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SOME STATISTICAL ASPECTS OF CYTONUCLEAR
DISEQUILIBRIA

B Y SUSMITA DATTA

Georgia State University

The purpose of this paper is to review the statistical properties of cytonu-
clear disequilibria, which measure the association of cytoplasmic genes with
nuclear genes and genotypes within a hybrid zone, under different evolutionary
models. We report the exact dynamics of the expected cytonuclear genotypic
disequilibria for both the homozygotes and heterozygotes in a finite population,
with or without having reproductively isolated subdivisions, under random drift
alone and random drift along with mutation. The dynamics for the variance is
studied using Monte Carlo simulation for a subdivided population, whereas its
exact formula for a single undivided population is available. The asymptotic for-
mulas for both the expectation and variance are obtained which are compared
between populations with and without reproductive barriers. Construction of a
of goodness of fit type statistical test using the dynamics of the cytonuclear dis-
equilibria is discussed. An existing test in an undivided population is reviewed
and a new test for a subdivided population is outlined.

1. Introduction. Scientists have noticed dramatic nonrandom associations
of cytoplasmic markers with nuclear markers in a variety of hybrid populations
such as mice (Ferris et. α/., 1983), waterfrogs (Spolsky and Uzzel, 1984), treefrogs
(Lamb and Avise, 1986) etc. One needs to correctly define these associations and
check whether these cytonuclear associations can be explained without invoking
natural selection. These nonrandom associations of cytoplasmic genes with nu-
clear genes and genotypes, i.e., cytonuclear disequilibria (Lamb and Avise, 1986;
Asmussen et α/., 1987; Arnold, 1993) can be used to infer the natural history
of a particular species. For example, in hybrid zones, cytonuclear disequilibria
provide important information about the directionality of the mating events
between hybridizing taxa, levels of assortative mating by conspecifics and the
kinds of selection on hybrids (Arnold 1993).

Rand and Harrison (1989) have suggested that some hybrid zones may be
fundamentally different in character from the more clinal picture as in Mallet
et al. (1990). For example, in the case of an extensive hybrid zone between two
types of cricket along the Appalachians (Gryllus pennsylvanicas and Gryllus
firmus), individuals may sort themselves according to the soil type. As a conse-
quence, the hybrid zone becomes a mosaic of populations of one species or the
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other reflecting the patchwork character of soil types. This kind of subdivided
population structure is exactly what Wright (1968) hypothesized as necessary
for the shifting balance theory. Under this kind of structure a population has
the opportunity to explore repeatedly new gene combinations created by hy-
bridization, and natural selection can retain those complexes that are adaptive.

Until recently, only single locus models of cytoplasmic diversity have been
considered by Birky et aί (1989). Fu and Arnold (1991) have discussed the
behavior of the allelic disequilibria in a subdivided population or a mosaic hybrid
zone under a cytonuclear system. Earlier, Ohta (1982) considered this problem
in a nuclear system.

In a recent article, Datta and Arnold (1998) studied the dynamics of two
other genotypic disequilibria measures (to be defined in the next section) in a
subdivided cytonuclear system. These results are contrasted with those in the
case of a single (or undivided) cytonuclear population (Fu and Arnold, 1991;
Datta et α/., 1996a).

In the next section, we define the various cytonuclear disequilibria in a sub-
divided population. In Section 3, we include the dynamics (in terms of number
of generations) of the overall cytonuclear disequilibria under random drift alone
and random drift in combination with mutation, respectively, for a subdivided
population and compare the results with those in an undivided population. In
Section 4, we present the asymptotic results for the same disequilibria under
the random drift model. Construction of statistical tests using the expected
trajectory of the cytonuclear disequilibria is discussed in Section 5. An overall
discussion of the results of Sections 3 and 4 including their biological significance
is given in Section 6.

