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ABSTRACT
Estimating functions provide inference methods based on a model for

specified functions of the response variable, such as the mean and variance.
The inference methods can use the limiting distribution of the estimating
function, or the derived limiting distribution of the estimating function roots,
or the derived limiting distribution of the quasi-likelihood function. In fully
specified parametric models more accurate inference can be obtained by
using recently developed higher order approximations based on likelihood
asymptotics. We consider the recent third order methods in the estimating
function context using the quasi-likelihood function. We focus on inference
for a scalar parameter of interest: profile quasi-likelihood for the scalar pa-
rameter is defined and we describe a method for using this to approximate
significance probabilities.
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tions; profile likelihood; quasi-likelihood; tail area approximations.

1 Introduction

In a fully specified parametric model, quantities for testing a parameter or
parameter component can be constructed from the score function, the max-
imum likelihood estimator, or the likelihood ratio statistic. These quantities
are equivalent in first order asymptotic theory, although examples tend to
indicate that the likelihood ratio statistic provides the most reliable assess-
ment, and the score statistic the least reliable assessment of a parameter of
interest. It is also possible by considering higher order asymptotics to derive
a modification of the likelihood ratio statistic with much better inferential
properties.

In the estimating equations context, optimally weighted estimating func-
tions serve as an equivalent to, or extension of, the score function, and the
quasi-likelihood function serves as an equivalent to, or extension of, the
likelihood function. Our goal in this paper is to explore the extension of
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likelihood asymptotics to the estimating equation context. We assume that
the parameter of interest is a scalar, as this is central to the methods of
likelihood asymptotics.

In Section 2 we summarize the main results for third order inference
based on the recent likelihood based asymptotics, with emphasis on the
approach developed in Eraser and Reid (1995). In Section 3 we discuss
the application of these methods to the estimating equation context. Some
examples are discussed in Section 4 and limitations of the current work and
possible extensions are outlined in Section 5.

2 Likelihood and significance

We assume in this section that we have a log-likelihood function ί(θ) =
t(θ\y), based on a continuous variable y with n coordinates, and that the
parameter is partitioned as θ = (λ, φ), with φ a scalar parameter of interest
and λ a vector of p — 1 nuisance parameters. We will denote the observed
information function —i"(θ) by j(θ) and the nuisance parameter submatrix
by jχχ{θ). The profile log-likelihood function is ίp{φ) = i(\φ,φ), where λ^
is the maximum likelihood estimate of λ with φ fixed. We will often write
θφ for {\φ,φ)> and i(θφ) for the profile log-likelihood function.

In fairly wide generality, an approximate p-value for testing the hypoth-
esis HQ : φ = φo can be computed from either of the following formulas:

Φ1(r,q) = Φ(r) + φ(r)(r-1-q-1) , Φ2(r,g) = Φ{r - r " 1 log(r/ς)} (1)

where φ and Φ are the standard normal density and distribution functions.
These are approximations to the distribution function of r, typically with
relative error O(n~3/2). The first formula, an extension of the Lugannani
and Rice (1980) approximation, often gives better accuracy with exponential
models, while the second formula, due to Barndorff-Nielsen (1986, 1991)
avoids anomalous values outside [0,1]. In (1) the quantity r — r(φo) is
usually the signed square root of the profile log-likelihood ratio statistic:

r = r(φ) = sgn(φ - φ) • [2{£(0;y) - tφtfy)}]* (2)

and q is a complementary first order quantity, the explicit form of which is

determined by the problem.

For example, in the case of a canonical exponential family model with no

nuisance parameters, the first version of (1) is the Lugannani and Rice (1980)

approximation, with q taken to be the standardized maximum likelihood

departure for the canonical parameter (φ — φ){j{φ)}λ^2 In the general one

parameter setting q can be taken to be
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where it is assumed that there is a one-to-one transformation from y to (?/>, α),
with a exactly or approximately ancillary, and ty(ψ',y) = dί(ψ]y)/dy and
t"ψ]y(Ψ',y) = dly(φ;y)/dφ, with α held fixed.

