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ABSTRACT
This paper develops estimates of the interarrival and service time distri-

bution parameters in a GI/G/1 queueing system from observations of the
waiting times of the first N customers. Specifically, if Ik and Sk denote
the interarrival and service times of the fcth customer arriving at the queue,
then the waiting time sequence {Wk} evolves via the Markovian recursion
Wk = max(Wib_i + Sk-\ - 4,0) for k > 2.

We first exploit the Markov structure of {Wk} to derive an estimating
function equation involving the waiting time data; in principle, this equation
can be used to obtain estimates of the parameters governing the distribu-
tions of Si and I\. Next, all quantities involved in the estimating function
equation are expressed in terms of the distributions of S\ and I\. The above
estimating techniques are explored in depth for the M/Ek/l queue; here,
explicit computations permit a simulation study of this queueing system.
Finally, the consistency and asymptotic normality of the estimating func-
tion parameter estimates are established.

Key Words: Queue; waiting time; estimating function; maximum likeli-
hood.
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1 Introduction

Consider a GI/G/1 queueing system and suppose that successive customers

arrive at the queue at the times {T{,i > 1}. Let Si denote the service time

of the ith customer, i > 1, and define I{ — T{ — Tί_i as the inter arrival

time between the ith and (i — l)st customers (we take To = 0). The waiting

time of the ith customer, denoted W{, is the total amount of time the ith

customer spends waiting for his/her service to commence. The waiting time

process {Wt,ί > 1} evolves via the well-known Lindley recursion

Wt+ι=max{Wt + Xt+ι,0) (1.1)

for t > 1 where Xt = St-ι — It (see Prabhu, 1980). Since Xt+ι is independent

of Wί, (1.1) shows that {Wt} is a Markov chain on the state space [0, oo).

We will henceforth assume that the traffic intensity of the queue is sub-

critical; that is, p = E[Sι]/E[Iι] < 1. When p < 1, it is known that Wt

converges in total variation as t -> oo to a random variable W at a geometric

rate (cf. Lund, 1996). We denote the measure associated with W by π (sta-

tionary distribution) and comment that the geometric convergence and the

inference procedures described below are valid for any initial distribution of

W\ satisfying E^r^1] < oo for some r > 1. Hence, for simplicity, we take

W\ = 0; that is, we assume that the queue is initially empty unless otherwise

stated.

The objective of this paper is to develop estimates for the parameters of

the distributions of I\ and S\ based on the waiting time observations Wt for

1 < t < N. Both maximum likelihood and estimating function approaches

are considered and compared; hence, this paper extends the work of Basawa

et αl. (1996).

Most previous parameter inference procedures for queueing models re-

quire the observation of all customer interarrival and service times. We refer

the reader to Basawa and Prabhu (1981, 1988), Bhat and Rao (1987), Ba-

sawa and Bhat (1992), and Thiruvaiyaru and Basawa (1992) for methods

and related references on this topic. Unfortunately, the observation of all

interarrival and service times is frequently impractical or costly; however,

the customer waiting times can easily be measured by putting a "clock" on

each customer. Hence, inference procedures based only on waiting time data

are often desirable and cost efficient.

In Section 2, we present the relevant theory needed to derive estimating

function and maximum likelihood estimates of the interarrival and service

time distribution parameters from the waiting time data. Section 3 explic-

itly computes the relevant quantities appearing in Section 2 equations for

the case of an M/E^/l queue. Section 4 establishes the consistency and

asymptotic normality of the estimating function estimates. Section 5 uses
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the results of Section 3 for a simulation study of the M/Ek/1 queue. Finally,
Section 6 concludes with a summary and some comments.

We refer to Godambe and Heyde (1987), Greenwood and Wefelmeyer
(1991), and Hutton and Nelson (1986) for more general treatments of esti-
mating functions for stochastic processes.

2 General Theory

In this section, we present the general theory needed to obtain estimating
function and maximum likelihood estimates of the parameters governing the
interarrival and service-time distributions. For notation, let θ denote the
vector of interarrival and service time distribution parameters.

