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D-OPTIMAL DESIGNS GIVEN A BIVARIATE PROBIT RESPONSE
FUNCTION

By ELol P. KPAMEGAN!?

American University

We consider the design of an experiment involving two drugs; associated with each
drug is an identifiable type of toxicity. For example, in cancer chemotherapy, cyclophos-
phamide is toxic to the heart and busulfan is toxic to the liver. Therefore, four responses
are possible: no toxicity, toxicity to the heart, toxicity to the liver and toxicity to both
organs. Consequently, responses are bivariate binary random variables that depend
on a bivariate treatment space. Assuming a bivariate probit response function with
0 < p < 1, we find D-optimal designs when the responses are independent and give
preliminary results for when they are dependent.

1. Introduction. An understanding of the action of mixtures of drugs is becoming
increasingly important in a variety of scientific disciplines, ranging from pharmacology
and toxicology on the one hand to industrial hygiene and environmental protection on
the other. The action of even a single drug upon a biological organism involves, in
general, a complex sequence of processes, and if more than one drug is present, the
situation is further complicated. The role of mathematical models in this context is
now recognized; see, for example, Hewlett and Plackett (1959, 1964, 1979); Ashford
and Smith (1964, 1965); Ashford and Cobby (1974). A response function describes the
relationship between response probabilities and explanatory or control variables.

Our work is motivated by Flournoy (1993). Her paper describes a pilot clinical
trial that aims to find dosages of a new drug combination that will produce 10 percent
toxicity, which was the toxicity rate produced by the standard single drug treatment.
Two drugs were involved in the experiment: cyclophosphamide and busulfan. The drug
combinations to be examined were restricted to lie on the line defined by the points
(z1,72) = (40,6) and (zy,z2) = (180,20), where z; denotes the dose of cyclophos-
phamide (mg/kg/day) and z, the dose of busulfan (mg/kg/day). Possible dosages of
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cyclophosphamide, namely, 31,49,67,85,103 and 121, were identified according to the
method of Tsutakawa (1980) which minimizes the posterior variance around the target
percentile.

Empirical results from the experiment that used these dosages indicate that the
dose-response function increases much more sharply than does a prior upper bound that
was established by experts. The synergy between the drugs was much stronger than
expected. A more informative experiment would have taken the possible interactions
of the two drugs into account (a sequential approach would also have helped).

In this paper we explore optimal design theory for bivariate probit response func-
tions, and thereby introduce formal design considerations for allocating subjects to
treatments when there are two binary responses and possible drug interactions.

2. Optimal design for nonlinear problems. The design of experiments is an
important part of scientific research. Design involves specifying how an experiment
will be conducted and choosing the values of variables that can be controlled before
the experiment starts. Although many processes are relevant aspects in the design of
an experiment, we focus on choosing which treatments to study and the proportion of
observations to allocate to each treatment.

Let & be the measure that determines the treatment allocation distribution across
the design space. For example, consider a design variable z in R and two specific
values of x, namely z; and z,. If half of the subjects are treated at z; and half at z,,
the measure £ is zero almost everywhere, with spikes at z; and z,, each of height %
We say that a point z is a design point if it has positive probability with respect to £.
Of course, [ & (dz) = 1. In the example, the integration ranges over R'. However, for
designs developed in this paper, z will be a bivariate point and integration will range
over R%. Since ¢ determines both which treatments are to be used and the proportion
of subjects to be allocated to each treatment, we refer to £ as the design.

The theory of optimal experimental design has been extensively studied for linear
regression models by Silvey (1980), Fedorov (1972, 1981), and others. With nonlinear
response functions, the optimal design depends on the unknown parameters. One
approach to this problem is to design an experiment to be efficient for a best guess
of the parameter values. This approach leads to “locally optimal” designs, a term
introduced by Chernoff (1953). Bayesian optimal designs are a natural generalization
of the locally optimal designs in which the criterion for selecting points is averaged
with respect to a prior distribution on the unknown parameters rather than evaluated
at a single guess [see review papers by Cochran (1973), Ford, Titterington, and Kitsos
(1989) and Chaloner and Verdinelli (1995)]. An excellent overall review of c-optimal
and D-optimal experimental designs is given by Atkinson (1996).

