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Optimal designs for the efficient estimation of parameters in nonlinear regression
models are usually local jD-optimal designs, based on either a linear or quadratic ap-
proximation of the nonlinear surface, which assume that responses are independent. Very
little has been done in the area of nonlinear models with correlated errors, and none of
these works consider the effect of strong curvature when applying a linear approximation
to the nonlinear surface in obtaining designs for small samples. This work compares the
performance of three common design criteria in the presence of correlated errors. The
results show that sometimes the more complicated design criteria (which account for cor-
relation and/or curvature) can greatly improve the design, although not always. These
ideas are illustrated through the intermediate product and exponential decay models.

1. Introduction. The advantages of a well-designed experiment are universally

known; they include cost-effectiveness and the ability to quickly make valid inferences.

When fitting nonlinear models, there is an additional benefit. A well-designed exper-

iment for fitting a nonlinear model can allow the use of simple inferential procedures

without sacrificing validity. Consider the model

(1.1) yι = f(xi;θ) + eii i = l , . . . , n ,

where yι is the zth response, X{ is the vector of covariates for the zth response, θ is a

p-vector of unknown parameters belonging to Θ, /(•, •) is a known functional form, and

Cj's are independent random variables distributed as normal with mean 0 and variance

σ2. The vector representation of (1.1) is

(1.2) » = /(*) + €,

where y = (yuy2,. • ,2/n)', f(θ) = (/(«i; 0), ffal #), , f(xn] 0))', e = (eu e 2,.. -, en) ;,

and e ~ JVn(O,σ2I). The least squares (maximum likelihood) estimator θ of θ mini-

mizes the sum of squares function

S(θ) = [y - f(θ))'[y - f (θ)}

Received September 1997; revised February 1998.

AMS 1991 subject classifications. Primary 62K05; secondary 62J02, 62M10.

Key words and phrases. Curvature, mean squared error criterion, quadratic volume

criterion.

163



The choice of joint inference region for 0 is usually limited either to one based on
the asymptotic properties of 0, or one based on the likelihood function of (1.2). An
asymptotic (1 — α?)100% joint inference region is

(1-3) {θ : (0 - Θ)'F'.F.{Θ - 0) < ps2F«n_p},

where F. = <9/(0)/<90', F . is F. evaluated at 0, s2 = S{θ)/(n-p), and F*n_p is the
(1 — a) 100th percentile of the F distribution with p numerator and n — p denominator
degrees of freedom. For p < 2, (1.3) is easily computed and displayed, and is readily
available from many computer packages. For p > 2, the computation and display of
(1.3) requires more effort, but is still feasible. Regions of the form (1.3) are ellipsoids
of the approximating multivariate normal distribution of 0. Unfortunately, they are
also very dependent on the assumption that the expectation surface (the set {f(θ) :
0 G Θ}) in the neighborhood of 0 is well approximated by the tangent plane to that
surface in RP, in other words, that

(1.4) f(θ)~f(θ) + F.(θ-θ)

is a good approximation. This is not always the case, even for moderately large samples
[Bates and Watts (1988, pp. 256-259); Seber and Wild (1989, pp. 135-136)].

The likelihood-based (1 — α)100% joint inference region

θ : S(θ) < S(θ) f
is not ellipsoidal, is more difficult to compute and display, and is not readily available
from popular computer packages. It is, however, preferable because it provides coverage
closer to the nominal value and is less dependent on the assumption of linearity given
in (1.4) [Donaldson and Schnabel (1987); Seber and Wild (1989, pp. 220-222)].

Is it possible to design an experiment for fitting a nonlinear model such that any
combination of the following hold: 0 is both precise and accurate; asymptotic proper-
ties of the form (1.4) are not needed; the approximation (1.4) is reasonable, even for
small samples? Optimal selection of design points for nonlinear estimation has been
investigated by Box and Lucas (1959), Hill and Hunter (1974), Papakyriazis (1978),
Hamilton and Watts (1985), Clarke and Haines (1995), for example, but only very few
of these authors [for example, Hamilton and Watts (1985), Clarke and Haines 1995]]
have suggested design criteria which are not based on the asymptotic properties of 0,
and which are thus applicable for the design of small experiments.