2. Cytonuclear disequilibria. We consider a population consisting of n
isolated subpopulations each having the same discrete, nonoverlapping gener-
ations. These subpopulations are isolated reproductively either by intrinsic or
extrinsic barriers to gene exchange. Hence they evolve independently. We ob-
serve the whole population at two restriction sites, one at a nuclear site with
allelic types A and a and the other at a cytoplasmic site with alleles M and
m. Asa result, there are six possible cytonuclear genotypes with (relative) fre-
quencies denoted by p^, k = 1,... ,6 (Table 1). The corresponding frequencies
within the subpopulations will be denoted by double suffixes. For example, pu
is the frequency of the AA/M cytonuclear genotype in the ith subpopulation.
The measures of the cytonuclear disequilibria for the homozygous case AA/M
and for the heterozygous case Aa/M, within subpopulation i are defined by

Du = pu - Uiqi, i = 1 , . . . , n, D2i = p2i ~ Viqi, i = 1 , . . . , n,
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TABLE 1

Frequencies of cytonuclear genotypes

Cytoplasm
M
m
Total

Nuclear genotype
AA Aa aa

P\
Pi

u

P2

P5

V

Pz
Pβ

w

Total

l-q
1

respectively. Here n is the total number of subpopulations, and for each z,

Ui = Pii +P4ή

q% = Pu + P2i + Vi = p2i +

The overall frequencies of these genotypes in the entire population are de-
noted by P i , . . . , Pβ? where each Pk is defined as

with Πi being the size of the zth subpopulation, 1 < i < n. Thus, the overall
cytonuclear disequilibria for the entire subdivided population corresponding
to the homozygous case AA/M and the heterozygous case Aa/M, are given by

DlySτ = Pι-UQ and D2isτ = Pi - VQ,

respectively, where

U = Pi + P 4, V = P2 + P 5, Q = Λ + P 2 + P 3 .

An overall gametic disequilibria can be defined along the same line as

DST = eitsτ - PQ,

where P is given by

P = ei,sτ + e2}sτ

eϊ}sτ is the frequency of the gametic type A/M and e2ysτ is the frequency of
the gametic type A/m in the entire population. Results concerning the behavior
of E(Dsτ) and Var(Dsτ) over time can be found in Fu and Arnold (1992) for
the case n = 1, and Fu and Arnold (1991) for n > 1, respectively. In the next
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section, we will discuss the dynamics of the expected disequilibria E(Dι^τ) and
E(D2jsτ) over time (generation). Datta and Arnold (1998) show that for the
special case when all the subpopulations have the same size, E(Dχtsτ) c a n be
written as

n — 1
E(DltST) = Dx + cδv(u,q).

n
Here the quantity Dγ = J2"=ι E(pu — Uiqi)/n measures the average homozygous
cytonuclear disequilibria within subpopulations and cov(u,q) = ^ ΣΓsil^C1***)
—E(ui)E(qi)], is the covariance (cov) in site frequencies u and q averaged across
subpopulations. Similarly, E(D2isτ) can be represented as

E(D2}sτ) = D2 + cδυ(v,q).
n

Since under the scenario of a random drift model, all the individual sub-
populations will reach equilibrium eventually (Datta et aί, 1996a), the average
cytonuclear disequilibria converges to zero with time. Note that this is in con-
trast with the eventual behavior for an undivided population, i.e., n = 1, where
there is no covariance term. Hence any nonzero value of the overall cytonuclear
disequilibria after a long period of time will have to come from the between
population covariance term. However the behavior of the cytonuclear disequi-
libria for a relatively small generation number is much more complicated as the
results in the next section show.

3. Dynamics of the cytonuclear disequilibria. The behavior of the ex-
pectation and variance curves over time (generation number) for the cytonuclear
disequilibria Dχ}sτ a n d D2,sτ for n = 1 were studied by Datta et al. (1996a)
and were later generalized to the case n > 1 in Datta and Arnold (1998). Here,
we present the more general results for an arbitrary n first and then note its
various ramification for an undivided population by specializing to the case
n = 1. Unlike Fu and Arnold (1991), Datta and Arnold (1998) considered the
most general case, where the subpopulation sizes are allowed to be different,
and they are subject to change over generations. We denote the size of the zth
subpopulation at time t by n,(ί), (i = 1,... ,n, t > 1) where there are n
subpopulations in the entire population.

