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ABSTRACT

We consider analogues of estimating functions for situations in which the
prediction of observables is of primary interest. We show that the mode of
the predictive density has an optimality property for prediction analogous
to a similar optimality property for the mode of the posterior density in
the case of parametric estimation. Applications of predictive estimating
functions in spatial statistics with particular reference to the geostatistical
method known as kriging are developed.
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1 Introduction

Applications of estimating functions have mainly focused on estimation and
inference for parameters either in fully parametric or semi-parametric mod-
els. While the focus on parameters as indices of probability distributions is
at the core of modern statistics ever since Fisher (1922) (See Stigler (1976)),
several authors have argued persuasively that prediction of potential ob-
servables may sometimes be important. For example, Pearson (1920) refers
to this as the Fundamental Problem of Statistics. It is also central to the
treatment of de Finetti (1974, 1975) although he prefers the term prevision.
Geisser (1993) gives an extensive discussion of predictive inference focus-
ing, however, mainly on the Bayesian approach. In this article we discuss
predictive analogues of estimating functions, motivated by similar ideas for
parametric estimation. Such analogues might be termed prediction func-
tions, although this term has been used previously in at least two different
senses. Mathiasen (1979) uses it to denote a function of the future observ-
able and the current data which ranks values of the future observation in
terms of relative plausibility in the light of the data. Such a function has also
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been termed a predictive likelihood (cf. Bjornstad (1990) for a comprehen-
sive review). The term prediction function or predictor has also been used
for a function of the current data used to predict a future observation or a
function of several future observations, e.g. in time series. Here, I shall use
the term prediction function or predictive estimating function (to emphasize
the analogy with estimating functions) to denote a function g(z,x) of data
x and an observable z to be predicted. The equation

g{z,x) = 0

will be referred to as a predictive estimating equation.

In this article I consider predictive inference from the point of view of pre-
diction functions. In section three I consider this from the Bayesian point of
view and show that one can obtain optimality properties of modal predictive
density estimators based on two optimality criteria analogous to those of Go-
dambe (1960), Ferreira (1982), and Ghosh (1990). These optimality criteria
are introduced in section two. In sections four and five I consider applica-
tions to spatial prediction and show that the kriging equations of Matheron
(1962) can be obtained as special cases. Section six deals with prediction
functions related to predictive likelihood, while section seven concludes with
a brief discussion.

2 Optimality Criteria for Prediction

Classical approaches to prediction in time series (e.g. Box and Jenkins
(1970)) or spatial statistics (Ripley (1981)) invariably focus on mean-squared
error as a criterion e.g. in the 1-step ahead prediction problem one consid-
ers E[Yf - h(Yc)]2 either unconditionally or conditionally on Yc, where Y)
denotes a future observation, and h(Yc) is a function of current data Yc.

Suppose we are interested in a future value z from a parametric family
fz(z]Q) depending on an unknown parameter θ_. Denote the current data
by x = (sci,..., xn) a. random sample from fx{x; θ). An unbiased prediction
function is a function g of the current data x and a future observable z such
that:

x)} = 0 (2.1)

the expectation being over the joint distribution of z and x. We could also

consider conditional unbiasedness:

Ez/Mz,x)} = 0. (2.2)

There is some debate (e.g. Butler (1990)) concerning the appropriateness
of unconditional versus conditional assessments of predictive inferences but
in my view both measures are important in practical applications. Roughly
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speaking, though, it is probably the case that unconditional assessments are
more relevant in pre-data considerations, while conditional assessment may
be more relevant at the analysis stage.

An important difference here with more conventional treatments of pre-
diction is that the point predictor Λ(x), say, obtained as a solution in z of
the equation

9(z,x) = 0 (2.3)

may or may not be unbiased. (A sufficient condition for the conventional
unbiasedness requirement, E(z) = E(h(x)), is linearity of g in z and x).

Another departure from classical prediction problems we propose to adopt
here is to define optimality of our prediction function in terms of one of the
following optimality criteria:

EFF{g) = E^df) (2 4)

or

EFF(g) = im^L (2.5)
{EΛd/)V

where EFF denotes efficiency.
For simplicity we restrict attention to scalar z although multivariate ana-
logues of (2.4) and (2.5) are easily obtained. Also, (2.4) and (2.5) are predic-
tive analogues of criteria previously proposed by Ferreira (1982) and Ghosh
(1990) respectively. Those authors, however, are concerned with Bayesian
estimation of unknown and unobservable parameters, whereas z here repre-
sents a random variable which is potentially observable exactly (i.e. without
measurement error). Naik-Nimbalkar and Rajarshi (1995) also develop this
framework extensively in the context of state-space models but again the
state-variables are parameters which are unobservable (although allowing
measurement with error).