The goal of this article is to investigate and compare the performance of three design
criteria applied to correlated responses in small experiments. Many processes, such as
chemical reactions, occur over time and it is only reasonable to believe that the optimal
designs are a function of the strength of correlation between responses. Section 2
contains a review of three optimality criteria. Section 3 describes the adjustment
necessary for correlated errors. Section 4 contains applications to two nonlinear models,
and Section 5 contains concluding remarks.
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2. Optimal i ty criteria. Unlike linear models, the optimal design for a non-
linear model can be very dependent on the value of 0. One approach is to consider
0o-locally optimum designs, which are obtained by assuming the true value of 0 is
0O Other approaches include sequential, minimax, and Bayesian designs [Seber and
Wild (1989); Atkinson and Donev (1992); Chaudhuri and Mykland (1993); Haines
(1995); Mukhopadhyay and Haines (1995)]. In this article, interest is limited to locally
optimum designs.

While there are a myriad of local optimality criteria, the following are pursued here:
D-optimality based on a linear approximation of the expectation surface, D-optimality
based on a quadratic approximation to the mean squared error, and joint inference
region volume optimality based on a quadratic approximation to the volume of the
exact inference region. They are described in the following subsections.

2.1. D-optimality. Asymptotic properties of the likelihood of (1.2) lead to F'.F. as
the asymptotic information matrix of 0. The D-optimality criterion, DopU is equivalent
to maximizing the determinant of this asymptotic information matrix [Pukelsheim
(1993)]. In other words, the Dopt criterion is to find #i, x2,...,xn to maximize

(2.1) \F'.F.\,

where F. is computed at 0 = 0O.

2.2. Mean squared error D-optimality. Under fairly general conditions, when
the linear tangent-plane approximation (1.4) is valid, the least squares estimator 0 is
asymptotically unbiased and normally distributed [Seber and Wild (1989, p. 181)]. The
Dopt criterion of Section 2.1 assumes this and so includes no bias term in the resulting
information matrix. However, if the linear tangent-plane approximation (1.4) is inap-
propriate for a given model-design combination, then 0 can be very seriously biased
[Box (1971), Clarke (1980), Hougaard (1985), Clarke and Haines (1995)]. Consequently,
it is eminently sensible to consider the mean squared error (MSE) of 0, based on at least
a quadratic approximation of f(θ). This article considers the quadratic approxima-
tion only. The quadratic mean squared error D-optimality criterion, MSEQDOPU min-
imizes det(M5'£ lQ(0)), the generalized mean squared error of 0, based on a quadratic
approximation of the expectation surface. [There are also formulas based on higher-
order approximations of f(θ). See Clarke (1980), Hougaard (1985), Clarke and Haines
(1995).]

MSEQΦ) has been derived by many authors. Only the basic required formulas
will be presented here. [See Seber and Wild (1989) for a more complete treatment, as
well as a review of multiplication of three dimensional arrays.] The notation in this
article follows that of Seber and Wild (1989). First, apply the QR decomposition to F.
to get

Ί? nπ — ί n n W ^ 1

t . = Ljitγ — i i4p <vn_p 11

nxp nx(n—p)

Let F.. be the n x p x p three-dimensional array of second derivatives of /(0), where

