
285

Institute of Mathematical Statistics

LECTURE NOTES — MONOGRAPH SERIES

Optimal Estimating Equations for State Vectors in
Non-Gaussian and Nonlinear State Space Time

Series Models

J. Durbin
London School of Economics and Political Science

ABSTRACT

In state space times series models the development over time of the ob-
served series is determined by an unobserved series of state vectors. The
paper considers the estimation of these vectors by the mode of the poste-
rior distribution of the state vectors given the data. It is shown that the
estimates are the solution of an optimal unbiased estimating equation.
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1 Introduction

State space models are a very general class of models which are increasingly
used in applied time series analysis. In such models we have a series j/χ,..., yn

of vector observations, a series αχ,...,αn of unobserved state vectors and
a vector ψ of parameters which we assume to be known or to have been
estimated efficiently. This paper is concerned with the problem of estimating
αi,.. .,α n given the observations yi,..., yn.

Most of the work that has been done on such models hitherto has been
based essentially on the linear Gaussian case. See for example the book
by Harvey (1989) for a comprehensive treatment of linear Gaussian state
space models. However, for many practical applications the assumptions
of linearity and normality seem inappropriate. For example, if the data
consist of the number of car drivers killed per month in road accidents in
a particular region, the Poisson distribution would seem to provide a more
appropriate model for the data than the normal distribution. Similarly, if
the observations appear to come from distributions with heavy tails, as is
common with economic and many other types of data, the t-distribution
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with a low number of degrees of frequency would seem a more appropriate
model than the normal distribution. A further desirable relaxation is to
allow departures from linearity in the model.

For the linear Gaussian case the standard estimates of the at's are their
conditional expectations given the y '̂s. As is to be expected, these have an
unbiased minimum variance property. For the non-Gaussian or non-linear
cases, however, the problem of calculating these conditional expectations by
analytical methods is intractable. An alternative considered by some au-
thors is to use the mode instead of the mean of the conditional density of
[α^, . . . ,^] ' given the y '̂s since it is easier to handle. While this approach
is intuitively attractive since the resulting estimates are the most probable
values of the α*'s given the observations, it does not lead to estimation er-
rors which are unbiased with minimum variance matrix. However, we shall
show in this paper that the estimates have an analogous property, namely
that they are the solution of unbiased estimating equations with minimum
variance matrix. Our results are derived from the estimating equations ap-
proach to the estimation of fixed parameters of Godambe (1960) and Durbin
(1960). They are also related to results of Ferreira (1982) on the application
of estimating equation theory to the estimation of a single random parame-
ter.

The next section begins by considering the standard linear Gaussian
state space model and uses this as a basis for discussing the classes of non-
Gaussian and nonlinear models considered in the paper. It introduces the
idea of estimating the α '̂s by their posterior mode and obtains an estimating
equation for it in an appropriate form. Section 3 derives optimal estimating
equations for models of the kind under consideration and shows that the
estimating equation for the posterior mode belongs to this class.

2 State Space Models for Non-Gaussian and Non-
linear Time Series

The purpose of this section is to outline a broad class of models to which
the results of the next section apply. Our starting point is the standard
linear Gaussian state space model for an observed vector time series j/χ,..., yn,
namely

Vt

Oίt

= Ztat -

= Ttat-l + Rtηu

et ~

ηt ~

N(0, Ht)

\Qt)

(2.1)

(2.2)

for t = 1, ...,n where βt and ηt are independent error series and Zt.Ht,Tt.Rt
and Qt are known matrices. The remaining series at is an unobserved series
of state vectors which represent the development over time of the underlying
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system. This is a very general model which includes as special cases many
specific models used in time series analysis, such as ARIMA models. For
the purpose of this paper we assume that the object of the analysis is to
estimate αi, ...,αn for this and other models discussed later in this section.

Denote the stacked vectors [y[,..., y^]' and [α^,..., af

n]
f by y and a; also

denote the joint density of a and y by p(α, y) and the conditional density of
a given y by p{a\y). For model (2.1) and (2.2) it is standard to estimate a
by E(a\y), which we denote by a. This estimation is carried out by the well
known Kalman filter and smoother (KFS).