The formulas reported in this paper are somewhat more complicated than
the ones in Fu and Arnold (1991). This is mostly due to the fact that we are
dealing with genotypic disequilibria rather than allelic disequilibria and also
partly due to the fact that we made no special assumption on the subpopulation
sizes. However, they are not too difficult to calculate in a computer program.
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Sometimes to save space and to keep the notation simple we may not show this
dependence on ί, but it is to be understood.

3.1. Random drift alone. Recall that the overall cytonuclear disequilibria for
the entire population due to the homozygote AA at the nuclear locus and M at
the mtDNA locus is

DhST = P1-UQ = Pι- (Px

2 + PλP2 + ΛP3 + PiP 4 + P2P4 + P3P4),

n

where Pk(t) = ^2rii(t)pkι(t)/N(t); k = 1,... ,6, and N(t) = Σ Γ = i n "(*) i s t h e

i=l

size of the entire population at time ί. The six cytonuclear genotypic frequencies
in the zth subpopulations are random variables with joint probability mass
function (p.m.f) g{. These random variables have the Markov property, i.e., this
joint density of the current generation can be calculated by conditioning on the
previous generation. See, e.g. Datta et al. (1996a) for the exact description of this
conditional distribution. We assumed that the subpopulations are independent
and hence the cytonuclear genotypic frequencies of different subpopulations are
independent. Therefore all the expectations are calculated with respect to the
product p.m.f 5 Ί , . . . , #„. Thus the expected value of D\ysτ is given by

E(Dι,sτ) = -jf

+ PliP3j + PliPίj + P2iP4j + P3iP4j)},

ΣrijEpsj) + (^ΠiEpu
1=1

n

3=1 i=l 3 = 1

Ai + (EPXMEPK) + (EPl,)(Ep3i)

(3.1) + (EPιi)(Ep4t) + (Ep2i)(EpAi) + {Ep3t){Ep4i)}.
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Note that all the quantities in the above expression are evaluated at a given time
t. The expectation EDu is the value of the cytonuclear disequilibrium within
the ith subpopulation. To derive the above term one uses the fact that the sub-
populations are independent of each other and hence E(pkiPkj) = E(pki)E(pkj)
for i φ j . To find the expectation of p^s one assumes the RUZ (Random Union
of Zygotes) model for the mating within each cytonuclear subpopulation (Fu
and Arnold, 1992). For each subpopulation under the random drift model the
conditional moment generating function can be written as

M(θu ... , θ6) = E[exp {J2 θkPki(t)}\Pki(t - 1)]

= Σ Pr(Yfmi(t))exp ( ] Γ θk Pki(t) ),
f,m k

(3.2) = (J2 efi(t - 1) emi(t -
f,m k

Here, i stands for the zth subpopulation. /, m stand for the father and the
mother, respectively, and α/m^ are known constants (Datta et al, 1996a). The
count Yfmi is the number of individuals in the ith. subpopulation receiving ga-
metes of type / from the father and type m from the mother. Each / and m can
be one of four gametes A/Λf, A/ra, ajM or α/ra, and e/;, em{ are the gametic
frequencies in fathers and mothers respectively, for the zth subpopulation. For
details, we refer to Datta et al. (1996a).

From the above moment generating function one can find the expected values
of the genotypic frequencies pki and also Du within a subpopulation. To that
end, Datta and Arnold (1998) defined the following variables:

x1 = D, x2 = Dp, x3 = pq, x4 = p2q,

x*> = p2, x6 = ?, xi — p.

One can then verify from the moment generating function (3.2) that

(3.3) X{t) = A(<)X(< - 1),

where the X_ = ΛΊ, . . . ,Xγ) is a vector containing the expectations of the z's
mentioned above and A(<) is a 7 x 7 matrix whose nonzero elements are poly-
nomials of the subpopulation sizes at time ί, Πi(t). It is easy to solve the linear
recursion (3.3) and obtain the JV's at a given time t knowing their initial values
(at t = 0). Moreover, Datta and Arnold (1998) noted that the expectations of
all the p^ and Du can be written in terms of X's. Consequently, from (3.1),
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Generation

FIG. 1. Trajectory of the expectation of overall cytonuclear disequilibria, E(D\tsτ), over time for a
population consisting of 10 subpopulations. The initial values are p(0) = q(0) = 0.25, D(0) = 0.125.

the expectations of the overall cytonuclear disequilibria Z?i,sτ and D2,sτ can be
expressed in terms of the X's.