Fim. = ( fl/jfl f{χi\θ)\ , r, s = 1,2,... ,p, is the zth face of F.. for i = 1, 2, . . . , n.
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Now define the n xp xp array G.. = ( i 2 n )'-F..(i2ii )• The intrinsic curvature array is
the (n-p) xpxp array Aίί = [Qή_p][Cr..] which measures the "inherent" curvature in
the model itself, irrespective of parameterization [Seber and Wild (1989, p. 146)]. The
parameter-effects curvature array is the pxpxp array AT. = [Q'p][Gmm] and can be elim-
inated with a clever choice of parameterization [Seber and Wild (1989, p. 146)]. Also
let Mτ = [(trace{j4£.Aj..})], ίj = l ,2 , . . . ,p, and Jτ = [(trace{A^.}trace{Aj..})],
i,j = 1, 2,. . . ,p, be px p matrices which are functions of AT., but not A?., where Aj..
is the ith face of AT.. Then

(2.2) MSEQ(Θ) = σ*R^{l + σ2[\j
2[\jτ

where the term involving Jτ on the right hand side of (2.2) is associated with the
estimate of bias and the remaining terms are associated with the estimate of variance
[Seber and Wild (1989, pp. 182-183)]. The MSEQDopt criterion is to find xu x 2 , . . . , xn

to minimize

where all calculations are done using θ = ΘQ and σ1 — σ\. Note that if there is no
curvature, that is, A?. = AT. = 0, then the MSEQDopt criterion reduces to the Dopt

criterion.

For n = p, Equation (2.3) is simplified. When F. is square and nonsingular,
the expectation surface is flat, coinciding with the tangent plane. This results in no
intrinsic curvature (A?. = 0), but there may still be parameter-effects curvature [Seber
and Wild, (1989 pp. 262-264)]. In addition, we get KF'.F.)'1] = 1/( |F. |) 2 .

2.3. Joint inference region volume optimality. Minimizing the volume of the joint
inference region of θ is an obvious choice for optimality criterion. The volume of
(1.3) is inversely proportional to \F[F.\, and provides another motivation for the Dopt

criterion. Unfortunately, if the linear approximation (1.4) is invalid, then | F ' . F . | no
longer provides a reasonable approximation for the volume of the exact inference region
[Bates and Watts (1988, p. 202); Seber and Wild (1989, pp. 220-222)]. Hamilton and
Watts (1985) provide a second-order approximation for this volume, and this is the
basis of the VOIQ criterion. The VOIQ criterion is to find Xi, x 2 , . . . , x n to minimize

(2.4) |(F'.F.)" 1 / 2 | [l + £%, Σ{[t r a <*« s ) )] 2 + trace[(Afs))
2] + c'αfjl,

L Zip -f Δ) O_Λ J

where all calculations are done using θ = 0 O J

 σ<2 — σo> a n d & [see also Seber and

Wild (1989, pp. 261-262)]. The notation is similar to that of Section 2.2, with the

following additions: χ 2

 a is the (1 - a) 100th percentile of the chi-square distribution

with p degrees of freedom; Afy is the sth column slice of AT., meaning it is a p x p

matrix with (i,r)th entry ajrs which is the (r,s)th entry in the zth face of AT.] d =

(trace(A^), t r a c e ( A ^ ) , . . . , trace(Λ^)); and ajs is the px 1 vector with zth entry a,
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However, Hamilton and Watts (1985) comment that this approximation can sometimes
be inadequate and that (2.4) may not even be calculable. They argue that this usually
happens only in cases where the curvature of a model-design combination is very high.

Finally, if there is no curvature, that is, A?. = AT. = 0, then the VolQ criterion
reduces to the Dopt criterion.

3. Correlated errors. Correlated errors occur very often in practice, for example,
when the independent variable is time, and this correlation should not be ignored as
it may affect the choice of design [Atkinson and Donev (1992, p. 197)]. Consider the
model

where V = V(φ) is a function of some parameter φ and does not involve θ. If φ is
known, we may apply a transformation to remove the dependence:

to get

(3.1) y* = f*(θ) + €*, e* ~ ΛΓn(O, <τ 2 l),

where V = LL' is the Cholesky decomposition of V. Using model (3.1), we may now
proceed as in the case of independent errors. It is easily seen that

F: = LXF.