We shall consider only departures from normality in the observational
part (1) of the model, while retaining the linear Gaussian form (2) for the
development of at. The first class of non-Gaussian observations we shall con-
sider is the exponential family, for example Poisson or binomial observations,
for which the density has the general form

p{yt\at) = exp[θ[yt - bt{θt) + ct{yt)} (2.3)

where θt = Zt&u t = l,...,n and where bt and ct are known functions. It
turns out that the task of calculating a for model 2.3 by analytical techniques
is intractable. Fahrmeir (1992) therefore suggested estimating a by the
mode ά of p(a\y) and he gave an approximation to ά based on the extended
Kalman filter. He called a the posterior mode estimate (PME). Durbin and
Koopman (1993) showed how to compute ά accurately in a few iterations
by applying the KFS to a linearised form of the estimating equation for a.

A second important class of non-Gaussian models retains the same form
as equation (2.1) but requires βt to have a non-Gaussian distribution, for
example a t-distribution or a mixture of normals. Such distributions allow
heavy-tailed observational densities to be handled. Again, a is easily cal-
culated by a few iterations of the KFS as shown by Durbin and Koopman
(1993).

Finally, we consider nonlinear models where (2.1) is replaced by the
equation yt = Zt{at) + £t where Zt is a nonlinear function of at and e*
may be Gaussian or non-Gaussian, for example a time series made up of the
product of trend and seasonal plus random error.

For all these models we shall assume that a is the unique solution to the
equation dlogp(a\y)/da = 0. But logp(a\y) = logp(α,y) - logp(y) where
p(y) is the marginal density of y. It follows that a is the solution of the
equation d\ogp(a,y)/da = 0. This is the form of the estimating equation
for a that we shall use in this paper.

The estimate a has the attractive intuitive property that it is the most
probable value of a given the data. This might be sufficient grounds for using
it for some workers. However, a has the objective optimality property that
E(a — a) = 0 and if α* is any other estimate of a such that E(a* — a) = 0,
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with MSE(a) = V, MSE(a*) = V*, then V* - V is non-negative definite.

In the next section we shall seek an analogous optimality property for ά

based on the theory of optimal unbiased estimating equations.

3 An Optimality Property of the Posterior Mode
Estimate

We begin with some preliminaries. If a is the unique solution for a of the
(mx 1) vector equation H(a, y) — 0 and if E[H(a, y)] = 0, where expectation
is taken with respect to the joint density of a and y, we say that H(a,y) =
0 is an unbiased estimating equation. We want to establish a minimum
variance property for such functions H(a, y) but obviously the equation can
be multiplied through by an arbitrary nonsingular matrix and still give the
same value ά as its solution. We therefore standardise if(α,y) in the usual
way in estimating equation theory by multiplying it by [E{H (α, y)}]"1 where
H(a, y) = dH(a, y)/da! and we then seek a minimum variance property for
the function h(a,y) = [E{H(a,y)}]-ιH{a,y).

Let

#(α, y)p(a, y)dy = k(a) (3.1)

where / indicates integration over the domain of y and where dy =
ΠΓ=i Π?=i dytu P being the dimensionality of y*. Denote the ith element of
a by α(φ i = 1, ...,mn where m is the dimensionality of α ,̂ and note that
k(a) is an (ra x 1) vector. We make the following assumption.

Assumption A
For each i, and for all αy) fixed, j Φ i, limα(i)->±oo &(α) = 0.

In view of the normality of the marginal distribution of α, this require-

ment would appear selfevidently satisfied for reasonable functions H{μ,y)\

however it seems sensible to make the requirement explicit. It is an appro-

priate reformulation for the present problem of Ferreira's (1960) condition

B(g) = 0. Differentiating (3.1) under the integral sign, and assuming that

this operation is valid, we obtain

a, y)dy + / H(a.y) ̂ ^ 1 p(α, y)dy = ^ . (3.2)

We now wish to integrate this with respect to α(i), .. .,α(m n).

Writing

dk(a) _ \dk(a) dk(a)

da1 [
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it follows from Assumption A that

/•oo dk(a) OQ

Thus
dk(a)

J—oo J—oo

and hence

roo roo Qk{a}

i - - I " Q — "
 c

J—oo J—oo O&ζi)

Γ Γ dkia);
J—oo J—c

^,Λ . . . da(mn\ = 0.
-oo ./-oo OO/ v ' v ;

Integrating both sides of (3.2) with respect to α^), ...,α(mn) we therefore
have

Multiplying both sides by [^{^(α;,?/)}]"1 gives

/ + f? |/ι(α, y) — 1 = 0. (3.3)

Let Var[/ι(z,y)] = E[h(a,y)h(a,y)'} and let T =

Result 1
If £7[iϊ(α,y)] = 0, H is differentiate with respect to α and Assumption

A holds, Var[/i(α,y)] — T~ι is non-negative definite.

