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ABSTRACT

This paper is concerned with the problem of estimation for stochastic
differential equations based on discrete observations when the likelihood for-
mula is unknown. Often in the financial literature the first order discrete-
time approximation to the diffusion process is considered adequate for the
purpose of simulation, estimation and fitting the model to historical data.
We propose methods of estimation based on higher order Ito-Taylor ex-
pansions. Different methods of generating optimal estimating functions are
considered and a method of quantifying the loss of information due to us-
ing lower order approximations is proposed. An important feature of these
methods is that an assessment of the goodness of fit to data is possible.
These ideas are illustrated using a model which generalizes most of the sin-
gle factor diffusion models of the short-rate interest rate used in finance.
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1 Introduction

Many models common in finance take the form of one or more diffusion

equations. Such equations are generally described by means of a stochastic

differential equation of the form

dXt= a(Xt)dt + σ(Xt)dWt, 0 < t < Γ, (1.1)

where Wt is an ordinary Wiener process, and the drift coefficient a and the

diffusion coefficient σ may depend on unknown parameters. Markov diffu-

sion models have played a pre-eminent role in the theoretical literature on

the term structure of interest rates (e.g. see Brennan and Schwartz (1979),
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Cox, Ingersoll and Ross (1985), and Longstaff, F.A. (1989)). A few of the

most common models are listed in Table 1. Others, such as geometric Brow-

nian motion, are special cases.

Table 1

Model
Vasicek

Cox, Ingersoll, Ross
Brennan, Schwartz
Black, Karasinski I

Cox

Pearson, Sun

Constantinides-Ingersoll

α(x,0)
θι + θ2x
θι + θ2x
θx + θ2x

9\x + θ2x log(x)
θλx

θλ + θ2x

0

σ{x,θ)
θs

θsx
ι/2

θzx
Θ3X

θ2x
θs

{θ3 + Θ4X

θxzl2

In this paper, we discuss the estimation of parameters θ{ in models
such as those above for discretely sampled data. That is, on the basis of
observations on Xt at discrete time points £χ < i2 < ..., we wish to
construct reasonably efficient estimators of the parameters.

Let us consider for example a process defined by the following diffusion
equation;

dXt = (α + βXt)dt + cXΊ

tdWt.

This model generalizes all but one of the diffusions used above and is investi-
gated by Chan, Karolyi, Longstarr and Sanders (1992). When β is negative,
the process is mean reverting in the sense that it tends towards the value
—α//?, its equilibrium mean. In this case, since the diffusion coefficient is 0
at 0 and the drift term positive in a neighbourhood around 0, the process, if
initialized at a positive value Xo, remains positive with probability 1. This
is a simple consequence of Theorem 2, page 149 of Gihman and Skorohod
(1972).

Provided that the function below is integrable, this process has equilib-
rium distribution given by the probability density function

K

and this equilibrium distribution is well-defined, for example, for 7 > 1.
Note that although the process is driven by a Brownian motion, the station-
ary distribution has tails far from Gaussian. Indeed, moments are only finite
up to order less than 27 — 1.
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Now consider a naive discrete time approximation to this process. The
obvious discrete approximation is

Xt+h-Xt= a{Xt)h + σ(Xt)et,

where et is a sequence of independent normal random variables with mean
0 and variance h. This simple Euler approximation to the process has some
undesirable features. For example, while the original process has an equi-
librium distribution and remains positive, the discrete approximation may
have neither property. Although the qualitative behaviour of the discrete
and continuous processes differ, the maximum likelihood estimator of the
drift parameters have similar forms. For example, for the continuous time
process observed on the interval [0,T], the maximum likelihood estimator of
the parameters a and β are given by the solutions of the two estimating
equations

τ x;2ldxt - / x;2Ί(ά + βxt)dt = o (1.2)
Jo

[
Jo

- / xl~2^(ά + βXt)dt = 0 (1.3)
Jo

and the maximum likelihood estimator for the discretely observed process
is an analogous function of Xnh- Generally, under reasonable conditions,
the continuous time estimator is consistent as the period of observation ap-
proaches infinity i.e. T —> oo. The discrete time estimators are consistent as
T -» oo and h -» 0.