We focus on the D-optimality criterion which is useful when one wishes to estimate
all parameters in the response surface model and considers each to be of equal sig-
nificance. Let L (6|€) denote the likelihood given an experiment with design £ where
0= (b,..., 0P)T are the parameters of the response surface. Let I(£;8) be the p x p
dimensional Fisher information matrix with elements

Li(&0) = —E [d?logL (8]¢) + df.dby] ,
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assuming that the derivatives exist, and let det [I(&; )] denote the determinant of the
Fisher information matrix. Then &P is said to be D-optimal if it maximizes det [I (¢;6)]
with respect to &.

Little work has been done on optimal designs for binary response experiments in-
volving more than one dimension for explanatory or response variables. To the best of
our knowledge, no previous work exists where both explanatory and responses variables
are multivariate. Heise and Myers (1996) extend the general equivalence theorem to
accommodate multivariate response variables. Sitter and Torsney (1995) show there
exists a D-optimal design for binary response experiments with two design variables
where the probability of response is modeled by a nonlinear location location-scale
distribution function. Atkinson (1996) finds locally optimal and Bayesian designs for
estimating the 95th percentile of a logistic function which models the probability of
death in an experiment on flies. Here we consider bivariate binary response experiments
with two design variables.

Although optimal designs for nonlinear models are typically impossible to achieve
explicitly in practice, we are still interested in constructing them because they pro-
vide a reference point for evaluating the performance of other designs. Furthermore,
sequential allocation strategies can be devised that cluster around or converge to the
optimal design points. For example, let 6 be the parameters of the response function.
Then if a treatment can be allocated sequentially in batches, Hall (1968) suggests that
the design points used for batch 1 + 1 be elected according to an estimated optimal
design based on (3,,, where 67,, is the estimate of § based on the first  batches. Alterna-
tively, up and down procedures can be constructed so as to cluster the distribution of
treatments around the optimal design points [Derman (1957), Durham and Flournoy
(1994, 1995), Giovagnoli and Pintacuda (1996, 1998)].

3. Bivariate response functions with two stimuli. Let (z; ;) denote a
treatment consisting of the ith level of drug A and the jth level of drug B,i=1,...,r;
j=1,...,c. Let Yo and Y; be Bernoulli random variables for responses of type 0
and type 1. In our example, Y; = 1 if a type k toxic response occurs, and Y; =0
otherwise, k = 0,1. In particular, the response Y; at (z; | ;) indicates whether or not
the (z; | z;) combination of busulfan and cyclophosphamide results in toxicity to the
heart and the response Y} at (z; | ;) indicates whether (z; | z;) results in toxicity to
the liver.

Consider bivariate response functions that can be described by bivariate cumu-
lative distribution functions. Writing (¢,5) := (z;,z;) and suppressing reference to
dependencies on @, the possible response probabilities at each stimuli (z;, z;) are

Fu(i,j) @ =PYo=1Y1=1](zi,1;));
Fi(i,j) : =PY=1Y1=0](z;,1));
(3.1) Foi (4, 7) = P(Y,=0,Y1 =1 (z;,2;));
Fu(i,j) @ =PYo=0,Y1=0](z:,2;));
Foo(i,7) = 11— Fu(i,j) — Fio(3,5) — Fou(4, 5)



The likelihood function for a single trial at (z;, z;) is
L) (xi,%;)] = [Fua (3, )] [Fro(d, 4)]°0 7 [Fpy (3, )] 107

X [Foo (i, §)) 10—

and the (s, k)th element of the Fisher information matrix for a single trial at (z;, z;) is

(3.2) Ly (21, 25) ;0] = —E {0* log L [6] (i, x;)] + 00,06% } .

