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Covariation analysis of sets of aligned sequences for RNA molecules is rela-
tively successful in elucidating RNA secondary structure, as well as some aspects
of tertiary structure [Gutell et al. (1992)]. Covariation analysis of sets of aligned
sequences for protein molecules is successful in certain instances in elucidating
certain structural and functional links [Korber et al. (1993)], but in general, pairs
of sites displaying highly covarying mutations in protein sequences do not neces-
sarily correspond to sites that are spatially close in the protein structure [Gobel
et al. (1994), Clarke (1995), Shindyalov et al. (1994), Thomas et al. (1996), Tay-
lor &; Hatrick (1994), Neher (1994)]. In this paper we identify two reasons why
naive use of covariation analysis for protein sequences fails to reliably indicate
sequence positions that are spatially proximate. The first reason involves the bias
introduced in calculation of covariation measures due to the fact that biological
sequences are generally related by a non-trivial phylogenetic tree. We present
a null-model approach to solve this problem. The second reason involves linked
chains of covariation which can result in pairs of sites displaying significant co-
variation even though they are not spatially proximate. We present a maximum
entropy solution to this classic problem of "causation versus correlation". The
methodologies are validated in simulation.

1. Introduction. Analysis of sets of aligned sequences, such as RNA or
protein sequences, is a common procedure in bioinformatic analysis. Various
methods have been developed to describe aligned sequences: "consensus" se-
quences which are determined by the most conserved symbol in each sequence
position; "profiles" [Gribskov et al. (1987)] which represent the probability dis-
tribution of symbols in each position, and can also include inserts and deletes
with fixed position independent penalties; and "hidden Markov models" [Krogh
et al. (1994)], which represent single site probability distributions as well as
position dependent probability distributions for insertions and deletions. Cor-
relation analysis extends such methods to consideration of the probability dis-
tribution for pairs of symbols in all possible pairs of positions in the sequence.
"Mutual information", a measure of correlation for discrete symbols [Cover &
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Thomas (1991)], quantifies the covariation of mutations for pairs of positions in
biological sequences Gutell et al. (1992), Korber et al. (1993)].

Mutual information can be expressed in numerous equivalent ways, some of
which derive from information theory, hence the name. In this paper we will
not use information theoretic expressions involving entropy [see e.g. Korber et
al. (1993)], but will instead use the following formula

ab

where Pα& denotes the pairwise probability distribution for symbols in a pair
of sequence positions, and a and b represent the possible base or amino acid
symbols of the sequence. Pa is the single site probability distribution for the
first member of the pair, and Pi is the single site probability distribution for
the second member of the pair. This expression may be interpreted as the log-
likelihood ratio for the data for a specific pair of positions to arise from the
independent (factorized) distribution versus a pairwise distribution.

To apply this formula one needs to estimate from the data the individual
pairwise and single site probability distributions. Given a set of sequences which
are assumed to be i.i.d (independent and identically distributed) samples from
a probability distribution, then one can independently estimate each pairwise
probability distribution for every pair of positions by frequency counting - this
estimate results from a maximum likelihood analysis independently applied to
each pair of positions. Marginalizing the estimate of the pairwise distribution
yields the estimate for single site probabilities.

In Section 3 we will examine the effect on estimates of mutual information
when the sequences used to estimate each individual pairwise probability dis-
tribution are not themselves independent samples, but are instead related via
shared ancestry described by a phylogenetic tree. Other work addressing phy-
logenetic effects may be found in references [Altschul et al. (1989), Sibbald &
Argos (1990), Gerstein et al. (1994), Hennikoff k Hennikoff (1994), Thompson
et al. (1994)].

Our approach is to define a null model, which is based on evolution down an
assumed known phylogenetic tree with independent mutations in different se-
quence positions. By incorporating the tree into the hypothesis of independent
evolution of sites, we can determine a threshold value of mutual information
from the null model, such that any values of mutual information seen in the
real data which are over threshold have a very low probability of coming from
the null model. In other words, a threshold is determined such that pairs of
sites yielding mutual information values over threshold probably did not result
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from independent evolution down the phylogenetic tree, i.e. they really are cor-
related. This approach simultaneously deals with two issues, (1) since mutual
information is a positive semi-definite quantity, any estimate from finite data
can only overestimate the mutual information. Put differently, positive values
of mutual information will result even if sites are independent, purely due to
fluctuations inherent in a finite sample size, and (2) non-trivial phylogenetic
trees amplify the finite sample size effect, hence independent evolution of sites
down a non-trivial phylogenetic tree will result in higher mutual information
values than evolution down a simple star phylogeny. The null model technique
addresses both these issues.