The tails of the stationary distribution are large, certainly substantially
larger than those of the normal distribution. A diffusion model, although
driven by a process with Gaussian tails, can generate a process with tails
similar to those, for example, of the stable distributions with index less than
two. In order to determine whether diffusion models provide an adequate fit
to financial data, we begin with data consisting of the yield of 30 year US
bonds, the data obtained daily over the period April 13, 1987 to June 13,
1994. There are a total of 1818 recorded daily observations in this period.
We begin by attempting to fit a general diffusion model of the above form
(cf. Chan, Karolyi, Longstarr and Sanders (1992))

dXt = (α + βXt)dt + cXJdWt.

The yields are plotted in Figure 1.
We discuss the estimation of the parameters in the next section. At

the moment we simply note that estimated values in this case are ά =
3.1827, β = -0.3962, c = 0.0075, 7 = 2.5813, indicating a tendency
for the process to fluctuate around the mean —ot/β of approximately eight
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30 YEAR US BOND YIELD, April 87-June 94

Figure 1:

percent. The graph of the fitted equilibrium probability density function in
Figure 2 further illustrates that the right tails are distinctly non-Gaussian.

Does the fitted diffusion adequately explain the tails of the increments
of the process? Consider the standardized "Euler residuals", defined by rz =
(AXti-a(Xti)Ati)/σ(Xti), where Ati =. t i + 1 - U and ΔXU = Xfc+1 - Xu.
Provided that the discretization intervals are sufficiently small, this should
be approximately a sequence of independent random normal variables. Fig-
ure 3 displays a Normal probability plot of these values against the normal
quantiles. This plot shows clear evidence that the residuals are non-normal,
indeed have tails more like those of a stable law. In fact if we fit a symmet-
ric stable law to these residuals, we obtain index α =1.69. Almost the same
value is obtained if we fit a symmetric stable law to the marginal distribution
of the increments ΔXt..
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STATIONARY DISTRIBUTION, BOND DATA

Figure 2:

Normal Probability Plot

0.003

0.001

Figure 3:

We seek an explanation of these tails in the Ito-Taylor expansion of the
diffusion equation. According to the Ito-Taylor expansion (cf. Kloeden and
Platen (1992), page 164), AXti can be expressed using a linear combination
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of the Hermite polynomials in the normalized increments of the Brownian
motion. Indeed, with Z\ = ΔW^/yΔ^, we have

ΔXU - E(ΔXU) = αiZi + 02 (Z? - 1) + α3Zi(Z? - 3) + α4Z2 (1.4)

where the coefficients α; are functions of Xt{ and Z2 is a standard
normal random variable independent of Z\. Notice that the distribution of
the increment, centered at its expectation is not exactly normal, and indeed
if the coefficients α2, and a^ are reasonably large compared with αi, they
increase the weight in the tails of the distribution. Two questions arise
immediately from this observation.

• How do we use the representation (1.4) to estimate parameters in a
diffusion?

• Does this representation adequately explain the increased weight in
the tails of the residuals?

Despite a vast literature, many practical issues related to the problem of
estimation and fitting a model from discretely sampled diffusion processes
remain unanswered and only few quantitative results regarding consequences
of discretization are available. For example, it is common practice to esti-
mate the parameters using low order approximations to the diffusion process,
for example the Euler scheme (e.g. Chan, Karolyi, Longstarr, and Sanders
(1992)) or the Milstein scheme (e.g. Chesney, Elliott, Madan, and Yang
(1993)). This is justified by asymptotic results which apply when the time
intervals t{+ι —t{ converge to zero, but also by a lack of simple estimating pro-
cedures based on higher order approximations. It is not always clear whether
the observed discretization is fine enough to justify the use of the lowest or-
der approximations or whether higher order approximations will contribute
something significant from the perspective of statistical modeling. In this
study we propose several methods of estimation based on different order ap-
proximations and also methods which allow for assessing the goodness-of-fit.
One advantage of the proposed methods is that it is possible to compare
their relative performance.

2 Estimation of Parameters

Let us suppose that a process Xt satisfies (1.1), and on the basis of observa-
tions at discrete time points t\ < tϊ < ... , we wish to construct estimators
of the parameters. There are several reasonable approaches to this problem.

(1) When the parameter lies in the drift term, we may construct the con-
tinuous time maximum likelihood estimators as in (1.2) and (1.3) above
and then approximate the integrals by sums.
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(2) Again when the parameter lies in the drift term, we may construct the
continuous time maximum likelihood estimating functions and then
condition these estimating functions on the observed discrete data.