If N(1,1),...,N(r,c) independent trials are performed at (z1,z,),..., (z,, z.), respec-
tively, and 3, 3°; N (4,5) = n, the (s, k)th element of the Fisher information matrix
is

(33) sk[f ZZN 7'.7 sk[xlax] _RZZ&J sk CB,,CEJ 0]

where &;; = N (i, 5) + n.

4. Finding the D-optimal design in a multivariate setting. It is well
established that if the design space spans RP, and if a D-optimal design measure is
supported by p points, then it puts probability 1 + p at each of them (Silvey, 1980).
This result holds in a multivariate setting. The general equivalence theorem [Kiefer
and Wolfowitz, 1960] is useful for verifying that a design is D-optimal. It was recently
extended to accommodate multivariate response variables by Heise and Myers (1996).
The further extension to accommodate multivariate design variables as well is trivial
and is given as follows for X C R2.

THEOREM 4.1 The following three assertions are equivalent:
1. &P mazimizes det [I (&;0)] over all £ in X.

2. &P minimizes maxy, ;)er2 {trace[I7 [€ (x) ;0] I[€ (xi,%;) ; 6]]} over all £ in X,
where the elements of I[€ (x;,X;) ; 0] are given by (3.2) and the elements of I [£ (x) ; 6]
are given by (3.3).

3. tmce{I_:l [fD (x) ;9] I[¢ (xi,%;) ;0]} < p where p is the number of parameters in
the model, and equality is achieved when (z;,z;) are the optimal design points.

This theorem states that to verify that a particular design £ is optimum it is suffi-
cient to show that trace{l_1 [fD (x) ;0] L[ (xi,%;) ;0]1} achieves a maximum value of p
at the optimal design points. If the optimal design is found by numerical optimization,
the equivalence theorem provides a method for verifying that the design is globally
optimal.

For the bivariate probit response function, Fi;(3,5) = [% [, #(u,v)dudv, the
cumulative bivariate normal distribution function, where ¢(u, v) is the bivariate normal
probability density function. Specifically,
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8(.0) = (2moronfT— ) o {~QUu,0)/20 - )},

—00 < u < 00, —00 < V< 00,0, >0,0, >0, |p| <1, and

o= (1) =2 () (5 + (51)

We describe the D-optimal design for independent probit responses in Section 5 and
D-optimal design for dependent probit responses in Section 6.

5. Independent probit drug action. Let ®(z) = [% \/% exp (—u?/2) du
be the cumulative normal distribution function. In the special case where two binary
responses follow independent probit response functions, Fisher’s information matrix is
a block diagonal matrix which can be written in the form

#w(zi) glgziw(z,-) 0 0
1 12
r..c —;zlw(z,) —gziw(z,-) 0 0
5.1 I(£60)=n Gl oy
(5.1) (& 0) ;jzzlfj 0 0 ;lgw(’uj) ;tfujw(uj)
0 0 a—lg-ujw(uj) éu?w(u])

where z; = (z; — 1) + 01, uj = (z; — p2) + 09, and
w()=¢*()+@()[1-2 ()]

Let Z C R and U C R be two standardized design spaces spanned by z; and u; ,
respectively, and let Qz and €y be their canonical design spaces [Ford, Torsney and Wu
(1992)]. Let z € Z2 and u € U2. Denote by I[£(z)] and I[¢(u)] Fisher’s information
matrices for the univariate probit responses. Then it follows from (5.1) that

det {T[£;6]) = édet {T[E@)]) x det {T[¢(w)]}

1
(5.2) D= g det {I[¢(z,u)]}.
The D-optimal design which maximizes det {I [£(z,u)]} := det {I[£(2)]} xdet {I[{(u)]}
is independent of the parameters.
There are two support points for each univariate D-optimal design (White, 1975)
in Z and in U. Let z and Z denote these support points in Z and let u and % denote
these supports in U. Now, for z = (2,Z)T and u = (u,u)", (5.2) can be written as