After addressing finite sample and phylogenetic effects, another important
effect remains. In Section 4 we address this problem. The problem can be stated
in various ways. One statement is that there can exist "chains" of covarying pairs
of positions. For example, sequence position 3 may be correlated with position
23 (because these positions are spatially close in the folded structure) , position
23 may be correlated with position 33 (because these positions are close in the
folded structure), and position 33 may be correlated with position 43 (because
these positions are close in the folded structure). Sequence position 3 would then
typically be correlated with sequence position 43 due to the chaining of corre-
lations between the two positions. However, sequence position 3 and sequence
position 43 need not be spatially close in the folded structure, and an inference
that they were close based on significant covariation between the positions can
be in error. This "chaining effect" is the cause of many of the errors that oc-
cur when attempting to deduce spatially close positions in protein sequences
using a covariation analysis. This effect, and the associated errors, is not as
pronounced for RNA sequences because the specific bonding and saturation of
Watson-Crick pairs tends to prevent chains of correlated mutations. We present
a solution to the chaining problem for protein sequences which is validated in
model simulations.

Physicists will recognize the "chaining effect" as "correlation at a distance"
in spin systems [Stanley (1971), Binney et al (1992)], of which the one dimen-
sional Ising spin model in a heat bath is a favorite example. The Ising model is a
one dimensional chain of two-state spins, with each spin having a local physical
interaction with only the spins on either side of it. Nevertheless, significant non-
local correlations occur between spins that are separated by large distances even
though the physical interaction is strictly a local nearest-neighbor interaction.
More generally, one might have a spin system with physical interactions between
designated sites described by a "contact matrix", Ct j . If the spins have a direct
physical contact, and hence a direct interaction, then dj = 1 , and otherwise
Cij = 0. A potential matrix, P, describes the energetic contribution of two con-



CORRELATED MUTATIONS IN PROTEINS 239

tacting spins at i and one at j . Typically, this matrix is not position dependent,
i.e. two "up" spins always have the same energetic contribution no matter where
they are located (and similarly "down" spins, or mixed "up/down" spins). In
proteins this matrix will be a twenty by twenty symmetric matrix describing
the energetic contributions of two amino acids in contact. The probability of
a configuration of spins (or amino acids), as represented by the Gibbs distri-
bution, is proportional to exp —(Energy), where Energy is the energy of the
configuration (obtained from P and Cij). In Section 4, we address the question:
how can one use single site and pairwise probability information (as embodied
in e.g. correlation measures) to estimate the contact matrix of local physical
interaction?

Statisticians will recognize this question as being related to the inference
of parameters, i.e. P and C J, occuring in the discrete multivariate probability
distribution representing the probability of the sequence as a whole, given just
estimates of the first and second order moments of the distribution. Clearly,
under the special assumption that each site evolves independently of other sites
then it is easy to estimate the probability distribution for the sequence as a
whole using maximum likelihood techniques. However, this assumption utilizes
only the first order moments, and ignores the second order moments. To also
include the second order moments (as embodied in the observed correlations)
we develop a maximum entropy analysis in Section 4. This analysis determines
the unique probability distribution for the sequence as a whole, which has the
given first and second order moments (i.e. correlations) and also has maximal
entropy.

The problem of determining a probability distribution given just a finite
number of moments is ill-posed - there are many solutions. The additional con-
straint of maximal entropy makes the solution unique. The maximal entropy
constraint may be viewed as the plausible restriction that the distribution re-
sults in the observed correlations, but is otherwise as "flat", or as "simple",
as possible. It is this simplicity constraint which limits the number of non-zero
coefficients, and allows one to deduce a small set of local interaction parameters
which can account for nonlocal correlations induced by the "chaining effect", as
we demonstrate in model simulations.

2. General models of evolution.

2.1. Evolution with independent sites. Models describing independent evo-
lution of bases, such as the Jukes-Cantor [Jukes k Cantor (1969)] model and
its variants [Kimura (1980)], can be extended to describe the independent evo-
lution of amino acids [Kishino et al. (1990), Hasegawa k Fujiwara (1993)] by
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incorporating PAM matrices [Dayhoff et al. (1978)] in definition of the transi-
tion rates. Let P(t) be the probability distribution for the amino acids at a site
evolving according to a Kimura style model of independent evolution of amino
acid sites [Kimura (1980)]. To fix ideas, consider the simplest situation where
P(t) is a 20-vector satisfying the following simple equation (compare Hillis et
al. (1995)):

dP(t)/dt =

' 01,1 01,2 «l,20 *

02,1 02,2 02,20
P(t)