If we assume that the sizes of the subpopulations remain constant over all
generations and they are the same for all the subpopulations, then the above
expressions become somewhat simpler. Graphs of E(Dχtsτ) a n d E(D2,sτ) for
this special case are given in Figures 1 and 2, respectively. We choose the initial
values p(0) = 0.25, q(0) = 0.25, D(0) = 0.125 which are taken to be the same
for all the subpopulations. In both the figures the number of subpopulations
n = 10 and we consider that all the subpopulations are of the same size s =
50, which remains constant over the generations. In Figure 1, we see that the
expectation of Di,sτ drops rapidly in the first few generations and afterwards it
steadily approaches its asymptotic limit given by (4.2) in Section 4. The nonzero
asymptotic value is 0.0022058, for n = 10. In Figure 2, we see that E(D2,sτ)
approaches zero (its asymptotic value, (see (4.3)) quite fast even in a subdivided
population.

If the population is not subdivided i.e., n — 1 then the recursions for the
expectations of the cytonuclear disequilibria E{Ό\) and E(D2) over the gener-
ations are given in Datta et al. (1996a). It is shown that, unlike in the presence
of the subdivision in the population, the undivided population reaches equilib-
rium after only a few generations and all the expected disequilibria measures
approach zero after just a few generations in the presence of just random drift.

For the subdivided population, the exact formulas for the variance function
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FlG. 2. Trajectory of the expectation of overall cytonuclear disequilibria, £(£>2,sτ), over time for a
population consisting of 10 subpopulations. The initial values are p(0) = q(0) = 0.25, D(0) = 0.125.

over time (generation) of the overall disequilibria are likely to be extremely
complicated even for the case when all the subpopulations are of the same size
and have the same initial condition. Therefore, we only report the results of a
Monte Carlo simulation to describe the approximate trajectory of the overall
variances of the disequilibria Dχ^τ and D2fsτ- We have used a smoothed version
of the simulated variance curve to partially remove the simulation error. The
graphs of the trajectories are given in Figures 3 and 4, respectively. For both
the trajectories the number of subpopulations n = 10 and we assume that all
the subpopulations are of the same size s = 50, which remains constant over
generations. From Figure 5, we can see that Var(Dιtsτ) decreases for just a
few initial generations and after that it increases and eventually it converges
to its predicted asymptotic value given in equation (4.2) in the next section.
The pattern remains the same for different number of subpopulations (result
not shown). It can also be shown that the magnitude of Var(Dιtsτ) remains
higher for smaller number of subdivisions consistently for all the generations
(Datta and Arnold, 1998). Consequently, the asymptotic values are also higher
for smaller number of subdivisions (Datta and Arnold, 1998). In Figure 6, we
observe that unlike Var(Dι}sτ)f Vo>r(D2,sτ) increases for a few initial genera-
tions and after that decreases and converges to zero. The pattern remains the
same for different numbers of subdivisions (Datta and Arnold, 1998).

When the population is undivided, i.e., n = 1, the exact calculation of the
variance under the random drift model is shown in Datta et al. (1996a). It is
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FlG. 3. Trajectories of the simulated variance of overall cytonuclear disequilibria Var(D\tsτ) over
200 generations for a population consisting of 10 subpopulations. The initial values are p(0) = q(0) =
0.25, D(0) = 0.125.

clear from the graphs of the variances that both the variances go to zero after
a few generations (Datta et α/., 1996a).

3.2. Random drift with mutation. In this section we will consider methods to
calculate the expected value of the overall cytonuclear disequilibrium E(D\ysτ)
under the random drift model in the presence of mutation.