Following Godambe (1985), we define an estimating function in the form

SN(Θ)= f^(WM - Eθ[Ww\Wu.^Wt})ht(Wu.^Wt;θ), (2.1)
t=i

where ht is a function of W\,..., Wj, and 0 for 1 <t <N — 1; the subscript θ
in (2.1) indicates that the expectation is to be computed when the true pa-
rameter vector is θ. The Markov property of {Wt} gives ^[Wj+ilWΊ,..., Wt]
= Eβ[Wt+ι\Wt] and the best choice of the Λ*( )'s are known to be (see Go-
dambe (1985) for a definition of best)

ht(Wu...,Wt;9) = dEθ[W^mVar-θ\Wt+ι\Wt]. (2.2)

Hence, an estimating function estimate of θ based on W\,..., WN is a solution
to the equation

SN(Θ) = Σ(Wt+1 - Eθ[Wt+1\Wt})dEθ[Wt^]Wt]Var^[Wt+1\Wt} = 0.
ί=i d υ v

(2.3)
A simpler estimating function estimate can also be obtained when "variance
weights" in (2.3) are neglected. Hence, we will also explore solutions to the
equation

S*N(β) = Σ(WM - Eθ[Ww\Wt])d^^ = 0. (2.4)
t=ι dυ

For (2.3) and (2.4) to be useful, one must be able to compute the expecta-
tions and variances appearing in these equations in terms of the interarrival
and service time distributions. For this, let X be a random variable whose
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distribution is the same as that of SΊ - I\. Define Fχ(x) = P[X < x], note
that Fx depends on 0, and use (1.1) to get

Eθ[WM\Wt] = Wta(Wt) + β(Wt), (2.5)

where

a(Wt) = I dFx{x) and β(Wt) = [ xdFx(x). (2.6)
J{x>-Wt} J{x>-Wt}

Similar arguments show that

Eθ[W?+1\Wt) = Wfa{Wt) + 2Wtβ(Wt) + Ί(Wt), (2.7)

where

Ί(Wt) = f x2dFx(x). (2.8)
J{x>-Wt}

Prom (2.7) and (2.5), we obtain

Varθ[Wt+i\Wt] = W^a{Wt)[l - a(Wt)]

+2Wtβ(Wt)[l - a(Wt)] + <γ(Wt) - β2(Wt). (2.9)

Notice that in principal, (2.5) - (2.9) identify all quantities in (2.3) and
(2.4) in terms of the interarrival and service time distributions; in practice,
one would need explicit expressions for -B^[Wt+i|Wi], ^^[Wt+ilW^Jj and
Vαr0[Wi+i|Wi] in terms of θ to implement (2.3) and (2.4).

Now consider the method of maximum likelihood. For simplicity, we
assume that Fx has the probability density function

fx(x) = ±(Fx(x)). (2.10)

Define the indicator variable

Zt =I(o,oo) W ) ; (2.11)

the Markov property of {Wt} can be used to show that the likelihood func-
tion, denoted L(θ; W\,..., W^), satisfies

N-l

log(L(fl; Wu..., WN)) = Σ (1 - Zt+i) log[l - a(Wt)}
t=i

N-l

+ Σ Zt+i log/x(Wt+i - Wt) (2.12)
t=ι

(see Basawa et al. (1996) for the details). Notice that the quantities in
(2.12) are easily expressed in terms of the distribution of X.



INFERENCES FOR QUEUES 273

Note that SN(Θ) in (2.3) is optimal in the class of estimating functions
specified by (2.1). However, if the choice of estimating functions is not re-
stricted to the class in (2.1), Godambe (1960) has shown, under very general
conditions, that the likelihood score function, viz. ^| , is a (globally)
optimal estimating function. In our problem, the likelihood score does not
satisfy (2.1), and hence SN(Θ) is "less optimal" than rfl^L, in the sense of
information content. Consequently, there is some loss of efficiency in using
SN(Θ) (or S*N(Θ)) instead of ^f^. On the otherhand, ^ ^ requires the
knowledge of the density /χ(.)? where as SN(Θ) needs only the conditional
mean and variance of {Wt}, and Sχ(θ) requires the conditional mean only.
The simulaiton results in Section 5 show that the estimates obtained from
SN(Θ) and Sχ(θ) are less biased than the maximum likelihood estimates.
Moreover, the loss of efficiency due to using the estimating functions is neg-
ligible except when the traffic intensity is large.