\ 020,1 020,2 020,20/

where
an = (—19a) and α,j = (α), i φ j

The probability distribution for the sequence as a whole is the product of the
independent single site probabilities, above. Kishino et al. (1990) and Hasegawa
& Fujiwara (1993) extend the above model to incorporate the propensities of
amino acids to mutate to those of a similar physico-chemical nature [Dayhoff
et al. (1978)] and to have different equilibrium probabilities. The analytical so-
lution to equations such as the above results in the familiar exponential time
dependence of the probabilities, which can take a quite complicated form even
though the equation satisfied by the probabilities is simple. In practice, se-
quences can be evolved numerically via Monte Carlo, not analytically, where
the probability to accept a mutation is related to the values α^. The Monte
Carlo procedure allows one to numerically simulate solutions to the general
evolution equation, including situations where complicated interactions are in-
troduced between sites (see below), and no analytic solution is possible.

2.2. Evolution with interacting sites. The Chapman-Kolmorgorov equation
for jump processes (the "Master Equation" to physicists) generalizes the above
simple stochastic evolution equation to nonindependent i.e. interacting sites. It
subsumes all possible discrete state evolution models. Let X{ be 20-state objects
representing amino acids located at sequence position i. The Master Equation
balances the probability of transitioning into a configuration, x, of the system
from a configuration y, with the probability of transitioning out of configuration
x of the system to all possible configurations y.

j(Xχ ...XnlJJl — 'l
dt
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Here, ω(xι... xn; y\... yn) is the instantaneous transition rate from configura-
tion 2/1.. ,yn to configuration xι.. .xn. Only one mutation occurs in any in-
finitesimal time interval and hence the configuration x differs from the configu-
ration y at only one site. The Σyι mmmVn are sums over all configurations y differing
from configuration x in (all) single positions. This of course does not mean that
the sites are evolving independently. The above single site, independent Kimura
model, or any other discrete state standard evolution model which assumes in-
dependence, is recovered when the transition rates ω{xλ... xn; j / i . . . yn) depend
only on single sites or are constants. The Master Equation is the most general
expression possible for discrete state evolution models, and it encompasses non-
independent evolution assumptions by choice of a suitable ω(xχ... xn; y±... yn),
as we illustrate below. If sites do not evolve independently (where analytic solu-
tions are possible), then a numerical solution of the Master Equation via Monte
Carlo is possible - a method of solution familiar to physicists in Monte Carlo
analysis of interacting spin systems.

2.3. Defining the transition rates for interacting sites. Assume that an "in-
teraction energy" function, U7(), exists which defines the energy of a sequence
based on pairwise interactions. To motivate the concept of such an interaction
energy for protein sequences one may think of the classic pairwise "contact
potentials" used in threading and inverse folding investigations [Sippl (1990),
Sippl (1993)] however the arguments given below are independent of the exact
form of the potential. Such pairwise "contact potentials" are of proven utility in
relating sequence to structure. A pairwise potential based on an assumed energy
of interaction provides the simplest possible model of evolution with interacting
sites and thus provides the simplest possible generalization beyond the standard
assumption of independent evolution of sites. Transition rates are related to the
energy, i£(), of configurations by a standard argument from statistical mechan-
ics [Stanley (1971), Glauber (1963)] which we won't repeat in detail here. We
remark that it is clear that such a relation should exist from the following two
observations:

• In equilibrium, where — - — ' ' ' " ' = 0, each configuration will occur
(XT

with the Boltzman probability ex exp(-E).

• In equilibrium, where \x^x*j'- >Xn) _ Q? t h e Master Equation yields

a relation between the transition rate ω and the equilibrium probability, which

involves E.
The energy defined by contact potentials used in inverse folding/threading

problems (incorporating simple physico-chemical characteristics of pairwise ami-
no acids interactions) motivates the form of E we will explore below, however
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the formalism developed here is not limited to such potentials. In analogy to
pairwise contact potentials, we define a model energy as: E = Σ{ • P(Af, A?)C{j

where P(Af, A?) is a fixed potential matrix defining the interaction energy of
amino acid a at site i and amino acid β at site j . In inverse folding/threading
investigations the 20 * 20 symmetric matrix, P, is derived from the statistics of
contacting amino acids observed in x-ray crystal structure data [Sippl (1990)].
In our model simulations, below, this 20 * 20 matrix is chosen to have random
elements between -1 and 1. Cij is a "contact matrix" describing the structure
of a "protein' , with element Cij = 1 if the amino acid at site i is in contact
with the amino acid at site j , and zero otherwise. In inverse folding/threading
investigations "contact" is typically defined by a condition such as: the distance
between the Ca atoms of residue i and residue j is less than 8 Angstroms. In
our simulation Cij was chosen to be a random, symmetric matrix of zeros and
ones, with the average number of "contacts" per "amino acid" user specifiable.
Contact potentials derived from inverse folding studies, and contact matrices
derived from x-ray crystal structures of real proteins will be investigated in later
work.