(3) We may base the estimation on the discrete data alone, using the
exact or approximate score function for discrete observations. This is
equivalent to (1.2) in the case of drift parameters.

Unfortunately, except for few simple examples, only the first approach
is generally feasible. Both the second and third approaches require some
simplification to the problem.

How should we estimate the parameters if a given sequence of obser-
vations, centered at the expected values, has distribution given exactly by
equation (1.4)? One possibility is to determine the score function for the dis-
tribution, and, using it as an estimating function, obtain the maximum likeli-
hood estimators. Unfortunately, this is a rather difficult task. Alternatively,
we may project this score function on some more suitable subspace. Such
an approach guarantees the optimal estimating function in the chosen class.
For example, the Hermite polynomials hi, given by h{(x) = x, (x2 — 1),
(x3 — 3x) respectively for i = 1, 2, 3, provide a reasonable basis for expand-
ing functions of near-normal random variables. These functions have mean
zero and variance i\ and they are uncorrelated under a normal assumption.
Projecting the score function onto these polynomials is equivalent to pro-
jecting onto a space spanned by the powers of AX^. Kessler and Sorensen
(1995), for example, choose as basis functions for the space the eigenfunc-
tions of the infinitesimal generator of the Markov process.

2.1 The Ito Taylor Expansion.

Higher order Ito-Taylor expansions may be used to approximate score func-

tions by their projections onto a space spanned by polynomials.

Let {ίi,... ,tn} be the points at which we observe the diffusion process

{Xt} In the representation of -X*i+1

Xti+1 = XU + Γ + 1 a(Xs, θ)ds + Λ + 1 σ(Xs, θ)dWs (2.1)
Jti Jti

Ito's lemma can be written in terms of two operators on twice diίferentiable
functions / :

2

and
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Then for any twice differentiate function /,

f(Xti+ι) = f(Xti) + Γ + 1 L°f(Xs)ds + ίtl+1 Lιf(Xs)dWs. (2.2)
hi hi

By substituting in each of the integrands in (2.1) using the above identity and
iterating this process we arrive at the Ito-Taylor expansions (e.g. Kloeden
and Platen, (1992) page 164). It is easy to observe that terms with nonzero
expectation will come only from the first integral and they will be of the
form

/ Λ \ 7

. i = l , . , (2-3)

where (L0)^) denotes the j-th iteration of the operator L° with (L°)^ being
the identity operator. These terms provide successive approximations to the
conditional expectations of ΔXti (= Xti+X — Xu)'

/ f 3 ^ r = l , . . . . (2.4)

The first two approximations are m\^ = a(Xtiiθ)Δti,which is equal to
the first term in the Euler expansion, and

m 2 i i = a(Xu,θ)Au + l-[aa + \σ2a^){Xti) • A2

U,

which corresponds to the terms with nonzero expectation in the strong Ito-
Taylor expansion of order 1.5. In the latter approximation a' and a^ denote
the first and second derivatives of a with respect to x, respectively. In
general, the difference

-mr,i (2.5)

will have conditionally on X^ nonzero expectation of order Δ£+ 1. Using
these differences we shall find estimating equations for θ by finding moments
of approximations to the distribution of (2.5).

The distribution of (2.5) is determined by terms coming from the Ito-
Taylor expansions of both integrals in (2.1). By gathering these terms, we
have the following approximations to the distribution of (2.5 ):

(al) - terms of orders up to 0p(Δ ί

2):

σ(Xu,θ) [+ dWs =
hi

which together with the term m\ corresponds to the Euler expansion.



DIFFUSION MODELS 335

(a3) - terms of orders up to

σAWti +

\ γ -ZAti)AWti

+ Loσ(Xu)[ΔWuAu-AZu],

where AZti is a normally distributed random variable with mean, variance
and correlation

E(AZti) = 0, E((AZti)
2) = ±Δξ, and E(AWUAZU) = \(Ati)

2,

respectively. These terms together with m2 correspond to the strong Ito-
Taylor approximation of order 1.5.

By considering more terms we can obtain more accurate approximations
to the transition distribution of the discretized process Xt Since it seems
that there is no easy method of finding an explicit form of the density func-
tion for higher order approximations one may propose to approximate the
score functions by their projections onto the space spanned by polynomial
functions. It is interesting to notice that the multiple stochastic integrals
that arise in Ito-Taylor approximations lead to the Hermite polynomials:

i+l Γ ... Γ dWSldWS2... dWSn =
i Jti Jti

where hn is the Hermite polynomial of degree n.