F:. = [L-i][F..]

to allow computation of all formulas in Section 2.

4. Examples. Two-point (n = 2) optimal designs are obtained for two commonly
used models. All three criteria from Section 2 are applied, using varying degrees of
correlation. Suppose the selected design is {xi,X2} The correlation model used here
is the exponential decay model Corr(eι,β2) = p\χι~X2\ where p is assumed known.
Results are presented for p = 0,0.1,.. ., 0.9.

To the extent possible, symbolic computation in Maple V was used to derive for-
mulas and to perform the optimization of the Dopt objective function. The objective
functions for the MSEQDopt and VOIQ criteria were too complicated to allow opti-
mization in Maple. For these cases, the f or t ran export function in Maple was used to
allow numerical optimization to be done using double precision IMSL routines duminf
and dumpol. Without loss of generality, the restriction 0 < x\ < x2 was enforced by
optimizing over the transformed (unrestricted) space of (δu δ2) where Xι = exp(5i) and
x2 = exp(5i) + exp(52)

4.1. Intermediate product model The intermediate product model has been studied
by many authors [see, for example, Box and Lucas (1959), Hamilton and Watts (1985),
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Bates and Watts (1988), Atkinson and Donev (1992)] and describes the concentra-

tion of the intermediate substance created from two consecutive irreversible first-order

chemical reaction. The expected response is

n

— V2

The resulting concentration increases from 0 at time x = 0 to its maximum at time
x = [In Θ2 — ln#i]/[02 — #i], then decreases to 0 as £ increase. To maintain consistency
with Box and Lucas (1959) and Hamilton and Watts (1985), locally optimum two-point
designs are obtained using θ0 = (0.7,0.2), σ% = 0.01, and a = 0.05.

The DopU MSEQDopU and VolQ criteria [equations (2.1), (2.3), (2.4)], sufficiently
modified following Section 3 to allow for correlation, are used to obtain optimal designs
for different values of p. These optimal designs are shown in Table 1. For example,

TABLE 1

Two-point optimum designs for the intermediate product model

P
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Optimality Criteria

Dopt

(1.23,6

(1
(1
(1
(1
(1
(1
(1
(1
(1

.23,6

.23,6

.23,6

.23,6

.23,6

.23,6

.24,6

.26,6

.32,5

.86)

.86)

.86)

.86)

.86)

.85)

.82)

.68)

.29)

.55)

VolQUopt
(1.04,5.59)
(1.04,5.59)
(1.04,5.59)
(1.04,5.59)
(1.04,5.59)
(1.05,5.58)
(1.06,5.53)
(1.08,5.40)
(1.13,5.10)
(1.21,4.64)

MSEgDopt
(1.18,6.48)
(1.18,6.48)
(1.18,6.48)
(1.18,6.48)
(1.18,6.48)
(1.18,6.48)
(1.18,6.44)
(1.20,6.29)
(1.23,5.86)
(1.29,4.98)

p = 0 results in the usual designs obtained from assuming independent responses.
The p = 0,Dopt design (1.23,6.86) is the same as that obtained by Box and Lucas
(1959) and Hamilton and Watts (1985). The p = 0, VolQ design (1.04, 5.59) is slightly
different from the (1.04,5.56) reported by Hamilton and Watts (1985). As correlation
(p) increases, the optimum values of x\ and x^ become closer to each other.

Figure 1 displays the optimum designs of Table 1 relative to the corresponding p —
0, Dopt design, as a function of p. The relative design points of Figure 1 offer consistency
of scale even for different models, and thus allows comparison, across different models,
of the rate of convergence of optimum designs as p —> 1. All three design criteria
appear to be approaching the same limiting design as p —> 1.