3. Phylogenetic effects. Sequences related by a phylogenetic tree do not
constitute i.i.d samples. Hence estimation of pairwise probabilities by a fre-
quency counting approximation, resulting from a maximum likelihood analysis
which (falsely) assumes independence of the sequence samples, can be biased.
Note that there are two uses of the concept of "independence" in this paper: (1)
the assumption that the individual biological sequences are i.i.d, and (2) the
assumption that individual positions in the sequences evolve independently, i.e.
with no interaction between the positions. Of course, these two uses are quite
different, and should not be confused.

In this section we present a null-model approach to handle phylogenetic bias
in estimation of covariation and validate it in simulation. Given a phylogenetic
tree, and a model for independent evolution of sites to be described below, we
evolve sequences down the given tree numerous times using the independence
model for sequence evolution of Section 2. A histogram is compiled for the
resulting mutual information values which are calculated between all pairs of
sequence positions. These mutual information values will be different from zero,
even though the sites are evolving independently, due to (a) finite sample size
effects (the mutual information is a positive semi-definite quantity and any
fluctuation due to finite sample size can therefore only result in positive mutual
information) and (b) effects of the phylogenetic tree (the bifurcations of a typical
phylogenetic tree tend to amplify finite sample fluctuations). At a bifurcation
point of the tree the state of the sequence is duplicated, and the two copies are
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subsequently independently evolved.
The null model procedure described above determines a threshold mutual

information value, such that if any mutual information value calculated for the
real sequence data exceeds the threshold value, then it is very unlikely that
such a value could have arisen from the null model of "given phylogenetic tree
and independent evolution of sites". However, the conclusion that the mutual
information between a pair of sites was unlikely to have arisen from the null
model of independence does not necessarily mean those sites are directly phys-
ically interacting. A second procedure is needed which is able to disentangle
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FIG. 1. Histogram of mutual information between all pairs of sites in 256 "amino acid" sequences
at the leaves of a star phylogeny. The sequences are 100 "amino acids" long. The total branch length
from the root to the leaves is 64 time units. Ten separate runs with different random root sequences
have been averaged to create the histogram.

long chains of correlation to determine which sites are correlated due to direct
interaction, and which sites are correlated due to (possibly long) indirect chains
of interaction. This procedure is introduced in Section 4.

3.1. The null model: Independent evolution of sites down a given phylogenetic
tree. Consider a model simulation in which 100 amino acid long sequences are
evolved using a Kimura style independent site evolution model [Kimura (1980),
Kishino et al. (1990)] (see Section 2), with mutations occurring independently
in different positions. Any amino acid can mutate with equal probability to
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any other amino acid. We show that non-trivial phylogenetic trees "create" mu-
tual information between sites, even when explicit interactions between sites
is absent. This is because the topology of the tree magnifies the effects of fi-
nite sample size on estimation of mutual information. In the simulation we will
consider a binary "tree" of 8 levels with each branch length 8 time units long,
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FIG. 2. Histogram of mutual information between all pairs of sites in 256 "amino acid" sequences
at the leaves of a tree phylogeny which is a balanced binary tree of eight levels. The sequences are 100
"amino acids" long. The individual branch lengths are of length eight, resulting in a total branch length

from root to leaves which is identical to the star phylogeny of Figure 1 i.e. 64 time units. Ten separate
runs with different random root sequences have been averaged to create the histogram.