As an example of the proposed method, we shall consider the approxima-

tion (a3) and henceforth we shall assume that it provides adequate approx-

imation to the distribution of the difference (2.5). We rewrite the approxi-

mation (a3) in terms of two standard normally distributed and uncorrelated

random variables Z\ and Z2:

+ a^Z2, (2.6)

where in the last expression we used the following notation:

A 3/2 1

α M = ahi(θ) = σ ^ + -±- [σa1 + aσf + -σV2>],

a2)i = a2,i{θ) = -σσ'Ati
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Since Zi, Z? - 1, \Z\ — 3]Zi, and Z2 are all uncorrelated, it is relatively
simple to find higher moments of the random variable (2.6). Using the
general theory of estimating functions we can employ these moments to
generate optimal estimating equations.

We shall denote the variance, skewness and kurtosis of the differences
Δ-Xt , conditionally on Xti, by μ2,i, 7i,», and 3 + 72,., respectively. Prom
(2.6), we can find the following explicit forms for these moments:

7i,t = ( — ; ) * [6αf5ία2,i + 36αMα 2,iα 3 ) i + 8 α ^ + 10802,*^ J,
/^2,i

Ίt2,i = 4-[ 3 a ί , i + 6 0 a2,i + 3 3 4 8 < i + 1296aMa£fi + 2 4 0 ? ^ + 60a? jO^

+252o?)ia§)1 + 57601,10^03,1 + 2232^^01^ + 30^ +

^ol f i ] - 3.

We shall use these moments to project the score functions corresponding
to the approximation (2.6) onto the space spanned by the function {1, x, x2}.

Now, let us assume that mrj provides, for some value of r, a good approx-
imation to the conditional expectation of ΔXti. Then it is easy to observe
that the functions:

and

/2 ) i(ΔX t i,0) = (AXti - mΓ,i(θ))2 - μ2,i - Ίl^{AXu - mr,i(θ))

are orthogonal estimating functions and that the projection of the score
function for estimating the parameter θj is of the form:

If we decide to estimate the parameters using the Euler scheme, then
the score function for estimating the parameter θj can be obtained from the
normal distribution of the difference Δxi - m\^ and it is of the form

(2.8)
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where μ2j — σ2(Xti,θ)Ati. By taking 71^ = 0 and 72,1 = 0, which corre-
spond to a normal distribution, we can obtain from (2.7) the projection of
the score function onto the space spanned by the functions {1, x, x2}. In this
case, the resulting estimating equations are the likelihood equations given
by (2.8). Thus, for small Δ^ the optimal estimating function (2.8) will be
very close to the true score function. When the time interval Δ^ is not small
enough then instead of (2.8 ) we should consider estimating functions given
by (2.7), which are based on higher order approximations.

Let us observe that the estimating equations (2.7) and (2.8) are of the
same form but they have different approximations to the first two moments
of ΔXt{ and different weights on the functions f\^ and /2,i. If a higher order
expansion (like (2.6)) is a good approximation to the distribution of AX^,
then it is possible to quantify the loss of efficiency due to using a lower order
approximation, since in this case one may assume that the two estimating
functions differ only by their weights in the representation

whifu(AXti,θ) +w2,if2,i (AX*,*). (2.9)

Another situation when it is possible to generate a number of unbiased
estimating equations which differ only by their weights on the functions J\^
and /2,i is the case when either of the first two moments of AX^ is known
explicitly. For example, when the drift function α(#, θ) is a linear function of
x, then the conditional expectation of AXti can be found explicitly and then
it may be of interest to compare efficiency of different estimating functions
based on fhi(AXti,θ).

Finally, when the time interval Ati is not sufficiently small to justify the
use of estimating functions based on low order expansions and when explicit
forms of the first two moments are unknown then Monte Carlo simulations
provide one more method of generating unbiased estimating function of form
(2.9) (Bibby and Sorensen, 1995). In the next section we consider a method
of comparison of such estimating equations.