In this paper, I shall restrict attention to the unconditional criteria, (2.1)
and (2.4), although a similar development is possible in terms of the condi-
tional criteria.

3 Optimal Prediction Functions

Suppose z is a scalar future observable and x_ = (x\,... ,xn) is the current

data. The ideal object for predictive purposes is a conditional probabil-

ity density of the future observable z given the current data x, p{z\x) say.

(We assume that all random variables are continuous). Lindley (1990) and

Geisser (1993) point out that full specification of the marginal density of

£, p{x) say, and hence, a fortiori, p(y\x), is difficult in general, but that
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the introduction of a parametric model q{x\θ) and a prior distribution π(θ)
enables us to write

p(x) = J q(x\θ)π(θ)dθ

and, hence, the predictive density can be calculated. Also, the de Finetti
representation theorem (de Finetti (1937)) shows that if the X{ are exchange-
able, such a "lurking" parametric structure is implied. If one accepts the
Bayesian argument, the predictive density can be obtained as

p(yk) = f p(y\χ),θπ(θ\x)dθ (3.1)

where π(θ\x) is the posterior density of θ given x, calculated from Bayes the-
orem. Fisher (1956) and Kalbfleisch (1971) obtained predictive distributions
in situations where a fiducial distribution for the parameters is available. The
calculation is similar to (3.1) with the posterior density replaced by the fidu-
cial density, although the logic is quite different. Aitchison and Dunsmore
(1975) make extensive use of the Bayesian predictive density.

We argue here, informally, that if a predictive density is available, then
the optimal prediction function is given by:

* dlnp{z\x)
9 = dz . (3.2)

We assume regularity conditions similar to those of Ferreira (1982), but
involving conditions on existence of certain derivatives with respect to z
rather than θ, and that certain interchanges of differentiation and integration
operators are permissible. Denote by G the class of all prediction functions
g : Z x X -» 9ϊ, such that EχEz^(g) — 0 and EχEz^(g2) < oo, where
Z and X are the obvious sample spaces. Then G is a vector space with
respect to the real numbers in the sense that if ci, c<ι are real numbers and
5i 5 52 € G, then c\g\ + C252 £ G. Also, if we define the inner product
< 9i?52 >= EχEz\x(9ι92) > G is an inner product space which is complete in
the metric defined by the norm ||g||2 =< g,g >; hence G is also a Hubert
space.

Consider an arbitrary element g of G. Denote by g the derivative of g
with respect to z. Differentiation under the integral sign in the condition:

= 0,

and arguing in a similar fashion to Ferreira (1982) yields:

E{g) = -<g,g*>

where

„ _ dlnp(z\x)
9 " dz
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is the logarithmic derivative of the predictive density with respect to the
future observable z. The Cauchy-Schwarz inequality now implies

Optimality of g* then follows from the condition for equality in the Cauchy-
Schwarz inequality.

In practice, the predictive density p(z\x) will be unavailable and it is
necessary to restrict attention to subclasses of unbiased prediction functions.
For example, if G\ is the class of prediction functions linear in z and #,
standard arguments suggest that the optimal prediction function in G\ is
the projection of g* above into G\. Minimization of (2.4) above is then
equivalent to finding g\ G G\ such that

| | 5 ί -3ΊI<l l5 i-5ΊI , for all S l G G , .

We give an example of this in spatial statistics in the next section and
show that an optimal g* can be found depending only on second-moment
assumptions about the data and the "future" observable.

I make two remarks at this point. Firstly, by appropriate redefinition
of inner products and corresponding norms, the above development can be
carried out mutatis mutandis in terms of the conditional quantities (2.2) and
(2.5). Secondly, optimality of the mode of the predictive density can also
be derived based on maximizing an expected utility function. Aitchison and
Dunsmore (1975, p. 46) show that for an all-or-nothing utility structure the
optimum point predictor is the mode of the predictive density.

4 Prediction Function Approaches to Kriging

Godambe (1985) investigated finite sample parametric estimation for stochas-
tic processes using estimating functions. The stochastic processes he consid-
ered were in discrete time and optimal quasi-score functions based on ele-
mentary martingale estimating functions were constructed. Thavaneswaran
and Thompson (1986) generalize this to continuous time processes. In the
case of spatial statistics such a martingale formulation would appear to be
inapplicable. Nevertheless it is of interest to consider what estimating func-
tions may offer. Also, unlike the aforementioned authors who deal with fixed
unknown parameters in stochastic models, the type of applications I consider
here involve prediction of unobserved (but potentially observable) random
variables.