resulting in 256 different "amino acid" sequences of length 100 at the leaves.
The total time from root to leaves is 64 time units. We use a binary tree merely
as a familiar example of a tree with non-trivial topology which can be compared
to a star phylogeny having a trivial topology. Phylogenetic trees of actual bi-
ological sequences will generally not be balanced binary trees and details will
differ depending on the detailed tree topology. We will calculate the mutual
information between all pairs of positions of the sequences at the nodes of the
tree, and compare this calculation to that of a star phylogeny with 256 children
and total branch length equal to that of the binary tree above, i.e. 64 time
units. To evolve a sequence down a given phylogenetic tree the state of the se-
quence is duplicated at each bifurcation point of the tree, and the two copies
are stochastically and independently evolved from the common ancestor.
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The histogram of mutual information for the star phylogeny and the tree
phylogeny are shown in Figures 1 and 2 respectively. It may be observed that
there is a non-zero probability of achieving higher mutual information values
(even though all sites are evolving independently) in the tree phylogeny, as op-
posed to the star phylogeny. A null model threshold based on the star phylogeny,
i.e. based on an incorrect threshold which results from ignoring the real phyloge-
netic tree, would be too low and result in false conclusions of non-independence.
On the other hand, if a null model threshold is chosen based on the correct phy-
logenetic tree, then sites which were truly independent, but evolved down the
given tree and hence associated with an amplification of finite sample size ef-
fects, will be detected as being independent. This is quantified in the following
section, where we introduce a specific interaction between sites, and show by
explicit simulation that the specificity of predicting non-independent sites by
evaluation of mutual information is increased when knowledge of the correct
phylogenetic tree is used to create the null model.

3.2. Validating the null model. Various attempts to "weight" sequences in a
manner related to the tree to correct for bias exist in the literature [Altschul et
al. (1989), Sibbald k Argos (1990), Gerstein et al. (1994), Hennikoff & Hennikoff
(1994), Thompson et al. (1994)]. However, to our knowledge such approaches
have not been validated in model simulations where the interaction between
designated sites is under the investigator's control. Here, we validate the null-
model approach described above, in a model world where we can test the ability
to predict interacting sites based on observed correlations. To create the model
world:

(a) select a phylogenetic tree, here a balanced binary tree of eight levels with
256 leaves, such as used in Figure 2. Various branch lengths of the tree will be
considered in separate runs, ranging from extremely short lengths, to lengths
that are sufficiently long to have sequences evolve to equilibrium.

(b) evolve sequences via Monte Carlo using a non-independent model (see
Section 2) with a selected C, j and potential matrix P to generate sequences
which play the role of "sequences observed in Nature", and which have sites
that are truly interacting. The connection matrix for results reported here has
every "amino acid" contacting three other amino acids chosen at random. The
potential matrix P for results reported here was chosen to be a symmetric,
twenty by twenty matrix, with elements chosen at random from a flat distribu-
tion between negative one and one.

(c) Calculate the mutual information between pairs of sites in these "real"
sequences.

Next, we create the null model of "a given tree and independent evolution of
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sites" by evolving sequences via Monte Carlo down the selected tree (always as-
sumed known to the investigator), but using the independent model of evolution
where each "amino acid" has equal probability to mutate to any other "amino
acid". We determine the threshold of the null model to be such that mutual
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FIG. 3. Specificity of the prediction of contacts based on over-threshold values of the mutual informa-
tion is plotted as a function of the average Hamming distance of the 256 children to the root. Length
100 "amino acid" sequences were evolved down a phylogenetic tree with a binary tree topology of eight
levels (256 child sequences). Dashed curve: threshold determination of the null model was correctly
based on the binary tree topology. Solid curve: threshold determination was incorrectly based on a star
phylogeny. If the topology of the balanced binary phylogenetic tree is ignored and a star phytogeny
is incorrectly assumed, then the specificity of predictions is seen to be significantly lower than that
achieved using a null model which correctly incorporates the phylogenetic tree.

information values which exceed the threshold are very unlikely to have been
generated by the null model (i.e., the threshold is in the far tail of the histogram
of mutual information values). Hence, mutual information values for pairs of po-
sitions as calculated in the "real" data which exceed threshold are very unlikely
to have been generated by the null model of independence of mutations.

Mutual information values between pairs of positions i and j in the "se-
quences observed in Nature" which are over the null model threshold are pre-
dicted to have contact matrix element, dj — 1, i.e. are predicted to be spa-
tially close. To verify the predictions, an "experiment" may be performed in the
model world to determine the "real" values of dj. Of course, this experiment
is as simple as viewing the file containing the original values chosen for dj in
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step (b) above, which was used in the Monte Carlo evolution that generated the
"sequences from Nature".

This procedure results in "specificity" and "sensitivity" plots, Figures 3 and
4 for the prediction of C^ = 1. Specificity is defined to be the percentage of
predicted contacts that were actual contacts, i.e. that were defined in step (b)
above to have Cij = 1. Sensitivity is defined to be the percentage of actual
contacts that were predicted to be contacts. Figures 3 and 4 show the result
of numerous runs with varying branch lengths ranging from short (one time
unit) to long (five hundred time units). The two separate extremes of very short
branch lengths where essentially no evolutionary mutation takes place, and very
long branch lengths where equilibrium can be reached within one branch of
the tree, show little difference as should be expected. For intermediate branch
lengths the effects of the phylogenetic tree become evident.