3 Computations for the M/Ek/l Queue

In this section, all quantities appearing in the Section 2 estimating function
and likelihood equations (2.3), (2.4), and (2.12) will be explicitly computed
in terms of θ for the M/Ek/l queue; one obtains results for the classical
M/M/l queue by taking k = 1. In the M/Ek/l queue, the customer inter-
arrival times {Ij} are exponentially distributed random variables with pa-
rameter λ and the service times {Sj} have the Erlang (fc,μ) density. Hence,
the probability density functions of I\ and 5χ, denoted by fi(x) and fs{%)
respectively, are

//(x) = λe-Λx forz>0 and fs(x) = ̂ ( f f i f 1 for rr > 0. (3.1)

Straightforward computations provide the cumulative distribution func-
tion of Si — Iι:

x<0 and

FX{X) = l - -"° Σ t 1 ^r+^\fk\^w*>o ( 3 ' 2 )

The probability density function fχ(x) is easily obtained by differentiating
(3.2):

fx(x) = \μk(X + μ)-keXx, x<0 and

fχ(x) = 1 - V(λ + μ)-"e-'" ΣΪZl K ^ F , x > 0.

From the first expression in (3.2), we obtain

w (3.4)
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More tedious computations with the density function in (3.3) give

β(Wt) = λ- 1 (- Γ ^-)*e- λ 1 v «(l + XWt) + μ~ιk - λ" 1 (3.5)

and

Ί(Wt) = λ-2(—!=— Ye-λW*[-yWi + 2XWt - 2]
A ~\~ jJL

+μ-2k(k + 1) - 2\-2{kX/μ - 1). (3.6)

Prom (2.5) and (2.9), we see that Eθ[Wt+i\Wt] and Vαr^ίWi+iIWi) are
easily obtained in terms of a(Wt), β{Wt)^ and j(Wt). To complete the
computation of all quantities in (2.3), (2.4), and (2.12), we must evaluate
the partial derivatives of JS^[Wi+i|Wt] with respect to λ and μ. Using (2.5),
(3.4), (3.5), and the notation Eβ[Wt+ι\Wt] = Eχ,μ[Wt+i\Wt], we find that

—EχJWt+ι\Wt] = λ ~ 2 - λ ~ 2 ( — ί — )ke~XWt[\Wt + l + (λ + μ)~ι\k]', (3.7)
αΛ λ + μ

4 Asymptotic Properties of the Estimates

We now follow Klimko and Nelson (1978), Hutton and Nelson (1986), and
Hutton et al. (1991) and establish the consistency and asymptotic normality
of the estimates obtained as solutions to (2.3) and (2.4). We will focus on the
asymptotic properties of the estimating function estimates only and refer the
reader to Basawa et al. (1996) for the asymptotic properties of the maximum
likelihood estimates.

Prom (2.3) and (2.4), it is straightforward to show that {SN{Θ)} and
{5^(0)} are mean zero martingales with respect to {Wt}. Two results,
Lemmas 4.1 and 4.2 below, that will be helpful later are now stated. The
expectations in (4.1)-(4.4) are tacitly assumed to exist and are taken with
respect to the stationary measure π.

LEMMA 4.1. Consider the waiting time process {Wt} in (1.1) with p < 1.

Let SN(Θ) and S*N{Θ) be defined as in (2.3) and (2.4); then the following

convergence takes place in probability as N —>> oo.

(<) N~ιSN(θ) 4 0 and N^S^iθ) 4 0.

a n d ^N-i^k^l 4 j*(0) w h e r e

dθ J {varθ[WM\Wt}
and (4.1)
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riβ)=E ψβ^wή j ί a M a ^ . (4.2)

PROOF: Since {Wt} is an ergodic process when p < 1, the results in (i) and
(ii) will follow from the ergodic theorem and algebraic computations with
(2.3) and (2.4). We shall verify the results for 5jv(0). Similar arguments
can be used for Sχ(θ).