While Figure 1 helps the reader see the pattern in the optimum designs, it gives no
information on the relevant difference between these designs — their adjusted relative
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FIG. 1. Intermediate product model Dopt, MSEQDopt, and VOIQ optimal designs for p =

0,0.1, . . . , 0.9, relative to the p = 0, Dopt design. The arrows show the direction of change for increasing

p; the point of the arrowhead corresponds to the relative design point.

efficiencies with respect to the criterion objective function. The adjusted relative effi-
ciency (AdRE) used here for a criterion whose objective function O ( x i , . . . , xn) needs
to be maximized is

I1 7"* u u s -

where p is the number of parameters in the model. This definition is similar to the
definition of D-efficiency given by Atkinson and Donev (1992, p. 116), except that
the criterion is not necessarily jD-optimality. For a criterion whose objective function
O(xχ,.. . , xn) needs to be minimized, define

AdRE =
= 0,Dopt design) J

This definition is similar to the measure of efficiency given by Hamilton and Watts
(1985), except that the criterion is not necessarily volume optimality.

In other words, the p — 0, Dopt design is compared, with respect to a particular
objective function, to the "best" design for that objective function; this is repeated for
different criteria and different values of p. Efficiency relative to the p = 0, Dopt design
seems most appropriate here because this is the default design (i.e., all other criteria
simplify to give this design) when both correlation and curvature are ignored or do not
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exist. An adjusted relative efficiency value near 1 means little information is lost by
ignoring correlation and/or curvature.

Figure 2 displays adjusted relative efficiency for the designs in Table 1, as a function
of p, with separate curves for the Dopt, MSEQDOPU and VOIQ criteria. The Dopt

criterion, which accounts for correlation but not curvature, gives the least improvement
over the p = 0, Dopt design. The MSEQDopt criterion is marginally better than the
Dopt criterion, while the VOIQ criterion gives the greatest improvement. Unfortunately,
the maximum improvement corresponds to an AdRE value of 0.928, which is only
slightly less than one. The conclusion is that for the intermediate product model with
0O = (.7? .2), very little is gained from the more complicated procedures that account
for correlation and/or curvature.

LLJ
.96-

.92-

0.0 0.2 0.4 0.6 0.8

FIG. 2. Intermediate product model. Adjusted efficiencies of the "best" designs relative to the

p = 0,Dopt design, for the Dopt, MSEQDopt, and VOIQ criteria, and for p = 0,0.1,... ,0.9. The

curves are: Dopt MSEqDopt VOIQ .

4.2. Exponential decay. The exponential decay model has also been studied by
many authors [see, for example, Bates and Watts (1988), Seber and Wild (1989),
Atkinson and Donev (1992)]. It is useful in modeling concentration of the substance
created in a single irreversible first-order chemical reaction. The expected response is

(4.1) = θ1[l-exp(-θ2x)}, 0 < 0i,02,O < a: < B.

The resulting concentration increases from 0 at time x = 0, then asymptotes to 01 ; the
initial concentration of the original substance, as time x increases. The rate of increase
is governed by θ2, with larger values of θ2 implying a more rapid rate of increase of the
new substance.
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The exponential decay model has two distinguishing features when p = 0. The
first is that because θx enters the model (4.1) linearly, it has no effect on the optimal
design. The second is that the optimum two-point Dopt design is very easy to obtain
analytically as

1 i?exp(—Θ2B)
Xo — β , XΛ = .

0 2 1 - exp(-0 2 £)
However, the second feature disappears for p > 0, as will be demonstrated below.
Locally optimum two-point designs are obtained using θ0 = (1,10), B = 5, σ\ — 0.01,
and a — 0.05.

The optimum designs are presented in the same format used for the intermediate
product model. Table 2 lists the designs obtained from the various criteria and values of
p; Figure 3 displays the designs relative to the p = 0, Dopt design; and Figure 4 displays
the adjusted efficiencies of the "best" designs relative to the p = 0, Dopt design.