Suppose the mutation rate at the nuclear locus from A to a is μ1? a to A is
ί/i, and at the mtDNA locus is μ2 for M to m and z/2 for m to M, respectively.
Following the same argument as in Ohta and Kimura (1969), we have

pm(t) = (1 - μλ - uι)p{t) qm{t) = (1 - μ2 -

Dm(t) = (1 - μ)D(t),

where

μ = μ2

and the higher order terms are ignored. The recursions of the expectations
E(Dι}sτ) and E(D2}sτ) can be found by solving the recursive relationship given
below.

3=1
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FlG. 4. Trajectories of the simulated variance of overall cytonuclear diseguilibria Var(D2,sτ) over
200 generations for a population consisting of 10 subpopulations. The initial values are p(O) = q(O) =
0.25, D(O) = 0.125.

where X^ are the values of the X vector discussed in Section 2 in the presence
of mutation. H* and A* are 8 x 8 matrices. For the details, see Datta and Arnold
(1998).

We draw the trajectories of the expected values of expected values of Z?i,sτ
and D2,sτ in Figures 5 and 6 respectively. From Figure 5, we notice that in
the presence of mutation, the expectation of the overall D\ decays down to zero
eventually, although it takes a long time for the mutation to remove the non zero
asymptotic value of the expectation under random drift alone. Hence the rate
of decay under the mutation could be extremely slow. In Figure 5, we find that
when the mutation rate is larger, the rate of decay is faster, as to be expected.
In the case of E(D2,sτ) however, even in the presence of mutation the value
converges to zero much faster than E(Dι,sτ) irrespective of the magnitude of
the mutation rates (Figure 6).

Datta et al. (1996a) obtained the asymptotic result for the expected cytonu-
clear disequilibria in the presence of mutation if the population is not subdi-
vided. It can be shown that all the steady state expectations are zero in this
case.

4. Asymptotic results. In this section, we discuss the asymptotic results
for the expected values and the variances of the cytonuclear disequilibria under
the random drift model in the case of a subdivided population. Assume that all
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FIG. 5. Trajectories of the expectation of overall cytonuclear disequilibria E(Dχtsτ) over 3000 gen-
erations for 10 subpopulations with two different mutation rates. The solid line represents mutation
rates of μi = v\ = 10~6, μi = v2 = 10~6. The dashed line represents mutation rates of
μx = u\ = 10~4, μi = v2 = 2 x 10"4. The initial values in all cases are p(O) = q(O) = 0.25,
D(O) = 0.125.

&. -
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FlG. 6. Trajectories of the expectation of overall cytonuclear disequilibria E(D2,sτ) over 3000
generations for 10 subpopulations for two different mutation rates. Sets of mutation rates are

μ i = Vι = 1 ( Γ 4 , μ2 = V2 = 2 X 1 ( Γ 4 , and μ ι = ux = 1 ( Γ 6 , μ2 = W = 1O" 6 .

Trajectories are almost the same for both sets of rates. The initial values in all cases are p(O) = q(O)
= 0.25, D(O) = 0.125.
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the subpopulations are of the same constant (in time) size s and they all have
the same initial conditions. Note that, eventually, each of the subpopulations
will be fixed for one of the four possible genotypes pi, p 4, p 3 and p 6 . Let the
corresponding probabilities be </i, #4, #3, g$, respectively. The values of g's can
be determined from the initial values D(0), p(0) and q(0) which are assumed
to be the same for all the subpopulations. Thus, when all the subpopulations
have reached fixation, sampling from n subpopulations is equivalent to taking a
sample of size n from a multinomial distribution with parameters #i, #4, #3, g6.
From the moment generating function of the multinomial distribution we can
find

(4.1) E(Dhsτ(oo)) = (—)ZT(0),
n

^ *(0)2(Var(DhST(°°)) = (^Γ-Hin - 1)0*(0) - 2D*(0)2(n - 1)
ill

- 2D*(0)p(0)(n - 1) - 2D*(Q)q{0)(n - 1)

- 4D*(0)/>(0)ς(0)(n - 1) + np(0) - nP

2{Q)q{0)

(4.2) -np(0)q2(0)+np2(0)q2(0)},

where

Note that when n = 1, i.e, when the population is not subdivided then both
the above quantities are zero.