We are particularly concerned here with an approach to spatial predic-
tion commonly referred to as kriging, which has found extensive application
in such areas as hydrology, soil science, and the mining industry (e.g. Jour-
nel and Huijbregts (1978)). Kriging is, in essence, an analogue for spatial
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processes of the optimal linear prediction theories of Kolmogorov (1941) and
Wiener (1949) for time-series and was developed mainly by Matheron and
his school in the mining industry. Cressie (1990) gives an interesting histor-
ical account of the origins of kriging. As the area is relatively unfamiliar to
statisticians we outline briefly some of the main ideas. We assume an un-
derlying two or three-dimensional spatial stochastic process z(gc)^ x G 5ft2 or
5ft3 representing, for example, soil PH in 5ft2 or ore-grade in 5R3. It is desired
to estimate or predict Z(XQ) at some unobserved location #o, based on ob-
servations of z(x), z(xλ),..., z(xn) at a set of n spatial locations xϊ}..., xn.
The optimal predictor in terms of minimizing the mean-squared prediction
error

E[z(xQ] zfa),..., z(xn)) - z(x0)}2 (4.1)

is, as in the Wiener-Kolmogorov theory, given by, the conditional expectation

E(z(ΐo)\z(gil),...,z(2n)) (4.2)

but this entails knowledge of an (n + l)-dimensional distribution which may

not be available. Kriging focuses on linear predictors of the form

n
z{x.o', *(£i), , z(xn)) = J ^ λiz(xi) + λ0 (4.3)

which satisfy an unbiasedness condition

E[z{x0; z{xλ\ . . . , z(xn)) - z{xQ)] = 0, (4.4)

and seeks a predictor of the form (4.3) which minimizes (4.1) subject to

(4.4).

The solution to the kriging problem, i.e. determination of the optimal

weights λi, λ2 . . . λn, depends on assumptions about the structure of z(x).

Usually, it is assumed that

z(x) = θ(x) + e(x)

where e(x) has zero mean and is either a stationary process or an intrinsic

random function (Matheron (1962)). An intrinsic random function is one for

which generalized increments of some order are second-order stationary (e.g.

Cressie (1991, p. 300)). There are three common assumptions about θ(x) :

(ϊ)θ(x) is a known constant θo, (ii) θ(x) is an unknown constant #o a n d (ΐϋ)

θ(x) is a "trend" function of the form Σ j = 1 fj{x)βj where fj(x) are known

functions (e.g. low-order polynomials) and βj are unknown parameters.

Under assumptions of known covariance structure Σ ( ^ — x2)
 = C°v(e(%i)i

e(x2))i m the case where e(x) is stationary, or known semivariogram η{x_x —

#2) = 7}E[(e(xi) — e(^2))2] i n the case where e(x) is an intrinsic random
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function of order zero, optimal predictions in terms of (4.1) can be obtained
in cases (i), (ii) and (iii) and lead, respectively, to what are referred to
as simple, ordinary or universal kriging equations for the coefficients Xi in
(4.3). Details are given in Ripley (1981) or Cressie (1991). Optimality
here rests on the strong assumption of known covariance function or semi-
variogram. In practice, this needs to be estimated and an enormous body
of work in geostatistics has concentrated on its estimation. Often various
simple parametric forms for 70 () are assumed, θ estimated in various ad hoc
ways, and JQ( ) is inserted into the kriging equations.

Consider now a reformulation of the kriging problem from a predictive es-
timating function point of view. We seek a prediction function g(z(x0), z(xλ),
..., z(xn) which is: (i) unbiased,

E{g(z(gU>),z(x1),...,z(xn))}=0 (4.5)

and (ii) minimizes

Eg2

where g | is the derivative of g evaluated at Z(XQ) = z. Clearly (4.4) is a

special case of (4.5) but (4.5) is more general in that the predictor z(x$)

which is a solution to g = 0 need not be unbiased in the sense of (4.4).