2.2 Estimating Functions of Higher Degree.

So far we have discussed only quadratic estimating functions but the method
of projection can be applied to generate polynomial estimating functions.
For example, it is possible using only knowledge of the first three moments
of AXt{ to project the score function onto the space spanned by the three
components of the vector estimating function

(AXu-mr>i(θ))

fi(θ)= (AXti-mr,i(θ)γ-μ2,i(θ)
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provided we settle for an approximation to the covariance of these terms.
These covariances are used only in determining the weights on the estimating
functions and so while the resulting estimating function may be slightly
sub-optimal, it will be unbiased. For the following, in order to simplify the
notation slightly, we assume we are estimating a single scalar parameter θ
which may be one component of the vector of parameters.

Define

h

The conditional covariance matrix of fa is obtained by using the normal
approximation to the distribution to determine the moments of order > 5 ,
since the distribution as Δ^ -> 0 is normal. This yields

^) = D Ίhi(θ) 2 + j29i
0 D,
15 /

where D denotes a diagonal matrix with diagonal elements
O*2,»(0)) > /*2,i(0), (M2,i(#)) In this case the projection of the score func-
tion onto the linear space spanned by the three components of fi(θ) is given
by

If for small Δ*. we replace both J24(0) and 7i,i(0) in Σ/ by their
asymptotic value 0, we obtain an approximation

/ 5/2 0 -1/2
ΣJ1 w D" 1 0 1/2 0 D~\

V-l/2 0 1/6

It follows that

+ f
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Now as Δ .̂ -> 0 , μ2,i(θ) ~ σ2(θ)Ati and 71^ -» 0 . Assuming this conver-
gence is sufficiently rapid, the above estimating function is asymptotically
equivalent to (2.8). Observe that only the first term is used if the parameter
lies only in the drift, and only the second term if it is a diffusion parameter.

The normal approximation is not the only alternative to approximat-
ing higher order moments of the diffusion. For example, we could assume
that (2.6) holds exactly and obtain moments of orders 5 and 6 using this
approximation. An alternative approach uses Ito's lemma combined with
the approximations (2.3) and (2.4) to the conditional expectation of AXti.
If we first apply the Ito's lemma to the processes X$ , X? , and Xf , and
then use (2.3) and (2.4), we can approximate, in principle to any degree, the
first four conditional moments of ΔX^ For example, we have the following
approximations to the conditional second moment

Cti+1 - Xf. \XU] « Σ ( £ ° ) ϋ Jfi(X£' ^)^=T^' r = 1,...,

where
o ^ 1 2 ^ 2

and

a(x,θ) =

σ_(x,θ) =

Since for any admissible function h we have L°h\x2 = L°h(x2), we arrive
at

E[Xl+1 - X2 \Xti) « J2(L°)^X2 ̂ f, r = 1,...,

Similar approximations can be obtained for higher moments of the pro-
cess Xf.

) ^ r = 1,...,
3=1 J '

Prom the differences of moments of Xt, we obtain the moments of AXt{.
Although computations involved in these approximations are still complex,
they are simpler than for the method which uses approximations to the
distribution of AXt{. In addition, now calculations can be carried out using
symbolic computer languages, like, for example, Maple. A drawback of this
approach is that it does not allow for a simple assessment of the goodness-
of-fit of a model.
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3 Relative efficiency for estimators based on dif-
ferent order approximations

In this section we use methods of the general theory of estimating equations
to compare estimating functions generated from different approximations to
the distribution of the increments ΔX^.

Let Q be a class of zero mean, square integrable p-dimensional estimating
functions gn(X\,... ,Xn',0) which are almost surely differentiate with re-
spect to the components of θ and such that E(gn) = E(^-gnji) and E(gng^)
are nonsingular. Suppose also that {gn^n} is & martingale whose quadratic
characteristic is {< g > n , !Fn}.

Let fi = /(Xi,..., Xi\ 0), 1 < i < n, be specified d-dimensional vectors
that are martingale differences and suppose that we want to find an optimal
estimating function from the class Λ4 C Q of martingale estimating functions
of the form

2 = 1

with the W{ being matrices which are Tχ-\ measurable. In the theory of
optimal estimating equations two criteria are used: the small sample op-
timality criterion (Oi?-optimality) and the asymptotic optimality criterion
(0.4-optimality) (cf. Godambe and Heyde, 1987). Both optimality criteria
are satisfied by the same estimating function

wffi, (3.1)
1 = 1

with
w* = -

In the one dimensional case (d = 1), the two criteria are equivalent to finding
an estimating function which minimizes either

for Ojr-optimality, or

*"•«?•'-tf'^-O ( 3 i 3 )

for 0,4-optimality.
The reciprocal I9n of the quantity (3.3) is called the martingale infor-

mation in gn. This information occurs as a scale variable in the asymptotic
distribution of the estimator obtained as the solution to equation gn(θ) = 0.
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Thus maximizing I9n leads to asymptotic confidence regions of minimum
size. Using this interpretation, it seems reasonable to define the conditional
relative information CRI(g\,g2) of an estimating function g\ with respect
to a second estimating function p2 as the ratio I9l /I92.