Since at time £ = oo, each of the sub-populations will be fixed at one of the
four genotypes mentioned above, P2 — P5 = 0. Therefore, asymptotically D2,sτ
= 0 and Dχ,sτ = DST, with probability one. Indeed it can be checked that the
above asymptotic expressions for D\^τ agrees with those for DST as given in
Fu and Arnold (1991). Furthermore,

(4.3) E(D2M<*>)) = 0; Vαr(O2i5τ(oo)) - 0.

5. Statistical tests based on the dynamics of cytonuclear disequilib-
ria. One can use the formulas for the expectation and the variance for D\ and
D2 over time to construct a goodness of fit type statistical test which assesses
departure from a given model. In particular, using the moment formulas under
random drift, this approach yields a test of the neutrality hypothesis using the
dynamics of cytonuclear disequilibria. A number of tests following this idea can
be constructed depending on the sampling scheme used to obtain the necessary
data.



CYTONUCLEAR DISEQUILIBRIA 33

5.1. Test for random drift in undivided populations. Consider a single undi-
vided population. In this case, the formulas for the expectations and variances
under the random drift model can be found by specializing to n = 1 in the gen-
eral formulas for a subdivided population or directly from the results in Datta
et al. (1996a). The above paper also shows how to calculate the covariance be-
tween Dι and D2 at a given time following the approach described in Section
3.1.

Suppose, data are available on a number of populations of the same species.
We assume that the initial conditions are known for each and that the zth popu-
lation is completely sacrificed at time i so that one can calculate Dι(t) and D2(t)
only for t = i for this population. For example, this sampling scheme was used
by Scribner and Avise (1994). In this scheme, the statistics for different genera-
tions are independent of each other. Note that under this sampling scheme the
counts are based on a complete census of the population and there is no sam-
pling variability (only the genetic variability). Letting D_(t) = (£>i(ί), D2(t)),

Var(D1(t))J Cσv(D1{t), D2(t))
t), D2(t))9 Var(D2(t))

where all the moments are calculated under the random drift model, one can
construct a test statistic

T = Σ(D(t) - μWfΣ-1 (*)(£(*) - μ(t))

which measures the total distance across time between the observed and the
expected disequilibria under random drift. The asymptotic null distribution of
the above statistic was shown to be chi-square with 2k degrees of freedom by
Datta and Arnold (1996). Therefore one would reject the random drift model
if T > χl((2k). Datta et al (1996b) proposed a test along the same line under
a different sampling scheme which results in both sampling as well as genetic
variation.

5.2. Tests of random drift in subdivided populations. Consider a subdivided
population with n components which had identical initial conditions. Then in
the notation of Section 2, EDu(t) and ED2i(t) are constant in z, up to terms
that are O(n~ι). Denote the common value by μλ{t) and μ2(t) respectively.
Suppose, the entire population is sacrificed at time t so that one can calculate
Du(t) and D2i(t) for i = 1,... , n. Combining these disequilibria measures from
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each subpopulation one can construct an overall estimate £ij(t),j = 1,2 by

ί = l i=l

where gj is a smooth function, A, = rii/N, V{3 is the variance of Dij. For example,
gj could be such that gj(u) = y/ΰ for j = 1,2. Note that unlike Djysτ(t), frj(t) is
both asymptotically (as rii grows) unbiased as well as efficient. A test of random
drift based on μ(t) can be constructed using the statistic

T = (μ(t) - μ(t))TΣ-\t)(μ(t) - μ(t))

where

Cov(μι(t),μ2{t))\

Var(μ2(t)) ) '

Note that Σ can be calculated from the variance covariance formulas for Dχ2(ί),
D2i(t) via the delta method and the independence among subpopulations. More-
over it is possible to show that T has an approximate chi-square distribution
with two degrees of freedom.

If one has data from a number of independent subdivided populations as in
the previous subsection then one can obtain an overall test statistic by adding
the Γ's obtained from each subdivided population.

6. Discussion. In this paper, we have reviewed some recent results on the
exact dynamics of the expectation of two measures of overall cytonuclear dis-
equilibrium, Dιysτ and Z>2,5T, in a subdivided population with n demes under
genetic drift and genetic drift with mutation. The variance curves of these dis-
equilibria measures are also studied and construction of statistical tests using
the above results are discussed.