Define

Ut(θ) =

we have SN(Θ) = ΣuΓi1 Ut(θ). Clearly, EUt(θ) = 0. The ergodic theorem
then gives the result in (i). Also,

varθ[Wt+1\Wt]

It then follows readily that

Hence, (ii) follows from the ergodic theorem. •

LEMMA 4.2. Under the notation and assumptions of Lemma 5.1, the

following convergence takes place in distribution as N —> oo.

(i) N-ι/2SN(θ) 4 N{0,F(θ)) where

= E

(it) N-1I2S*N{Θ) Ά N(0,F*(θ)) where

r W - E [varβlWt+m] {iM^j {^g^)\ . (4.4,

PROOF: Notice that SN(Θ) and Sχ(θ) are sums of stationary ergodic mar-
tingale differences with finite second moments. An appeal to the martingale
central limit theorem (cf. Billingsley (1961)) easily establishes (i) and (ii).
Note that

Eθ(Ut(θ)U[(θ)) = F(θ).
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A similar computation holds for F*(θ). •

Note that F{θ) = J(0), however, F*{θ) φ J*{θ). We will now confine
our attention to SΆr(0); analogous results for S%(θ) can be obtained by
"starring" all quantities in the results below. Consider the following two
conditions.
(C.I) Suppose SN(Θ) is continuous in 0, and for all δ > 0,

P{ sup (θ-θo)'SN(θ)<-e)->l,

for any e > 0.

(C.2) Suppose that if {ΘN} is any sequence of estimates such that
then

N - 1 dSN(θ)

dθ 0=0*
dSN(θ)

dθ 0=0Oj
0 as N -» oo.

(4.5)

(4.6)

Condition (C.2) imposes a type of continuous convergence on
Sufficient conditions for (C.2) to hold can be phrased in terms of expecta-
tions of the second derivative of SN(Θ). The interested reader is referred
to Klimko and Nelson (1978) for further details. See Hutton et al. (1991)
for sufficient conditions for (C.I). We note that (C.I) and (C.2) can be
verified for the M/M/l and M/Ek/l queues when p < 1 from these second
derivative conditions and the equations in Sections 2 and 3.

Our next two results establish the consistency and asymptotic normality
of the estimating function estimates.

THEOREM 4.1. Let {Wt} be the waiting time process in (1.1) with p < 1,
and suppose that SN(Θ) in (2.3) satisfies (C.I). Then there exists a sequence

of estimators ΘN such that PQ [SNΦN) = 0] -» 1 as N -> oo and ΘM -> #o
as N —> oo.

PROOF: See Hutton et al. (1991), or Hutton and Nelson (1986).

THEOREM 4.2. If p < 1, and (C.I) and (C.2) are satisfied, and if ΘN is
any consistent solution of SN(Θ) = 0, then

PROOF: A Taylor expansion of SN(Θ) at ΘQ gives

SN(Θ) = SN(ΘO)
= β ] (θ - θ0) (4.7)

where θ* lies between θ and ΘQ. Replacing θ in (4.7) by ΘN, we have

o -
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where θ^ lies between ΘN and ΘQ. From (4.8), we obtain

VN(ΘN -ΘO) = - [iV (4-9)

Lemma 4.2 shows that

From Lemma 4.1 (it) and (C.2), we have

-N'
dθ Θ=ΘN

Combining (4.9) - (4.11), we obtain the desired result. •
Following similar arguments, we have

THEOREM 4.3. If (C.I) and (C.2) are satisfied and if Θ*N is any consistent
solution of Sχ(θ) — 0, then

VN(Θ*N - θ0) 4 ;v(o, (rf(θ0)F^θQrιr(θ0)-1).

We comment that it would be a straightforward, albeit tedious, matter
to derive explicit expressions for J(θ) and F(θ) for the M/E^/l queue. For
example, in the M/M/l queue, one could use that the limiting measure π
has an atom at {0} and is exponentially distributed elsewhere (cf. Prabhu
(1980)); specifically, π({0}) = 1-λμ"1 and π(dx) = \μ~ιe-^-χϊχ for x > 0.
This could be combined with the equations in Sections 2 and 3 to obtain

when Wt has distribution π. Similar computations would give
and (4.1)-(4.4) could then be used to compute J(θ) and

F(θ). These details are omitted.