In the presence of nuisance parameters a general formula for q was estab-
lished in Barndorff-Nielsen (1986, 1991) under the assumption that there is
available an explicit exact or approximate ancillary statistic a such that the
conditioned variable given a is a one to one function of θ. In the special case
of a canonical exponential family /(y; θ) = exp{ψs4-λτ£—c(λ, ψ)—d(y)}, the
minimal sufficient statistic is a one-to-one function of θ and the expression
for q can be simplified to

where ρ2{ψ,ψ) = |jλλ(
Equation (1) with (2) also gives an approximation to the Bayes posterior

marginal cumulative distribution function with the choice

q =

An alternative expression for q was derived in Eraser and Reid (1995)
which provides a more easily implemented calculation for the case with effec-
tive variable of the same dimension as the parameter as covered by Barndorff-
Nielsen (1986, 1991) and also handles the general case where the dimension
of the effective variable is larger than the dimension of θ. The dimension
reduction from y to θ is effected by constructing a new parametrization </?,
which is obtained as the gradient of the log likelihood function at the ob-
served data taken in p directions V = {v\... υp).

V =

dyτ

dy
dθτ (2,0,00) (4)

The latter differentiation is for fixed values of appropriate pivotal quantities,
as discussed in Eraser and Reid (1995).

The quantity q can be viewed as a standardized maximum likelihood
departure

q = q(φ) = sgn(V> - φ) • \χ(θ) - χ(θφ)\{\j{θθ)(θ)\/\j{Xλ)(θφ)\}ϊ (5)

where 3{βθ)Φ) ιs the observed full information matrix and j(χ\){θψ) is the
nuisance information matrix, and both are recalibrated in terms of the new
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parameterization φ(θ): see eq. (17) below. The scalar parameter χ(0) re-
placing φ(θ) is linear in φ(θ)

3 Quasi-likelihood and significance

The quasi-score estimating function (Wedderburn, 1974) is denoted here by

UQ to suggest its nominal role as a derivative with respect to 0,

uθ(θ;y)=μJ(θ)Σ-1(θ){y-μ(θ)}. (7)

This is based on n observations y with mean μ(θ), variance matrix Σ(0),
and location gradient μe(β) = (d/dθτ)μ(θ). The more general optimally
weighted estimating function (McCullagh & Nelder, 1989)

uθ(θ;y) = μJ(θ)Σ-\θ)d(y;θ) (8)

is based on a vector d(y; 0) recording some version of departure of y from

0 with mean E{d(y;θ)\θ} = 0, variance matrix Σ(0), and location gradi-

ent μβ(θ) = E{(d/dθ) d(y;0);0}. A further extension to handle conditional

means and variances given a conditioning quantity A(θ) is discussed in Han-

felt and Liang (1995).

Under reasonable conditions a root θ of the quasi-score estimating equa-

tion uβ(θ;y) = 0 is asymptotically normal with mean θ and variance I^{θ)

where

= μJ(θ)Σ-1(θ)μθ(θ) (9)

is the variance of the estimating function. A quasi-likelihood ratio for 02

versus 0χ is obtained (Wedderburn, 1974) as a line integral

(10)

this will in general be path dependent if the quasi-score does not form an

integrable vector field.

We examine quasi-likelihood as constructed from estimating equations

(7) and (8). With 0 expressed as (λ,^), the equations have coordinates

corresponding to λ and φ:
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The roots θ and θψ of the estimating equations will typically be obtained by
iterative solution of UQ = 0 and u\ = 0, for example as

λ j + 1 ) = λ!ί) + /λ-λ

1(^)K(λ!ί),V;?/) (12)

Now consider the interest parameter ψ. As a definition of the corre-
sponding profile log quasi-likelihood we take £PQ(Ψ) to be

Hλ^o,^o)

= L . nψ(λψ?^;y)# (13)

where the effective integration curve C — {θψ} = {(λψ,^)} is along the
path of constrained solutions θψ as suggested in Barndorff-Nielsen (1995).
It would typically be calculated iteratively from the overall solution θ. The
signed likelihood root is then given uniquely by

r{φ) = s g n ^ - <ψ)[2{ίPQ{ψ) - ePQ(φ)}]ϊ (14)

The nominal reparameterization φ(θ) is needed only along the profile curve
C and is obtained by an integral paralleling (13); it uses a n n x p matrix
of ancillary directions V = (υ\... vp) which will be discussed later in this
section. Again integrating along C, we define

VτΣ-1(θ)μθ{θ)dθ

in the estimating equation case (7), and

Vτd^(y;θ)Σ-1(θ)μθ(θ)dθ (15)

in the more general case (8) with the notation

dy(y;θ) = (d/dyτ)d(y;θ) .

