I

The next result is of importance for probabilistic calculations with random sym-
metric multilinear mappings, because it establishes a bound for the norm of such
a mapping, cf. (5.1), in terms of its values on a finite subset of arguments on
the diagonal. For bilinear symmetric forms such an inequality is well-known. In
probabilistic terms it says that the variance of any linear combination of p random
variables is at most p times the maximal variance of the variables, provided that
the sum of squares of the coefficients of the linear combination does not exceed one.
For multilinear symmetric mappings a similar inequality can be derived, although
a bit weaker in terms of the constant factor. The result is given in Lemma 5.3
below; in Lemma 5.2 we give a slightly more general version. First, however, we
introduce the finite set of vectors to be used in the lemmas.

Let (e i , . . . , ep) be an orthonormal basis with respect to the inner product on V
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and define the subset

(5.7)

of vectors in V. For the number, |Vjt|, of elements in V* we obtain

(5.8)

from the combinatorial argument to the number of allocations of at most k units
on p base vectors combined with a sign on each base vector. The second inequality
in (5.8) is trivial.

Lemma 5 2. Let \\ \\B denote a (semi)-norm on V induced by a positive (semi)-
definite bilinear form B G Sym2(V;R). Let Vk be the set defined in (5.7) in terms
of a basis (e i , . . . ,ep) that is orthonormal with respect to the inner product ( , •)
and orthogonal with respect to B. If A G Symk(V;W) satisfies

\A(vk)\<c\\v\\k-1\\v\\B

for some constant c > 0 and all v G Vk, then

\A(vk)\ < CTO^IMI^IMIB

for all v € V, where

Ί(p,k) = k\~1kkpk < (πk)-λ'\pe)k.

(5.9)

(5.10)

(5.11)

Proof. Let bj = | |e j | |^ denote the eigenvalues of B with respect to ( , •), and let
v = βiei + h βPep be any vector in V. Then

(5.12)

where the sum is over all sequences i = ( ή , . . . , ik) in {1,... ,p}A:. For any such
sequence the assumption (5.9) and the polarization identity (1.6) show that

= (k\2k) X

(5.13)
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where Σa denotes the sum over all sequences in {—1, l}k and the factor 2k in the
last expression is the number of terms in this sum, while the factor kk stems from
the estimate

and the inequality

Now, notice that for any j = 1,... ,

t = l

Therefore, by use of the trivial inequality \βj\ < \\v\\ for all j , combination of (5.12)
and (5.13) gives

\A(vk)\<ck\-ιkkpk\\v\\k-1

Sup{\βj\Vbj:j=l,...,p}

<c/b!-1JfcV||»||fc-1||t;||B,

which proves (5.10) with the first expression in (5.11) for η(p, k). The inequality
in (5.11) follows directly from (5.3). I

Of particular interest is the case when only one norm is involved, i.e., when
\\V\\B = ||v||. Then Lemma 5.2 implies that

\\A\\<k\-1kkpkMk(A),

where

Mk(A) = inf { M G R : |A(t;*)| < M||v||* : v G Vk } . (5.14)

For this case we can, however, do slightly better as shown in the following lemma.

Lemma 5 3. For any symmetric k-Hnear mapping A G Symfc(V
r; W) we have

\\A\\ < k\ -H'p^MkiA) < (τrk)^2(ey/p)kMk(A) (5.15)

where Mk(A) is given in (5.14) in terms of the set Vk defined in (5.7).

Proof, As in the proof above we see that for any sequence ( i i , . . . , ΰ ) in
{1,. . . ,p} fc, the inequality

i l , . ., eih )| < (2kk\)-1 2kkkMk(A) (5.16)
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holds. From Federer (1969, Section 1.10.6), applied to the case of an inner product
norm on V, for which (5.1) holds, it follows that

l , . . . , e i J | 2 , (5.17)

where £V is the sum over all sequences (z*i,..., ik) in { 1 , . . . ,p}k. Since the number
of terms in this sum is pfc, the result is obtained by insertion of (5.16) into (5.17).
The inequality in (5.15) is an application of (5.3). I