5 A Simulation Study

In this section, we will compare properties of the estimating function es-
timates (with and without variance weights) and the method of maximum
likelihood estimates via simulation. Waiting time data were simulated and
the performance of the estimating methods was investigated. The results
are summarized in Tables 1, 2, and 3 below.

Table 1 considers the M/M/l queue. The parameter pairs λ = 1, μ = 2;
λ = 2, μ = 3; and λ = 5, μ = 6 were studied; these parameter pairs yield the
increasing traffic intensities p = 1/2,2/3, and 5/6 respectively. One hundred
simulations were performed for each (λ, μ) pair and each of the sample sizes
N = 100, N = 250, and N — 500. Table 1 shows the sample mean and root
mean squared errors for each simulation. A separate subtable is included for
each of the three methods of estimation.
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TABLE 1: The M/M/l queue.

Sample mean and root mean squared error of 100 simulated parameter esti-

mates of (λ,μ). Method: estimating function with variance weights.

Sample Size N

100 250 500 1000

λ = 1 0.915 (0.414) 1.007 (0.313) 0.961 (0.209) 1.030 (0.158)

μ = 2 1.917 (0.606) 2.023 (0.426) 1.957 (0.266) 2.044 (0.221)

λ = 2 1.780 (0.859) 1.914 (0.543) 1.969 (0.355) 2.016 (0.243)
μ = 3 2.863 (0.959) 2.901 (0.604) 3.024 (0.416) 3.047 (0.274)

λ = 5 5.034 (3.072) 5.050 (1.767) 4.902 (0.974) 4.992 (0.663)

μ = 6 5.974 (2.557) 6.095 (1.673) 5.949 (0.985) 5.975 (0.760)

Sample mean and root mean squared error of 100 simulated parameter esti-

mates of (λ, μ). Method: maximum likelihood.

Sample Size JV

100 250 500 1000
λ = 1 1.439 (0.533) 1.423 (0.464) 1.401 (0.416) 1.407 (0.417)

μ = 2 2.311 (0.466) 2.309 (0.388) 2.285 (0.341) 2.269 (0.289)

λ = 2 2.671 (0.816) 2.609 (0.669) 2.625 (0.648) 2.550 (0.563)

μ = 3 3.488 (0.751) 3.368 (0.497) 3.330 (0.414) 3.285 (0.331)

λ = 5 6.035 (1.302) 5.790 (0.922) 5.706 (0.765) 5.711 (0.739)

μ = 6 6.435 (1.077) 6.386 (0.674) 6.309 (0.497) 6.290 (0.393)
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Sample mean and root mean squared error of 100 simulated parameter

estimates of (λ,μ).

Method: estimating function without variance weights.

Sample Size N

100 250 500 1000

λ = 1 0.978 (0.413) 1.032 (0.289) 0.999 (0.203) 0.970 (0.145)
μ = 2 1.947 (0.522) 2.079 (0.382) 2.017 (0.274) 1.944 (0.206)

λ = 2 1.858 (0.729) 1.889 (0.474) 1.994 (0.363) 1.992 (0.292)

μ = 3 2.850 (0.805) 2.943 (0.539) 3.039 (0.409) 3.004 (0.333)

λ = 5 4.747 (2.286) 5.036 (1.811) 4.737 (0.926) 5.072 (0.775)
μ = 6 5.733 (2.255) 6.110 (1.681) 5.742 (0.938) 6.064 (0.776)

Table 1 shows that the two estimating functions methods yield approx-
imately unbiased parameter estimates; in contrast, all maximum likelihood
sample means are larger than the true parameter values. Despite this bias,
the method of maximum likelihood has a smaller root mean squared error
than both estimating function methods for the traffic intensity p = 5/6.
This, of course, reflects the fact that the maximum likelihood estimates had
a much smaller sample variance than their estimating function counterparts.
We note that for p = 1/2, the root mean squared errors from the estimating
function methods are comparable (sometimes even smaller) to the maximum
likelihood estimate root mean squared errors. Inspection of Table 1 shows
that the estimating function estimates without variance weights are, overall,
about as efficient as the estimating function estimates with variance weights
in terms of root mean squared error. Finally, we note that the root mean
squared errors of all estimates increase with increasing λ and/or μ.