When g = g* we can find the martingale information using the formula

Ig =< 9* >n= Σ E{{wf fiΫ\Ti-λ), (3.4)
i=l

however, for a general estimating function we have to use (3.3).
The above concepts can be applied to the problem of estimation de-

scribed in the previous section. Under the measure V derived from the 1.5
strong approximation (2.6) and under the assumption that mr^ is an ad-
equate approximation to the conditional expectation of AXti, the optimal
estimating function #*, which is in the space spanned by the functions f\j
and /2,i, is given by (2.7). We shall denote the optimal coefficients by w\ {

and wζj. Suppose also that we have another estimating function which is of
the form

9n =

where

hιyi = ΔXU - mΓji, and /ι2,i = {ΔXti - mr,i)
2 - μ2,z ,

and we would like to compare the martingale information contained in both
functions. Note that in the above representation of gn the moments mr?i
and μ2,i are the same as in the optimal estimating function #*. These may
be different from what we are actually using when building an estimating
function based on lower order approximation but when comparing the mar-
tingale information we have to deal with unbiased estimating equations. For
example, the weights in gn may come from the Euler scheme but mr^ and
μ2,i may be based on a higher order scheme or obtained from simulation.

For the optimal estimating function (2.7) the martingale information can
be determined using (3.4)

i-72,z-7l,ij
2 = 1

I
n dm

2

rλ
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where we used notation from the previous section. For the second estimating

function gn we have the following formula

[Σ?=i ™M J-mr,z + W2,iml*2,i\2 , o c x

I9n = ι ϊ- (3.5)
Σ L i K , ^ 2 , z + ^2,^2,z(2 + 72,2-) l]

Using these formulae we can find the information contained in estimating
functions based on different approximations to the transition distribution
and in that way we can more easily assess the merits of using higher order
expansions for a particular model-data combination.

For illustration of the effects of discretization on different estimating
equations let us consider again the model

dXt = {a + βXt)dt + cXΊ

tdWu (3.6)

with the following values of the parameters:

a = 3.2, β = -0.4, c = 0.01, and 7 = 2.5,

which are close to the values which are observed in practice (Section 1).
The relative conditional efficiencies of the optimal quadratic estimating

functions based on the Euler scheme with respect to the quadratic estimating
functions based on the strong Ito-Taylor approximation of order 1.5 are
plotted in Figure 4 .

For simulation purposes we assumed that the process was observed at dis-
crete equidistant points Δ, 2Δ,... ,nΔ, with n = 260. Then we compared
the conditional information of the two estimating equations at different val-
ues of Δ, with Δ = 1 corresponding to daily observations. The reported
values are means of the relative information calculated from five different
trajectories of the process.

The graphs show that the effect of discretization may be different for
different parameters. While for the parameters in the drift term the efficiency
of the two methods remains virtually unchanged for all values of Δ, for c and
7 the changes are quite visible suggesting a slightly higher efficiency of the
estimating equation based on the higher order approximation. The largest
drop in efficiency is about 5% and it occurs for the biweekly observations.
Overall, for the given values of the parameters, the two methods of estimation
show very similar performance.

One may argue that in the above comparison the two estimating equa-
tions give rise to estimators with almost the same efficiency because in the
estimating equation based on the Euler scheme we used the moments from
the higher scheme, "borrowing" in this way efficiency from the more accu-
rate approximation. We now consider a method of comparison which allows
us to compare estimating equations without this adjustment.
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Figure 4:

Suppose that we want to compare the efficiency of the estimating equa-
tion (2.7) and (2.8), assuming that {ΔU} are not small enough to use the
Euler scheme but the strong approximation of order 1.5 provides a good
approximation to the conditional distribution of ΔXt . This would imply
that the estimating equation (2.8) generated from the Euler scheme is not
unbiased and therefore the previous methods of comparison cannot be ap-
plied directly. It is possible, however, to compare the information contained
in each of these two estimating equations, at least up to order O(Δ2), if we
use the asymptotic results presented by Florens-Zmirou (1989).