We need the following further assumption.

Assumption B.

If k(a) = dlo|P(Q)p(Q,) where p(α) is the marginal density of a then

Assumption A is satisfied.

Result 2
If Assumption B holds, the minimum is attained when H(a, y) = p^y^ •

Proof of Result 1
This follows immediately from (3.3) by the Cauchy-Schwarz inequality.

Proof of Result 2
Let p(y\a) be the conditional density of y given α. Then

dlogp(α,y) = d log p(y\a) d log p(a)

da da da

Substituting this for H(a,y) in (3.1) gives

f dlogp{y\a) dlogp(a)
p(a) J dα 'p(y\a)dy + p(a) ^ — = k(a).
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Since dlogp(y\a)/da is the score function when a is regarded as fixed, the
first term is zero so fc(α) = p(a)dlogp(a)/da. It follows from Assump-
tion B that Assumption A is satisfied. Also, differentiation of the iden-
tity /p(a,y)dady = 1 under the integral sign with respect to α shows that
E[dlogp(a,y)/da] = 0. Now if H{a,y) = dlogp{a,y)/da thenE[H{a,y)] =
E[d2 logp(a, y)/dada'] = —T as is shown by differentiating the identity
f[dlogp(a,y)/da\dady = 0 under the integral sign with respect to α'.

Thus
h(a, y) = -T~ιd log(α, y)/da

so
Var[h(a,y)] = T-ιVar[dlogp(a,y)/da]T-1 = T" 1.

This proves Result 2.

When Result 2 holds we say that the estimating equation is an optimal
estimating equation.

These results can be regarded as an extension of the following result
due independently to Godambe (1960) and G. A. Barnard, to whom it is
attributed on p. 145 of Durbin (1960). If under suitable regularity conditions
x is an observational vector with density f(x,θ) where θ is a fixed scalar
parameter, and if G(x,θ) = 0 is an estimating equation for θ satisfying
E[G{x,θ)\ = 0, then defining g(x,θ) = [#{^^ i }]- 1 G(a;,0) we have that

E[g{x,θ)g{x,θ)'}-τθ-
1

is non-negative definite, where TΘ = E[ o g/JX ) ^]2 and the minimum is at-
tained when the equation G(x,θ) = 0 is the maximum likelihood equation
dlogf(x,θ)/dθ = 0. The straightforward extension to the case where θ is a
vector was indicated on p.145 of Durbin (1960).

The Godambe-Barnard result was extended to the Baysian context in
which θ is a random scalar parameter by Ferreira (1982). Thus the present
findings could be interpreted as an extension of Ferreira's results, although
we have not regarded a as a parameter vector in this paper.

Returning to the PME ά for nonlinear or non-Gaussian state space mod-
els, this is the solution of the estimating equation dlogp(α, y)/da = 0. Since
k(a) = dlogp(a)/da and p(a) is a Gaussian density. Assumption A is sat-
isfied. Thus Result 2 holds and ά is the solution of an optimal estimating
equation. When the state space model has the linear Gaussian form (2.1)
and (2.2) the estimating equation is linear in a and we have /ι(α, y) =a — a
so the mode ά is equal to α. This result is in fact obvious since in this
case p{oc\y) is normal and for a normal distribution the mode is equal to the
mean.



STATE SPACE MODELS 291

References

Durbin, J. (1960). Estimation of parameters in time series regression models.
J. R. Statist Soc. B, 22, 139-153.

Durbin, J. and Koopman, S. J. (1993). Filtering, smoothing and estima-
tion for time series models when the observations come from exponential
family distributions. LSE discussion paper.

Fahrmeir, L. (1992). Posterior mode estimation by extended Kalman filter-
ing for multivariate dynamic generalised linear models. J. Amer. Statist.
Ass., 87, 501-509.

Ferreira, P. E. (1982). Estimating equations in the presence of prior knowl-
edge. Biometrika, 69, 667-669.

Godambe, V. P. (1960). An optimum property of regular maximum likeli-
hood estimation. Ann. Math. Statist, 31, 1208-1211.

Harvey, A. C. (1989). Forecasting, Structural Time Series Models and the
Kalman Filter. Cambridge University Press.