This involves an integration for each of p coordinates but most of the calcu-
lations are common and related to (13).

The Jacobian of the parameter change from θ to φ.

φθτ(θ) = VT(ξ(y]θ)Σ-1(θ)μθ(θ) , (16)

is needed only at θ and θψ and is a by product of the calculation for (15).
The inverse ofφΘτ(θψ) gives the coefficients ψφτ(θψ) for the linear parameter
χ{θ) defined by (6).
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The nominal information matrices JΘΘΦ) and j\\{θψ) are calculated from
gradients of the quasi-scores

jθθ(θ) = - M Θ ) (Θ)

The recalibrated information matrices for use in (7) are then obtained using
(16):

\W)0)\ = \Jθθ(θ)\\φθτ(θ)\-\

\j(χχ)Φψ)\ = \3χχ(θ^)\\ψlΦΦ)φχτ(θΦ)\-1 (17)

We now have all the ingredients for using the third order formula (1)
with (2), (5), and (6) except the n x p matrix of ancillary directions V =
(υi,.. ., υp) at the observed data point.

In most inference contexts the number of variables n will exceed the
number of parameters p and some procedure is needed to effectively reduce
the number of variables to p. Higher order asymptotics indicates that the
appropriate procedure is to condition on an ancillary of dimension n — p,
thus giving p free variables.

The higher order approximation described in Section 2 needs only the
value of the likelihood function at the observed data point, and the gradient
of the likelihood in p directions tangent to the ancillary, which give the new
parameter φ in (4). The only information needed concerning the ancillary is
thus the array V of tangent directions. For third order inference the vectors
V need to be tangent to just a second order ancillary (Fraser and Reid, 1995;
Skovgaard, 1986) and for second order inference the vectors V need to be
tangent to just a first order ancillary. In the estimating equations context
where the model is specifed as Eyi = μ̂ , vaπ/̂  = Σ(μi), and the components
are independent, a first order ancillary can be derived using results from
curved exponential family theory (Amari, 1985). The resulting directions in
this case are given by

V = μθτ(θ) = ^μ(θ)\§. (18)

In the case of the more general estimating equation (8), a separate argument
is needed to establish V.

4 Examples

As a first example we consider a mean and variance function corresponding
to exponential regression: the coordinates yι have mean μι and variance μf
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with μι = exp{α + β{x% — x)}. We assume interest centers on the regression
parameter β. The corresponding estimating equations for a and β are

ua = Σμ^iyi-μi)

uβ = Σ(xi - x)μ~l(yi - μi) (19)

These integrate on a path-free basis to give the quasi-likelihood

£{a,β) = -Σexp{-α - β(xi - x)}y{ - na

which in fact coincides with the actual likelihood for the exponential regres-
sion model. The corresponding profile quasi-likelihood for β thus coincides
with the ordinary profile

ίP{β) = Σyiμ'1 +nά- ϋyφjβ - nάβ

where μι = exp{ά + β(xi — x)} and fiiβ = exp{άβ + β{x{ — x)}.
For this example the zth row of the matrix V of ancillary directions (18)

for second order inference is

The ancillary directions for third order inference are also available (Eraser
et al, 1994): the ith row of V is

The implied statistical model has in fact location model structure with an

exact ancillary so exact p-values are available for comparison.

We consider a random sample of size 5 from the Fiegl and Zelen leukemia

data given as Set U in Cox and Snell (1981). Table 1 shows the exact and

quasi-likelihood based p-values for selected values of /?, the regression coeffi-

cient. The full sample size is n = 17, and for the full sample there is almost

no difference among the first order, quasi-likelihood and third order meth-

ods. The first order method here refers to using the normal approximation

for the profile log-likelihood root.