In terms of computations, the maximum likelihood estimates were the

easiest to obtain. The minimum of the negative log likelihood function was

rapidly found in all simulations with a gradient search routinge. In contrast,

difficulties were encountered with the root finding computations needed to

compute the estimating function estimates. In a small proportion of the sim-

ulations with the smaller series lengths (particularly N = 100), none of the

standard root finding numerical methods tried such as Newton or Broyden

satisfactorily found the roots in all simulations. The root finding method

that worked best in practice proceeded as follows. First, a gradient search

routing was used to find "approximate roots" of the estimating function

equations by numerically minimizing the sum of squares
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in λ and μ, where SJy (λ,μ) is the ith component of SN{Θ) or Sχ(θ) for
i = 1, 2 (i = 1 corresponds to λ, i = 2 corresponds to μ). These estimates
were then refined with Newton's method for systems of non-linear equations.
In virtually all simulations, a root (λ,μ) satisfying the tolerance

was found.
Tables 2 and 3 show similar simulations for the M/E^/l queue for the

cases k = 2 and k = 4 respectively. The parameter values of λ and μ were
again selected to yield the increasing traffic intensities p = 1/2,2/3, and 5/6.
The bias properties of the estimates in Tables 2 and 3 are similar to those
in Table 1. We note that the maximum likelihood estimates, in most cases,
have smaller root mean squared errors than their estimating function coun-
terparts. In many cases, the estimating function approach without variance
weights yielded a root mean squared error that was comparable, or only
slightly larger, to the root mean squared error of the estimating function
approach without variance weights. Hence, little seems to be gained by ac-
counting for variances in the estimating function approach for the MjE^jλ
queue. It should be noted, however, that the gain in efficiency due to ac-
counting for variance weights should increase with larger sample sizes.

TABLE 2: The M/E2/l queue.

Sample mean and root mean squared error of 100 simulated parameter esti-
mates of (λ, μ).
Method: estimating function with variance weights.

Sample Size N

100 250 500 1000

λ = 1 1.005 (0.395) 0.971 (0.283) 0.965 (0.230) 0.963 (0.150)

μ = 4 4.045 (1.140) 3.990 (0.681) 3.947 (0.599) 3.961 (0.407)

λ = 2 1.913 (0.912) 1.976 (0.541) 1.935 (0.347) 1.986 (0.230)

μ = 6 5.917 (1.974) 5.967 (1.163) 5.888 (0.768) 5.968 (0.496)

λ = 5 4.827 (2.059) 4.925 (1.279) 5.044 (0.990) 4.932 (0.598)

μ = 12 11.975 (4.062) 11.947 (2.484) 12.167 (2.108) 11.922 (1.220)
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Sample mean and root mean squared error of 100 simulated parameter esti-
mates of (λ, μ).
Method: maximum likelihood.

Sample Size N

100 250 500 1000
λ = 1 1.386 (0.457) 1.411 (0.450) 1.393 (0.410) 1.337 (0.375)

μ = 4 4.447 (0.731) 4.513 (0.661) 4.516 (0.602) 4.504 (0.548)

λ = 2 2.675 (0.775) 2.633 (0.667) 2.596 (0.622) 2.579 (0.592)

μ = 6 6.808 (1.205) 6.640 (0.841) 6.628 (0.738) 6.552 (0.616)

λ = 5 6.046 (1.281) 5.684 (0.981) 5.779 (0.833) 5.760 (0.791)
μ = 12 12.915 (1.677) 12.917 (1.398) 12.643 (0.927) 12.616 (0.783)

Sample mean and root mean squared error of 100 simulated parameter esti-
mates of (λ, μ).
Method: estimating function without variance weights.