Suppose that a parameter θ is to be estimated from a discrete equidis-
tant observations, XΛ> ? ^nΔ5 of the process {Xt} with constant diffusion
defined by

and we are using estimating equations of the form

9n =
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Assume that the process Xt is ergodic and its invariant measure is given
by μe Furthermore, let QΘ

t = πf xμβ, where πζ (dy, x) = Pg{Xt £ cίy|X0 = x)
is the transition density of Xt. By θ0 we shall denote the true value of the
parameter.

Florens-Zmirou (1989) shows that if h is such that Jh2dQθ

A < oo and a
satisfies some regularity conditions then

n
[h(x,y θ)dQθ£ in L2(Pθo), as n -> oo.

Also, if the equation / h(x, y; θ)dQθ£ = 0 has an unique solution, 0 Δ say,
and σ and h satisfy some regularity conditions then the estimating equation
gn = 0 gives estimates θn such that θn -» #Δ in probability under P^o, and

(3.7)

where

These results can be generalized to processes with non-constant diffusion
term by the well known transformation

*(*)= Γ σ{y,θ)-ιdy.
Jo

In view of (3.7) and (3.8), it seems reasonable to define information
contained in the estimating function gn, which now may be biased, as

*> E

Since we do not know θ0, it is not possible in practice to calculate I*n.
We may use, however, the observed information

\ *

which under some regularity conditions and suitably normalized will con-
verge to I*n. The observed information J*n is analogous in form to the mar-
tingale information I9n which we used for unbiased estimating equations.
The main difference is that the information /*n does not involve conditional
expectations calculated under the specified model and therefore can be re-
garded as robust information (for general discussion about robust versions
of information see Barndorff-Nielsen and Sorensen, (1994)). In addition, I*n
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retains its meaning even if θ& does not converge to the true value of the
parameter, provided Δ is small enough.
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Figure 5:

We repeated the simulation study for the process (3.6) with the same values
of the parameters and the same number of observations. This time each of
the four parameters was estimated individually using two methods: the op-
timal quadratic estimating equation derived from the Euler scheme and the
optimal quadratic estimating equation based on the order 1.5 strong Taylor
approximation. Then, using the expression (3.9), the observed information
was calculated for both methods. The procedure was repeated for different
values of the time increments Δ, with Δ = 1 corresponding, as before, to
the daily observations. Figure 5 shows the averages of the relative observed
informations for the two methods, based on five different trajectories of the
process.

The relative observed information exhibits a higher variability than in
the previous simulation, but, otherwise, the two methods of estimation show
very similar performance. It seems that for the given values of the parameters
of the process (3.6) and the time intervals Δ which range from daily up to
biweekly observations, there is not much gain in efficiency when instead of
using the optimal quadratic estimating equations based on the Euler scheme
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we use the quadratic estimating equations based on the order 1.5 strong
Taylor approximation. Obviously, this may not be true for a different set of
the parameters and/or different sampling intervals Δ.

4 Bond Data Example and Model Assessment

We now return to the bond data example and write the estimating functions
in more explicit form. Here a(x) — a + βx, σ(x) = cxΊ. For simplicity, we
retain only terms up to order (At.) in the distribution on the right side
of (2.6). These may influence the efficiency of the estimator but not the
consistency. In this case we are able to determine the mean exactly since
m(t) = E(Xt) satisfies the linear differential equation

m'(t) = (a + βm(t))Ati.

It follows from the solution of this differential equation that

m0o, i = {(α

Also, as in the Milstein approximation,

μ2>i » σ2Δti{l + i(σ')2Δ tJ = c2Xf Δti[l + i c V * ? " 2 * * ] .