SENSITIVITY (TreeThreshold=Dashed, StarThreshold=Solid)
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FlG. 4. Sensitivity of the prediction of contacts based on over-threshold values of the mutual informa-
tion is plotted as a function of the average Hamming distance of the 256 children to the root. Length
100 "amino acid" sequences were evolved down a phylogenetic tree with a star topology of 256 child
sequences and total branch length equal to that of the binary tree phylogeny. Dashed curve: threshold
determination of the null model was correctly based on the binary tree topology. Solid curve: thresh-
old determination was incorrectly based on a star phylogeny. Choosing a threshold based on a null
model correctly incorporating the binary phylogenetic tree, as opposed to incorrectly assuming a star
phylogeny, enhances specificity at the expense of sensitivity.

Note that choosing the threshold of the null model by using the topology of
the given phylogenetic tree does significantly improve specificity, compared to a
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null model threshold determined by ignoring tree topology and naively using a
star phylogeny. However a significant number of errors clearly still remain. These
are addressed in the following section. The sensitivity for predicting correct con-
tacts is decreased, see Figure 4, if the correct phylogenetic tree is incorporated
into the construction of the null model. A decrease in sensitivity with enhanced
specificity, is preferable to enhanced sensitivity at the expense of specificity. In
Section 4 we introduce a new methodology to use the observed first and sec-
ond order moments to predict physical contacts which is not based on simple
thresholding of mutual information or correlation measures.

4. Structural effects. The origin of the specificity errors in the simulation
investigated in Section 3 are due to a covariation versus causation phenomenon.
Consider the following situation: Site A physically interacts and covaries with
site B; site B physically interacts and covaries with site C; but site A and site C
do not physically interact. Site A can covary with site C in spite of no physical
interaction between A and C. This effect of chained covariation is known as "cor-
relation at a distance" or "order at a distance" in the analysis of interacting spin
systems [Stanley (1971), Binney et al (1992)]. How can one disentangle causa-
tion (direct physical interaction) from chained covariation (order at a distance)?
We present in the following a maximum entropy approach to this problem.

4.1. Maximum entropy analysis. Although protein sequences can be hun-
dreds of amino acids long, typically a much smaller number of amino acids
display significant covariation, perhaps on the order of ten to twenty amino
acids depending on the length of sequence examined. In this section we will
consider, for reasons of simplicity only ten potentially interacting sites, and we
will also restrict consideration to two-state "amino acids". The algorithms de-
veloped here scale reasonably with the number of potentially interacting amino
acids, and with the number of states per "residue" (see below), but in general
the algorithms require a non-trivial amount of computation time. Hence, for
the following model simulations which we use to explain and to validate the
algorithms, we report results for smaller systems where results can be obtained
easily. However, the algorithms do have a practical scaling behavior and are
applicable to larger systems.

Consider the simplest situation of evolution down a star phylogeny. Phylo-
genetic tree effects due to more complicated tree topology can also easily be
accommodated. Consider a star phylogeny with five hundred leaves containing
two-state sequences of length ten, obtained by evolution to near equilibrium
(10000 time steps) using the following connectivity matrix where on average
each site is connected to three other sites:
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The two by two interaction matrix, P, for a two-state system contains three
independent components, which to use the language of spins, can be described
as: up-up, up-down (and equivalently down-up), and down-down. A "ferromag-
netic" interaction matrix, which we use for this example, has the up-up and
down-down values assigned positive one, and the up-down (equivalently down-
up) value assigned negative 1. Allowing more general potential matrices for
two-state systems merely has the effect of adding new terms to the energy that
are linear in the spins ("external magnetic fields" in spin language), which serve
only to bias the final equilibrium single site probabilities and do not illuminate
chaining phenomena.

The correlation matrix, < (x{ — £i)(zj — Xj) >, and the contact matrix are
represented graphically in Figure 5. Solid lines between pairs of sites represent
those pairs which are connected via the contact matrix (above). Dashed lines
between pairs of sites represent pairs which achieved a correlation (absolute
value) over 0.3. This threshold value for representation was chosen because such
values occurred less than one time in one hundred, as computed in one hundred
simulations of evolution down the same star phylgeny, but using independent
evolution of sites. Hence dashed lines between sites represent correlations that
are very improbable to have occurred in the null model of independent evolution
of sites, and yet are not caused by direct connections between sites.