Prom section 3, the optimal predictor, minimizing (ii) in the class of

unbiased predictive functions is

= dlnp(z(x0) = φ ( s χ ) , . . . , z{xn))
9 dz K ' }

provided the necessary conditional distribution is available. This is unlike the

Wiener-Kolmogorov-Matheron theory which leads to the conditional expec-

tation predictor. It has the same difficulties, which that theory encounters,

in that knowledge of the conditional distribution is rarely available. How-

ever, if z(x) is a stationary Gaussian process, the modal predictor according

to (4.7) coincides with the conditional expectation predictor.

To obtain a prediction function not predicated on strong distributional

assumptions we restrict the class of competing prediction functions. For

example, one possibility is the class:

G\ = {g : g = g(z(x0), z(xλ),..., z(xn))

= g1(zteo)-h{z(xι),...,z(xj)) and E(9l) = 0} (4.8)

where g\ and h are possibly non-linear functions. Clearly, choice of the

identity function for g\ is sensible in many applications. For example, the
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disjunctive kriging of Matheron (1976) would correspond to g\ the identity

function and

h{z{xλ),..., z{xn)) =
2 = 1

where the functions {hi : i = 1, ...,n} are measurable square-integrable func-
tions. Matheron (1976) shows that minimum mean-squared prediction error
predictors can be obtained. The resulting disjunctive kriging equations re-
quire knowledge only of the bivariate distributions of (z(x_j), Z(XJ)), provided
the process z(-) follows a so-called isofactorial model. This is in contrast to
(4.7) which typically involves knowledge of an (n + l)-dimensional distribu-
tion.

A further special case of (4.8) is the class

G2 = {9'9 = g(z(xo), zUι), »-> z(£n))

= z(x0) - λo - Σ λ ^ ^ ) ' w i t h Ei9) = 0} (4.9)
i-l

corresponding to prediction functions linear in the observations z(xj)y 1 <
i < n and the unobserved z(xQ).

We now show that the optimal prediction function in the class G2 leads
to the simple kriging equations of Matheron (1962). The argument is a mod-
ification of theorem 2.1 of Thavaneswaran and Thompson (1988). We give
the result for second-order stationary processes with known covariance func-
tion although it can be modified for the intrinsic random function situation
with known semi-variogram.

Theorem 4.1. Suppose E(z(x)) = θ(x) is a known function and denote

by Σzz the n x n matrix with (ij)th element Cov(z(xi)^z(xj)). Let #o =

E(z(x0)) and, θ_ = {θ(xι),..., θ(xn))τ and d be the n-vector with ith element

Coυ(z(aiQ),z(aii)). Let G2 be as in (4.9) above rewritten in the form

G2 = {9 : 9 = (*0Eo) - θ0) - \T(zn - θ)}

where λ τ = (λi,...,λn) and z_n = (^(^1),...,z(xn))τ. Then the optimal
prediction function minimizing (4.6) is given by

9* = (z(x0) - θ0) - dτΣ^z(zn - θ). (4.10)

Proof. The proof is an elementary modification of that of Thavaneswaran
and Thompson (1988). They point out that a sufficient condition for g* to
be optimal is that E(gg*) = KE(g) where g is the derivative with respect to
Z(XQ) and K is an arbitrary constant. Since for the class (?2, E(g) is unity,
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it suffices to show that E(gg*) = E(g*2) for all j G G2. For g* given by
(4.10), elementary manipulation yields

E(g*g) = Var(z(x0)) - ffΣ^d, (4.11)

for all 3 G G2. Since the right hand side does not involve λ, and hence not
on the choice of #, the result is proven.

In this case the optimal predictor Z(XQ) obtained by solving g* = 0 for
z(x0) is given by

τl

z(zn-θ). (4.12)

Matheron's derivation involves minimizing the mean-squared error with re-
spect to variation in λo,λi,...,λn, subject to E(z(x0)) = E(z(x0)). This
leads via a Lagrange multiplier construction to the n +1 linear equations for
λo,λi, . . . ,λ n given by:

) + XTΣZiz =d,i=, ...n

where Σ ^ z is the n-vector whose jth element is Coυ(z(xi), Z(XJ)). The
optimal weights are identical to those in (4.12). If the underlying process is
Gaussian, standard results for the multivariate Gaussian distribution show
that (4.12) is the conditional mean of z(xQ) given z(xλ), ...,z(xn), so that it
is globally optimal (without restriction to G2) with respect to minimization
of prediction mean-squared error. Since it is also the conditional mode it is
also globally optimal with respect to minimization of (4.6).