Solving for the root of the estimating functions (2.8) reduces to finding α, β
minimizing

- m ^ ) 2 , Wi = , (4.1)

where the weights are held constant while minimizing. For fixed weights,
and constant At this has an explicit solution. Similarly, in principle at least,
c, 7 can be found by minimizing the sum of squares

- moo,i)2 - μ2,i]\ (4.2)

where again the weights are held constant while minimizing. One might sub-
stitute an initial consistent estimator of the parameters c, 7 in the weights,
followed by the minimization. Unfortunately, there is little information in
this data available for estimating both parameters c, 7 as the contour plot
of the sum of squares function illustrated in Figure 6 indicates. There are
local minima along a wide curved valley of nearly constant depth. Because
of this near unidentifiability, convergence is extremely slow but the values
7 = 2.5910, ά = 3.188, β = -.3966 and c = .0052 appear to correspond to
a local minimum.
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sum squares for c,g. Initial a, b, c, g= 3.017-0.3885 0.005364 2.58

2.3

0.02 0.025

Figure 6:

There remains the question of whether the 1.5 strong order model (1.4)
adequately explains the increased weight in the tail observed in Figure 3.
Unfortunately, each increment centered at its expectation as in the left side
of (1.4) is a function of two independent normal random variables Z\ and
Z2, either of which might be considered residuals. Since there is not a unique
Z\ for each observed increment, we are unable to directly define and analyze
normal residuals in the model of (1.4). We propose one possible solution to
this problem. Assume for simplicity that 7 > 1. Consider the transformed
process Yt = Xl~Ί. Then by Ito's lemma, Yt satisfies a diffusion equation
with constant diffusion term

dYt = (i-D{[γYt-

= ά(Yt)dt

v - βYt]dt + cdWt)

-l)dWt, say. (4.3)

It follows from the representation (2.6) for the process Yt that

= c( 7 - ^ά'(Yt)], a2,i = α3j< = 0,

c ( 7 - l ) ( Δ t i )
3 / 2

a
(4.4)
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Now because (2.6) is a linear combination of two independent normal ran-
dom variables, if we divide by the standard deviation, \Ja\,i + a\i-> the
result is a standard normal variate that can be regarded as a standardized
residual. Thus, in this case, the standardized residuals are of the form

Δ y t i - α ( F t i ) Δ ( i - έW7 -

The plot of these residuals is in Figure 7.

^ . (4.5)
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Figure 7:

They seem to indicate a reasonable fit of the model, although there is
possible evidence that the diffusion term is not homogeneous in time. We also
generate a normal probability plot for these residuals n Figure 8. Note that
these have the same basic character as do the Euler residuals, indicating wide
tails more consistent with the stable laws, for example, than the Gaussian
assumption. This leads us to speculate that the wide-tail phenomenon is not
solved by increasing the order of the Ito-Taylor approximation, but requires
developing models defined as stochastic integrals with respect to wider-tailed
distributions driving the process than Brownian motion. The most obvious
of these, while analytically complex, are the stable processes with index less
than two.

The transformation, which we use largely so that we are able to define
approximately normally distributed residuals from the suggested model, pro-



DIFFUSION MODELS 349

vides alternative estimating functions as well. In general, it is usually pos-
sible to transform the original diffusion process so that the diffusion term is
constant in Yt, say σ . In this case, the third order Ito-Taylor expansion
is particularly simple, and as in this case, it results in a normal distribution
since α2,i = a^^ = 0. Therefore, assuming the normal approximation to
be accurate, the maximum likelihood estimators of the parameters may be
obtained by weighted least squares. For example, for a parameter in the
drift term ά only, we minimize

- ά(Yti)Ati - (4.6)

with weights

(4.7)
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Figure 8:

5 Conclusion

It is common practice in finance to use a particular diffusion model, some-
times with several factors, to model a given process and to price derivatives.
In many cases, the choice of model is motivated by analytic convenience.
Models such as the CIR model have easy solutions and pricing some deriva-
tives is straightforward. We have shown that the Ito-Taylor expansion can
be useful for two purposes. The first is calibrating the model or estimating
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the parameters. This may also be effected by first transforming the model
to one which has constant variance term. The order of the Ito-Taylor expan-
sion seems to have limited influence on the efficiency of the estimators when
data is collected at discrete time intervals, provided these are not too far
apart (e.g. daily data). The second application of the Ito-Taylor expansion,
perhaps the more important one, is in assessing the goodness of fit of the
data to the model. We speculate that many of the standard diffusion mod-
els will tend to fit observed data poorly in the tails of the distribution, and
these tails may have considerable influence on the price of derivative prod-
ucts. Alternative models constructed as stochastic integrals with respect to
wider tailed alternatives such as the stable laws are likely needed to achieve
a satisfactory fit.
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