Table 1. Exact and approximate p-υalues: exponential regression.

β
-4.7

-4.3

-3.8

-3.4

-2.9

1.5

1.0

2.0

first order
0.9954

0.9899

0.9747

0.9505

0.8956

0.0177

0.0370

0.0096

using (18)
0.9952

0.9896

0.9747

0.9514

0.8994

0.0240

0.0466

0.0134

exact
0.9960

0.9911

0.9776

0.9564

0.8953

0.0249

0.0513

0.0109
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Our second example is a binomial regression model: we assume that
Eyi = μι, vary; = rriiμi(l — μ;), with rrii known and μι = a + βx{. We
are using a non-canonical parametrization, as there is no exact conditional
method for inference about β in this setting. For illustration we fit this
model to data from Example 1.5 of Cox and Snell (1989). The data values
are

I

1

2

3

4

5

Xi

1.0

1.7

2.2

2.8

4.0

y%
4

4

2

1

1

TH
110

105

62

65

45

As y is discrete the arguments of Section 2 do not apply directly, but the
ancillary directions given by (18) are easily computable. Table 2 compares
the significance functions for the first order and higher order approximations

Table 2. First order and second order p-values: binomial example.

β
-0.0245

-0.0225

-0.02

-0.018

-0.0155

-0.0115

-0.0065

0.000

0.0055

0.009

0.0125

0.017

0.0195

first order
0.9953

0.9894

0.9735

0.9487

0.8948

0.7454

0.4956

0.2413

0.0956

0.0512

0.0259

0.0010

0.0056

using(lί
0.9939

0.9867

0.9678

0.9398

0.8826

0.7375

0.5061

0.2587

0.1074

0.0591

0.0307

0.0122

0.0071

In both these examples the quasi-likelihood obtained from integrating the
score equation is identical to the log-likelihood. It is necessary to introduce
some dependence in the score equations, along the lines of Liang and Zeger's
generalized estimating equations, or to use an optimally weighted estimating
function as at (8), to derive a quasi-likelihood that is not also a log-likelihood.
Unfortunately, we have not as yet determined a way to compute the ancillary
directions V for these more general problems. Further comment on this point
is given in the next section.
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5 Discussion

In the application of formula (1) the choice of q seems to be crucial, and seems
to need an argument based on approximate ancillarity in the nominal model
leading to the estimating equation. For example, Hanfelt and Liang (1995)
give an example using a moment type estimating equation for the shape
parameter of a gamma distribution, and compare the first order approxima-
tions based on the quasi-likelihood ratio statistic and the standardized root
of the estimating equation. We tried combining the two statistics, essentially
using the standardized root as the q in (1), but the approximation was worse
than either of the first order approximations.

The derivation of V above uses the fact that μι is a location parameter,
and we do not at the moment have an argument that applies to non-location
parameters, such as over-dispersion parameters or additional dependence
parameters in Σ. It may be possible to incorporate over-dispersion param-
eters using Nelder and Pregibon's (1987) extended quasi-likelihood, which
essentially gives a REML-type marginal likelihood for the scale parameters.
Alternatively it might be possible to substitute a consistent estimate of the
scale parameter into the profile log quasi-likelihood, and still have an im-
proved approximation, but we have not investigated this.

The recent third order asymptotic methods address various model fea-
tures not handled by typical first order methods:

(i) Third and fourth order moments of the distributions of the component
variables are implicitly involved.

(ii) The coordinates means μi{θ) can measure θ and thus ψ on differing
measurement scales.

(iii) Non linearity in the parameter of interest as a function of θ or μ(θ) is
allowed for.

While the first of these was the initial stimulus for recent asymptotics, (ii)
and (iii) are perhaps of greater importance.

In the estimating equation context, (ii) and (iii) are of particular inter-
est while information for (i) is generally not available. Accordingly we have
adapted the asymptotic methods to the estimating equation context primar-
ily to handle the complications (ii) and (iii). However concerning (i) we note
that the application of the asymptotic methods starts with the quasi likeli-
hood and we feel it is appropriate to make the most accurate extraction of
significance probabilities from that likelihood.
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