(5.3) det {T [¢(2, w)]} = —w(2)w(z) (Z — 2 w(uho(@) (@ - u)’

Because the cumulative distribution function ® is symmetric, it follows from invariance
arguments that the D-optimal design will be symmetric about the origin. Thus z = — Z,
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u=—1,Z>0,T >0, and (Z,7) must maximize w?(z)z>w?(u)u? over (0, 00) x (0, 00)
As expected from White (1975), using the Splus function nimin,

the maximum is
obtained at z =

u = 1.138. It follows that D-optimal designs for two independent
drugs with two associated independent responses include

e two standardized design points, (1.138,1.138), (-1.138,-1.138) with 50% of the
trials at each point;

e two standardized design points, (-1.138,1.138), (1.138,-1.138) with 50% of the
trials at each point;

e four standardized design points, (1.138,1.138), (-1.138,-1.138), (-1.138,1.138), and
(1.138,-1.138) with 25% of the trials at each of them.

The determinant of the normalized information matrix, for any one of these designs

is 0.0394752. That these maxima are globally D-optimal is verified using the general
equivalence theorem. Figure 1 is the graph of the

trace {I7* [£ (z,1) ;0] x T[(z1,15) ; 6]}

for the four point optimal design. Figure 2 graphs this trace on the circle that inscribes
the design points. It can be seen in Figure 2 that trace{I™ [£ (z,u) ;0] x I[(z;, u;) ; 6]} <
4 for all (z;,u;) with equality when (z;,u;) € (z,u).

In the case where o; = 03 we have the following result.

X
o:;::l'/:"""/; ,""':‘::‘ N ‘8\“‘ kel
5
A% ,%%%’2?@“3‘3‘:&&*&‘3‘&‘3‘? K
0% %, h i 00 e T
% 11172010, St AN
Y ,:::'./,';,"l,,/I////,f;//,/;;;%.%:o:‘:gﬁ:‘\‘\:}‘\{g‘\‘\t‘\“t‘:‘\\‘\‘\\
% AKX 0.“"\\\““\\““\