The treatment given here has reproduced Matheron's result from a pre-
dictive estimating function point of view. Also it depends on the unrealistic
assumptions that both the mean of the process and its covariance are known.
Ordinary kriging and universal kriging extend the theory to parametric lin-
ear models for the mean and I consider a more general version of this in the
next section, from a predictive estimating function point of view. However,
the real advantages of this point of view (and scope for generalization) are,
in my opinion, in the possibilities of extension to non-linear prediction. Such
an extension is broadly analogous to Godambe and Kale's (1991) extended
Gauss-Markov theory for parametric estimation and will be treated in detail
elsewhere.

5 Prediction with Unknown Mean

Suppose that the mean function θ(x) is a known function, say, θ(x; β) of a p-
dimensional vector of unknown parameters β. This includes the special cases
of: (a) θ(x) an unknown but constant scalar, for which ordinary kriging has
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been developed and (b) θ{χ-,β) = ΣPj=ιfj{x)βj corresponding to universal
kriging. However, here, we allow the possibility that θ(x; β) is a non-linear
function of β. We retain the assumption that the covariance matrix is known
but possibly a function of /3, Σ,zz(β)

We consider joint estimation of /?, and prediction of Z(X_Q) at an unob-
served location x0. The optimal estimating function for β_ is the quasi-score

DτΈ-z\{zn-θ_n{Άβ)) (5.1)

where D is the nxp matrix with (i,j) element r^ - , z_n is the data vector

as before and 0n(z;/3), is the n-vector (θ(xι]β),... ,0(xn;/?)). The opti-

mal prediction function for z(x0), given /?, is given by (4.10) appropriately

modified with 0o = θ(xQ;β), θ_ = 0n(z;/?) and d, Σzz, the specified known

functions of β. The optimal prediction function for z(x0) can then be ob-

tained by solving (5.1) for the maximum quasi-likelihood estimate, J3QLI say,

and inserting this into the modified version of (4.10). In general, solution of

(5.1) will require a numerical solution. However, in the special case where

θ{x]β) = Σ j = i fji^βj-, an explicit predictor can be found and shown to

correspond to the universal kriging equations of Matheron. However, this

derivation is more general in that it allows non-linear functions of β_ and

additionally the covariance function may be a function of β.

Finally, we remark that a partially Bayes approach similar to that of

Godambe (1994) could be developed for spatial prediction. This involves

the combination of estimating functions based on prior information about

the mean function together with the quasi-score function based on the data.

Although Godambe emphasizes parametric estimation he gives a brief il-

lustration how this may be extended to forecasting of a future value of a

branching process.

6 Optimal Prediction Functions Based on Likeli-
hood

Whereas the Bayes approach to prediction is logically very appealing except
for the sticking point of the prior, likelihood approaches are considerably
murkier! Bjornstad (1990) gives a recent extensive survey outlining 14 dif-
ferent predictive likelihoods! This proliferation of definition suggests that
predictive likelihood rests on somewhat shaky logical foundations. Bayarri,
De Groot and Kadane (1987), in a provocative paper, question whether like-
lihood itself can be rigorously defined, in general, and much of their critique
refers to situations in which prediction is of importance; see also, Berger
and Wolpert (1988) for a discussion of this. In a sense, the entire param-
eter 0 is a nuisance parameter here so it is natural to consider elimination
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methods for nuisance parameters analogous to conventional methods for the
parameter of interest. Basically, the predictive likelihoods considered by
Bjornstad fall into three categories: (i) elimination by profiling, (ii) elimina-
tion by conditioning on "sufficient" statistics for the (nuisance) parameter,
(iii) elimination by integration. Method (i) entails the usual difficulties en-
tailed in inserting MLEs for the nuisance parameter. Method (iii) is similar
to the Bayesian approach and provides a probability distribution for the
parameter (e.g. the Bayesian predictive density in section three is an in-
stance of this). However, where a fiducial distribution is available for the
parameter, Kalbfleisch (1971) shows how to obtain a predictive distribution
for the future observation. This is related to Fisher's (1956) original argu-
ment. Method (ii) is a method for ordering the plausibility of future values
proposed independently by Lauritzen (1974) and Hinkley (1979) and more
generally by Butler (1986).