TABLE 2

Two-point optimum designs for the exponential decay model

P
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Optimality Criteria

DOpt

(0.100,5.000)
(0.101,0.587)
(0.102,0.480)
(0.104,0.438)
(0.104,0.414)
(0.105,0.397)
(0.106,0.385)
(0.106,0.376)
(0.106,0.368)
(0.107,0.362)

VolQDopt

(0.087,2.470)
(0.093,0.553)
(0.097,0.471)
(0.100,0.435)
(0.102,0.413)
(0.104,0.398)
(0.105,0.387)
(0.107,0.379)
(0.108,0.374)
(0.111,0.373)

MSEQDopt

(0.075,2.563)
(0.084,0.375)
(0.088,0.363)
(0.091,0.358)
(0.094,0.355)
(0.096,0.353)
(0.098,0.352)
(0.100,0.352)
(0.102,0.352)
(0.104,0.352)

Once again, from Table 2 we see that the optimum values of xx and x2 become
closer to each other as p increases. We also see that a very small amount of correla-
tion can cause the design to change dramatically. From Figure 3 we see that all three
design criteria appear to be approaching the same limiting design as p —> 1, but at
a much faster rate than for the intermediate product model. Figure 4 shows the ex-
tremely large improvements possible by accounting either for correlation or curvature
or both. For this exponential decay model, the MSEQDopt criterion gives the greatest
improvement. The conclusion is that, unlike with the intermediate product model, the
designs for the exponential decay model change substantially as p changes and/or dif-
ferent curvature adjustments are made. For example, even if no curvature adjustment
is made but correlation is accounted for, the p = 0.9, Dopt design is almost three times
more informative than the p = 0, Dopt design. The MSEQDopt designs offer such an
improvement over the p = 0, Dopt design that the AdRE is practically zero.
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F I G . 3. Exponential decay model Optimal Dopt, MSEQDopt, and VOIQ designs for p —

0,0.1, . . . ,0.9, relative to the p = 0,Dopt design. The arrows show the direction of change for in-

creasing p; the point of the arrowhead corresponds to the relative design point.

5. Discussion. This article illustrates some of the effects of correlation and the
inappropriate use of the tangent-plane linear approximation to the expectation surface
on the selection of designs for estimation of θ. The effect depends on the model, as
illustrated by differing results for the two examples of Section 4, and on 0O, because
by definition all of the local optimality criteria of Section 2 depend on 0O

There are no general "rules" to follow. For some models, the improvement due to
correlation and/or curvature adjustments can be large; for other models, the adjust-
ments are not worth the effort. If one suspects correlated errors then optimal designs
based on this correlation structure should be compared (in terms of adjusted relative
efficiency) to the optimal design for independent errors. The same comment applies to
checking the effect of curvature adjustments.

The effect of correlation and curvature appear to interact in that when there is very
little curvature (as in the intermediate product model), correlation has a small effect,
but when there is large curvature (as in the exponential decay model), correlation has
a big effect on changing the optimal design.

Much work remains to be done. For example, do the optimal designs from the
different criteria approach a limiting design as p -> 1. If so, do they approach the
same limit, as suggested by Figures 1 and 3? The case of very strong correlation (p
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F I G . 4. Exponential decay model Adjusted efficiencies of the "best" designs relative to the
p — 0,Dopt design, for the Dopt, MSEQDopt, and VOIQ criteria, and for p = 0 ,0.1, . . . ,0.9. The
curves are: Dopt MSEQDOpt VOIQ .

close to 1) is of interest because it signals an effective loss of degrees of freedom due
to redundancy of information. It is thus important to select design points carefully to
avoid this redundancy but still adequately identify the model.

Can a formal relationship between correlation and curvature be derived? For any
given criterion, the designs corresponding to different p seem to fall on a curve, and
this curve is almost a straight line for the intermediate product model.

The results presented here have been limited to n = p — 2. What can we expect for
n > pΊ Are the designs replicated p-point designs? In general, how does one confirm
that a continuous (n = oo) design has been found? The equivalence theorem cannot,
in general, be applied to the combination of criteria (including correlation) presented
here.
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