Sample Size N

100 250 500 1000

λ = 1 1.050 (0.489) 0.955 (0.299) 0.957 (0.202) 0.984 (0.165)

μ = 4 4.129 (1.366) 3.914 (0.824) 3.894 (0.560) 3.964 (0.449)

λ = 2 2.023 (0.836) 1.998 (0.468) 1.994 (0.352) 1.981 (0.255)

μ = 6 6.119 (1.797) 6.036 (1.095) 5.989 (0.787) 5.935 (0.528)

λ = 5 5.249 (2.314) 5.176 (1.324) 5.051 (0.888) 5.030 (0.590)

μ = 12 12.733 (4.046) 12.419 (2.690) 12.016 (1.743) 12.066 (1.193)
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TABLE 3: The M/E4/I queue.

Sample mean and root mean squared error of 100 simulated parameter esti-

mates of (λ,μ).

Method: estimating function with variance weights.

Sample Size N

100 250 500 1000
λ = 1 1.099 (0.495) 0.958 (0.286) 0.969 (0.222) 0.990 (0.166)

μ = 8 8.650 (2.759) 7.889 (1.453) 7.869 (1.143) 7.971 (0.828)

λ = 2 1.811 (0.748) 1.910 (0.481) 1,931 (0.329) 1.946 (0.260)

μ = 12 11.636 (3.522) 11.701 (1.929) 11.775 (1.323) 11.831 (1.123)

λ = 5 4.788 (2.316) 4.842 (1.262) 5.091 (0.948) 4.921 (0.592)

μ = 24 23.549 (7.694) 23.609 (5.074) 24.334 (3.475) 23.850 (2.240)

Sample mean and root mean squared error of 100 simulated parameter esti-
mates of (λ, μ).
Method: maximum likelihood.

Sample Size N

100 250 500 1000

λ = 1 1.362 (0.438) 1.324 (0.356) 1.338 (0.355) 1.326 (0.334)

μ = 8 8.903 (1.255) 8.758 (0.996) 8.840 (0.950) 8.795 (0.849)

λ = 2 2.540 (0.645) 2.588 (0.633) 2.544 (0.570) 2.538 (0.549)

μ = 12 13.100 (1.673) 13.049 (1.360) 12.969 (1.143) 12.907 (0.974)

λ = 5 5.926 (1.106) 5.800 (0.895) 5.782 (0.825) 5.785 (0.808)

μ = 24 25.412 (2.811) 25.261 (2.012) 25.290 (1.697) 25.145 (1.393)
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Sample mean and root mean squared error of 100 simulated parameter esti-
mates of (λ,μ).
Method: estimating function without variance weights.

Sample Size N

100 250 500 1000

λ = 1 1.085 (0.543) 1.024 (0.323) 1.012 (0.350) 1.004 (0.187)

μ = 8 8.241 (2.843) 8.161 (1.766) 7.982 (1.664) 8.036 (1.033)

λ = 2 2.026 (0.949) 1.959 (0.467) 1.972 (0.379) 1.961 (0.243)

μ = 12 12.104 (4.014) 11.837 (2.057) 11.944 (1.662) 11.785 (1.062)

λ = 5 5.065 (1.830) 5.006 (1.418) 4.935 (0.828) 4.841 (0.666)

μ = 24 23.967 (6.196) 24.103 (3.923) 23.975 (3.101) 23.466 (2.633)

6 Summary and Comments

This paper shows how parameter estimates for the interarrival and service
time distributions in a GI/G/1 queue can be obtained from customer wait-
ing time data. Both estimating function and maximum likelihood methods
of estimation were considered. The simulation study in Section 4 shows
that the maximum likelihood estimates can be significantly biased, while
the estimating function estimates are approximately unbiased. Despite this
bias, the maximum likelihood estimates had a smaller root mean squared
error than their estimating function counterparts; a similar ordering of root
mean squared errors did not hold for moderate traffic intensities. For the
sample sizes considered in the simulation, accounting for "variances" in the
estimating function produced little gain in estimation efficiency; however, it
is expected that the efficiency of the variance weighted estimates would be
superior with larger sample sizes. The consistency and asymptotic normality
of the estimating function estimates were also established.
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