Note that significant covariation exists between many pairs of sites that are
not physically connected. Sites (1,6), as well as sites (2,8), see Figure 5 are ex-
amples. Note that sites (1,2) are physically connected, as are sites (2,6), and
hence a chain of covariation, (1,2) (2,6), can form which leads to significant cor-
relation between disconnected sites such as (1,6). In larger systems one can have
extended chains. Correlation between sites (2,8) is also significant even though
they are not physically connected. Although we prefer to call the general mech-
anism by which disconnected sites can co-vary, "chained correlation", there is
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also another interpretation. The disconnected sites (2,8) can display significant
correlation because sites (1,2) are physically connected, as are sites (1,8). In
this situation, correlation can exist between sites (2,8), even though they are

FIG. 5. Correlations (dashed lines) between sites such as (1,6) and (2,8) occur because of the chaining
effect. Sites (1,8), (1,2) and (2,6) have physical connections (solid lines). Sites (1,6) and (2,8) are
not connected, yet still exhibit statistically significant correlation. Statistically significant values of
correlation were computed by performing one hundred simulations of evolution down the same star
phylogeny, but with independent evolution of sites. A correlation greater than 0.3 (absolute value) has
less than a one in one hundred chance of occuring if sites are truly independent.

not physically connected, because of a common "driving cause", which is the
connection of both site (2) and site (8) to site (1). Such chained correlation
effects are examples of the classic conundrum of "covariation versus causation".

It is clear that in situations where there can be extended interactions be-
tween sites, such as in proteins (but not so much in RNA, where once a base
pair forms, it is unusual to form many other base pairs), then extended, com-
plicated chains can occur which leads to correlations between sites that are not
physically connected. Attempting to predict the connectivity matrix based on
the correlation matrix would in general result in poor specificity. One must dis-
entangle the chains of covariation and solve, in our specific case at least, the
classic conundrum of causation versus covariation. As we show below, an effec-



CORRELATED MUTATIONS IN PROTEINS 251

tive solution is to estimate the parameters of the simplest model probability
distribution which yields the observed correlations.

Classic Problem: Given estimates of first and second moments of a proba-
bility distribution (as used to estimate the correlation, above) determine the
probability distribution which has maximal entropy, i.e. which is the "flattest"
or "simplest" distribution satisfying the observational constraints. This problem
would be ill-posed without the additional constraint of "simplicity" i.e. maxi-
mum entropy - many probability distributions exist which agree with any given
moments.

Classic Solution: Maximizing the entropy subject to the constraints of given
first and second moments results in the classic [Tikochinsky et al. (1984), Levine
k Tribus (1979)] form for P:

P(x) =
iZ. + Σij

where the \'s are Lagrange multiplier used to implement the constraints, and
Z normalizes P to unity. The constraints are satisfied at the minimum of the
following function F, considered to be a function of the \'s:

F = logZ ,jX{X i

where X{ and X{Xj represent the observed first and second order moments, respec-
tively. For related investigations with a similar functional form see [Heumann
et al. (1995)].

4.2. Application to model simulation. Comparing the resulting form of P(z),
above, to the contact potential used to generate the simulated data, we see that
the reconstructed parameters \{j should be zero for non-connected sites, and
equal to the appropriate element of the potential matrix, P, for connected sites.
When applied to the above model simulation, the reconstructed parameters are:
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Note that even though the correlation between non-connected sites, such as
(1,6) and also (2,8) can be high, that the reconstructed parameter values above
are generally low between non-connected sites, and are high (bold face values)
between connected sites. The maximum entropy procedure identifies the dashed
lines of Figure 5 as a chaining phenomenon. Finite sample effects accounts
for the remaining "noise" in elements of the matrix which should have value
zero (because of zero connectivity), and in the elements which should have
absolute value of one (due to nonzero connectivity and the values used in the
ferromagnetic potential matrix, P).

4.3. Practical considerations. F is a nonlinear function of the variables λ.
It is possible to prove that F has a unique, global minimum by using stan-
dard inequalities of information theory [Cover & Thomas (1991)]. Evaluating
the minimum of F by e.g. gradient descent with respect to the variables λ,
results in an expression involving the first and second order moments of the
model distribution evaluated at intermediate (i.e. non-extremal) values of λ.
Thus, the numerical procedure to solve for the parameters λ involves successive
rounds of Monte Carlo evolution, followed by a small change in the λ's in the
gradient direction, followed by Monte Carlo to evaluate the new expectations
etc. It may be seen by direct differentiation of F with respect to the λ's that
this process converges when the numerically computed expectations agree with
the specified expectations #,- and ΈΪXj. Evaluation of the first and second order
moments at each intermediate value of the λ's would be prohibitively expen-
sive if all states were enumerated exhaustively. However, standard techniques of
importance sampling, long familiar to physicists performing Monte Carlo sim-
ulation of spin systems [Binney et al (1992)], and now popular in bioinformatic
investigations [Lawrence et al. (1993)], are an accurate and efficient alternative
to exhaustive enumeration of all states.