Another method, not discussed by Bjornstad, is that of marginal pre-
dictive likelihood discussed very briefly by Butler (1986). In this section
we discuss this from the predictive estimation function point of view and
conjecture that under certain model assumptions the marginal predictive
score function has a certain optimality property. Let x_ = (xi, ...,α;n) be
the current data and z a scalar future observable. Suppose there exists a
transformation

where (T, A) is sufficient for θ in the model fχ,z(x,z',θ), A = A(x, z) is
ancillary for θ, i.e. possesses a distribution not involving 0, and T = T(x)
is sufficient for θ in the model fχ[x;θ). Suppose also that the likelihood
factorizes as

fA(a(x,z))fτlA(T(x)\A;θ). (6.1)

If, in addition, T(x) is complete given A (conditionally complete) Basu's

theorem (1959) implies that T and A are independent so that the final factor

in (6.1) is the same as fτ(T(x)\θ).

The last two components of the above factorization in essence separate

the "data" (#, z) into two components, fτ\λ(') which is relevant to inference

about θ based on the sufficient statistics T(#)> and /Λ( ) which provides in-

formation relevant to predicting z given x. Classical frequentist prediction

intervals often involve inversion of a function such as A(x, z) which is some-

times referred to as a predictive pivot. If the above factorization applied, it

seems reasonable to consider the class of prediction functions which involve

the data through A alone. We conjecture that the optimal prediction func-

tion in this class would correspond to the marginal predictive score function



364 DESMOND

based on differentiation with respect to z. A proof might be constructed
motivated by arguments of Lloyd (1987). He considers estimation of a pa-
rameter of interest θ in the presence of a nuisance parameter φ and shows
that the marginal likelihood based on a maximal ancillary for φ provides
the optimal estimating function for 0, if the remainder of the likelihood is
conditionally complete. In our case, the nuisance parameter is the entire
parameter θ and the quantity of interest is z.

As a simple example of a situation to which the factorization applies
consider #i, ...,xn and z as independently distributed N(θ, 1), where z is to
be predicted. Then (6.1) applies with T(x) = x and A(x, z) = z — x.

An alternate factorization to (6.1), which is sometimes available, is when
a statistic T(x, z), sufficient for θ, is available in the joint model for x and
z. Predictive likelihoods which eliminate θ by conditioning on T can then
be constructed along the lines of Hinkley (1979) or more generally Butler
(1986). Such a factorization is available, for example, in exponential families.
There is a parallel here with similar conditioning arguments for parametric
estimation, where nuisance parameters can be eliminated by conditioning
with respect to statistics sufficient for the nuisance parameter. In the pre-
dictive case, we note that the conditioning statistic Γ is a function of the
future observation z, which corresponds to the "parameter" of interest in the
estimative case. It is an open question whether optimal prediction functions
based on conditional predictive likelihood can be constructed.

7 Discussion

This paper has considered the problem of predicting observables from a
different perspective than more classical formulations. In the classical ap-
proach the two common desiderata are: (i) unbiasedness of the predictor,
and (ii) minimization of prediction mean-squared error. As regards (i), the
concept of unbiasedness is different from the usual unbiasedness concept for
an estimator of a fixed parameter, as pointed out by Robinson (1991). The
"ideal" predictor, if available, is the mean of the predictive distribution of
the unobserved variable given those observed. Restrictions to linear unbi-
ased predictors lead to best linear unbiased predictors, commonly referred to
as BLUPs. By contrast, in the formulation given here, (i) above is replaced
by: (i') unbiasedness of the prediction function and (ii) is replaced by: (ii')
minimization of criterion (2.4).

Since (Γ) need not imply (i), biased predictors are possible in this for-
mulation. Similarly (ii) and (ii') are equivalent only for a proper subclass of
prediction functions so that the formulation via prediction functions is more
general. The "ideal" predictor, if available, corresponds to the mode of the
predictive distribution. If this is unavailable, projection into various sub-
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spaces of prediction functions produces locally optimal prediction functions
which are closest to the ideal prediction function in the L2 norm defined by
the covariance inner product defined on the space of prediction functions.
The classical prediction theory has an analogous projection formulation but
with a different inner product.

I have shown here that the new formulation reproduces classical pre-
diction results in the subset of cases where they coincide. Godambe and
Kale (1991), in the case of parametric estimation, show that the estimat-
ing function approach reproduces classical optimality results such as the
Gauss-Markov theorem in elementary cases for the linear model, but offers a
good deal more generality for non-linear models and quasi-likelihood models
where the original Gauss-Markov approach fails. Those authors successfully
develop an extended Gauss-Markov theory for these cases which is logically
equivalent to the original Gauss-Markov theory for the elementary case. The
development of analogous extensions for prediction functions will be treated
in a separate publication. Areas of potential application being considered
include non-linear geostatistical problems such as disjunctive kriging and
transgaussian kriging.
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