7

trace
051152253354

....... SR
~~~~~~~ AN
%

Fic. 1.

Trace in two-dimensional standardized space
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Fi1G. 2. Trace over the circle that inscribes the D-optimal design points

THEOREM 5.1 When responses follow independent probit functions with o, = 09 =
o, D-optimal designs include two standardized points (0.937,0.937), (—0.937, —0.937),
the two standardized points (0.937,—0.937), (—0.937,0.937) and the four standardized
points (0.937,0.937), (—0.937,—-0.937), (0.987,-0.987) and (—0.937,0.937) with equal
allocation to each point in each design.

PROOF: In this case, 0 = (u1, p2, a)T and Fisher’s information matrix is

w(z;) 0 ziw(2:)

(5.4) I[¢(x);0] = U—nz Z Zfﬁj [ 0 w(z;) zjw(z;)

zw(z) zw(z) ziw(z) + 25w(z)

Consider four points (z,u) = [(z,u),(—2,u), (2, —u),(—2z,—u)] in Z x U. Because
these points are symmetric, (5.4) becomes
1 w(z) 0 0
I(z,u)]==| 0 w(u) 0 .
0 0 Zw(u)+ v’w(u)

It follows that
det {I[¢(z, w)]} = w(z) x w(u) x [Z2w (@) + Tw(@)] .

A graph of the determinant of the Fisher information matrix over (0,3) x (0, 3) shows
it to be unimodal. Using the Splus function nimin, the maximum is obtained at z =
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u = 0.937. D-optimal designs in this case include the two point design, (0.937,0.937),
(—0.937,—0.937), the two point design (0.937,-0.937), (0.937,—0.937) and a four
point design (0.937,0.937), (—0.937, —0.937), (-0.937,0.937), (0.937,-0.937), with equal
allocation to each point in each design. The determinant of the normalized information
matrix for any one of these designs is equal to 0.170315.

To verify that the maximum is globally D-optimal, the general equivalence theorem
can be used again. Figures like Figure 1 and Figure 2 were drawn,but are not shown, to
show that trace{I"* [¢ (z,u) ;0] x I[(zi,u;);6]} < 3, for all (2;,u;) with equality when
(2i,uj) € (z,u). a

6. Synergistic drug action. When responses follow a bivariate probit function,
the response probabilities are

i — 1 Tj — K2
Py [(z,25) ;0] = (I)( = )
1 [(i, z;) 5 0] o oy
Fyol(zi,2;) ;0] = ¢,<$i_ul) _(D(xi ;Nl’xj;;uz)

(6.1) Fo[(zi,z5);60] = @ (xj — ”2) Sy (f”’ L uz)
01 (o]

FOO[(:EZ)"I"J)70] =1_(I)<x1’—-lu‘1) —(I)(x]_yq) +(I)<$l_“1,x1_/‘2)
o1 09 o1 02

where ® (z;,2;) is the standard bivariate normal cumulative distribution function,
® (z) is the standard univariate cumulative normal distribution function and 6 =

T
(/J'17 01, U2,02, p)
Fisher’s information matrix is

Ill(zlauj) 12 (i, w;) Iis (25, u;)
I1(&0)= nzz&J )

I
I (zi,05) oz (z5,05) Izs(zi,uy)
IT3

==t Ifs (ZnuJ) 23 (i, u5) Iss (zi,uy)
and
lK Zi, U %K Zi, U 1
L (ziw) = | 2 ) 2 ) , Ins (zi,u5) = ( 52U(Z“uj) >,
%K (ziauj) alK(ziauj) ;;—U(zi,uj)




and the functions K, P, S, R, U and V, respectively, are defined by

_(0Fn\* /1 1) '_8F112(L L)
K (z"’“j)‘<azi> <F—H+Fm +[¢(z’) 9% | \Fro " T/

. 1 o0Fy; 8F11 1 6F11 N 8F11
Plew) = i ( 0z ) <3uj> Fio (5%' ) [d)(zz) 0z; ]

1 6F11 8F11 1 aFll
P ( o ) [¢ (1) = a_] " oo [¢ =) - 5 }

and

With synergy of drug action in the bivariate probit response function, there is
no transformation that will eliminate the dependency of the design on p. Because of
computational difficulties we only considered designs of the form & (z,u), where

(Z, u) = [(Z’ z) ) (_Z’ Z) > (Z, _Z) ) (—Z, —Z)] )

with z € R. We obtain the design points for which the determinant of the 5 parameter
Fisher information matrix is maximum as a function of the correlation coefficient. For
p=0,0.1,0.5,0.90, we plotted det{I[{ (z,u); 6]}, —3 < z,u < 3. These functions were
all unimodal and their modes were identified using Splus functions nlminb. The points
at which the maxima is obtained are given in Table 1. In practice there are many ways
to use optimal designs depending on the goal of the experiment. One way to build in
robustness is to sequentially construct the D-optimal designs. For example one might
start the design with a best guess for (u1, po, 01,02, p) , then sequentially estimate the
parameters and adapt the design points accordingly. We hope that our preliminary
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TABLE 1
D-optimal design in standardized space for several degrees of synergism

p=0 p=0.1 p=05 p=10.90
(1.138,1.138) (0.94,0.94) (0.89,0.89) (0.939,0.939)
(—1.138,1.138) (—0.94,0.94) (—0.89,0.89) (—0.939,0.939)
(1.138,—1.138) (0.94, —0.94) (0.89, —0.89) (0.939, —0.939)
(—1.138,-1.138) | (—0.94,—-0.94) | (—0.89,—0.89) | (—0.939,—0.939)

results for bivariate probit response functions will stimulate further development of
this useful model.
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