4.4. Conceptual considerations. An assumed pairwise interaction energy
may not accurately model the fitness function that is optimized in Nature.
We emphasize that although we have motivated our discussion of correlated
mutations using analogies to pairwise contact potentials (because we believe
that some aspects of fitness are related to the match of sequence to structure as
represented in pairwise contact potentials), the formalism is not limited to the
protein contact potentials in use today. Indeed, the second order interactions we
allow are perfectly general. In the maximum entropy formalism the second order
interactions are determined by the observed correlations and as such provide
the first logical step beyond independence of sites.

For practical reasons, it will be of interest (but is not necessary) to pursue the
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utility of pairwise contact potentials in evolutionary analysis by using the form
of pairwise potential matrices, P, to restrict the variability of the λ,j parameters
above. This can be done by assuming that the λ^ parameters are the product of
a fixed twenty by twenty amino acid interaction matrix (related to the potential
of pairwise contact potential investigations), P, multiplied by a variable contact
matrix, dj. The maximum entropy formalism performs an implicit search over
Cij, which even in the simple example considered here involves an implicit search
over 24 5 or approximately 1013 discrete contact matrices. This illustrates the
power of the formalism. Other heuristic search techniques could also be used,
such as genetic algorithms or use of Monto Carlo methods to search over the
large space of discrete contact matrices, dj- We note that there is an assumption
that the mutations do not change the Cij, i.e. that the protein backbone remains
relatively unchanged in spite of the amino acid mutations. Examples of this
abound in Nature, including e.g. the hundreds of variable globin sequences which
share a well conserved backbone structure.

Other issues deserving investigation include:

• the effects of mis-specification of the assumed model for the probability
of a sequence: suppose that the "true" fitness function according to which real
sequences are evolved in Nature includes, e.g., third order terms in addition to
second order terms, and hence these terms will influence the observed values
of second order correlations. If one observes just second order correlations then
how accurately will the second order terms of the fitness function be recovered
in a model which ignores third order terms? In other words, how "structurally
stable" is the formalism?

• robustness of the reconstructed parameters to noise or sampling error in
the original estimation of the moments from data: limited data will produce
errors in the estimated moments. How stable are the reconstructed parameters
to the presence of such errors?

• the assumption of evolution to equilibrium: if sequences in Nature are
observed at times before equilibrium is reached, how will this affect the recon-
structed parameters (obtained under an assumption of equilibrium)?

5. Conclusions. We have addressed two issues in covariation analysis of
biosequences, (1) the effect of nontrivial phylogenetic trees on the estimation
of mutual information, and (2) the effect of protein structure on propagation
of correlations to sites that are not structurally linked. Regarding issue (1):
Naive application of covariation analysis to biological sequences related by a
phylogenetic tree can give misleading results. A non-trivial phylogenetic tree
can amplify finite sample size fluctuations, making it appear that significant
covariation exists between pairs of sites, when in fact all sites are evolving in-
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dependently of each other. A null model procedure was introduced to address
this problem. Regarding issue (2): Covariation between disconnected pairs of
sites in sequences can result from possibly long chains of co-variation and from
"common cause" effects, and not from causation (i.e. not from structural links).
Chained covariation makes the prediction of structural links using naive appli-
cation of covariation analysis prone to error. A technique involving maximum
entropy reconstruction of the parameters for the probability distribution of the
sequences was developed, and was validated in model simulations where accu-
rate recovery of the structural links was achieved.

We remark that additional errors will probably remain even after addressing
phylogenetic and chaining effects. The origins of such errors can be diverse, such
as possibly critical relationships between certain amino acids that are required
to maintain the folding pathway. However, addressing the phylogenetic and
chaining effects should go a long way towards improving accuracy of prediction
of spatial contacts in families of varying protein sequences.

The conclusion that causation (direct structural links) can be distinguished
from covariation, by fitting parameters to an assumed model, stands indepen-
dent of the particular models and simulations used here to illustrate the point.
Our goal in this paper is to lay the conceptual foundation for protein structure
determination via analysis of covarying mutations, by using models describing
the probability distribution of the sequences as a whole, and by constraining
the probability distributions with simplicity criteria such as maximum entropy.
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