It is an established fact that genetic drift generates variation in linkage dise-
quilibrium between two or more genetic loci in a subdivided population (Ohta,
1982a; Ohta, 1982b) and that mutation eventually eliminates that permanent
disequilibria caused by genetic drift. In this paper, in the absence of mutation
we see that the expectation of cytonuclear disequilibrium E(D\tsτ) eventually
goes to a nonzero asymptotic value [(n — l)/n].D*(0), ( D*(0) is defined in Sec-
tion 4) which is the same as the asymptotic value of the allelic disequilibrium
given in Fu and Arnold (1991). However, the exact dynamics of E(Diysτ) are
different from that of the expected allelic disequilibrium. Initially, both the
within-subpopulation and between-subpopulation component of the disequilib-
ria decrease very rapidly. Then the between-subpopulation component starts
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increasing slowly and it finally settles down for the between-population compo-
nent [{n — l)/n]D(0)/(s + 1). An increased subdivision (larger n, the number of
subpopulations) increases the value of E(DliSτ) (Datta and Arnold, 1998) and
consequently yields a higher steady-state value. The between-population com-
ponent of E(Dι}sτ) is always a little larger for larger n. It is easy to see that
increasing D(0) and/or decreasing s will result in larger steady-state values. In
the presence of mutation the permanent association is eventually removed and
E(Dι^sτ) decreases to zero, but it may take a very long time (Figure 2). Note
that higher mutation rates imply a shorter time till the expectation of D\^τ
goes to zero (Figure 2).

Unlike the expectation of Di^sT, expectation of D2,sτ goes down to zero (its
asymptotic value) quite fast under the random drift model. It is interesting to
see that the between-population component of D2,sτ also goes down to zero
for the heterozygote. Even with the presence of mutation it goes down to zero
quite fast irrespective of the different mutation rates. Genetic drift weeds out
the nuclear heterozygotes Aa/M and Aa/m, and no 'i<\ hybrids' remain to
generate a nonzero D2.

For an undivided single population both the disequilibria measures even-
tually go to zero under the random drift model and in the presence of muta-
tion along with random drift. The variance of cytonuclear disequilibria decays
asymptotically under the random drift model if there is no other source of vari-
ability like mutation or migration. In the presence of mutation it has non-zero
asymptotic value. For the detailed discussion on this matter we refer to Datta
et aί (1996a).

For a subdivided population, trajectory of the simulated variance of the
disequilibrium for homozygotes Var(Dχisτ) under the random drift model is
shown in Figure 5. In the initial generations, value of the variance is low but it
increases quite rapidly under the random drift to reach the predicted non-zero
steady-state value as expected. We have discussed in Section 4 that asymptoti-
cally D\}sτ and DST are the same. Hence the steady-state variance is also the
same. The asymptotic value of the variance Var(Dι^sτ) increases as number of
subpopulations decrease (Datta and Arnold, 1998). Variance of D2ysτ (Figure
6) on the other hand goes down to zero within the first 150 generations ap-
proximately for all the different number of subpopulations and that is what one
would expect, because under the random drift overall disequilibria due to the
heterozygotes goes to zero. The nonzero values of the variance Var(D2}sτ) are
higher for smaller number of subdivisions (Datta and Arnold, 1998).

Clearly the results in this paper offer more insight into the behavior of
a subdivided system under a neutral model than those using just the allelic
disequilibrium. This will be reflected in the additional statistical power if one
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constructs a test comparing the observed dynamics of the pair (D
with the expected dynamics under a neutral model. Such neutrality tests in
the case of an undivided population have been proposed by Datta and Arnold
(1996) and Datta et aί (1996b). An extension of the Datta and Arnold (1996)
test to a subdivided population has been briefly described in Section 5.2 of this
paper. This test is applicable if the data are collected in an ideal experimental
setting as described in Section 5.2. In the case of an undivided population, data
using such a sampling scheme have been collected by Scribner and A vise (1994).
An extension of the test to handle a more practical setup incorporating genetic
as well as statistical sampling can also be done.
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