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Abstract

Consider a regression model for discrete-time stochastic processes,
with a (partially specified) model for the conditional distribution of the
response given the covariate and the past observations. Suppose we also
have some knowledge about how the parameter of interest affects the
conditional distribution of the covariate given the past. We assume that
these two model assumptions give rise to two martingale estimating
functions, and determine an optimal combination. We indicate for the
case of jump processes how our result carries over to continuous time.
The resulting estimators are efficient.

1 Introduction

Suppose we know something about how the parameter of interest in a regres-
sion model appears both in the conditional distribution of the response given
the covariate, and in the distribution of the covariate. How can we exploit
this knowledge? Let us illustrate our approach in the case of independent
and identically distributed observations (Xj, Y;), with Xι the covariate and
Yi the response. In a regression model one usually specifies the conditional
distribution of Y given X, either fully, by a parametric model, or partially.
An example of a partial specification is a model for the conditional mean of Y
given X, say E(Y|X) = ΰX. More generally, we specify a function ## (X, Y)
such that E{gϋ{X,Y)\X) = 0. In the example, gΰ(X,Y) = Y -ϋX. We
assume a similar partial specification of the distribution of the covariate X,
say Έg*$(X) — 0. The two functions g# and g*$ give rise to two estimating
equations

fχYi)=0, £>*(*<) =0.
t = l
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By the usual Taylor expansion argument, their solutions ϋ = ϋn are asymp-

totically normal with variances 7" 1 and I~x, respectively, where

Since g${Xi, Y%) and g*$(Xi) are uncorrelated, the combined estimating equa-
tion

i)) = 0

leads to an estimator with asymptotic variance

Applying the Schwarz inequality to the denominator, one sees that this vari-
ance is minimized for

opt _ E% opt _ Eflti9

Έy W -
opt _

The minimal asymptotic variance is (7 + I*)~ι. The weights wopt and w*pt

depend on ϋ and, in general, also on other features of the distribution of
(X, Y). In the estimating function, they must be replaced by estimators ώ£pt

and ώ*n\ say by using empirical estimators for the distributions involved.
This does not change the asymptotic variance (/ + I*)" 1 .

Can we do better than using the combined estimating equation? Note
that we can multiply 'g^(X^Y) by a function w(X) of X and still have
conditional expectation zero,

E(w(X)gϋ(X,Y)\X)=0.

This leads to new estimating equations

iM) + w*g*ϋ(Xi)) - 0 (1.1)

with asymptotic variance (Iw + A)" 1 , where

(E(w(X)E(g'ΰ(X,Y)\X)))2

Applying again the Schwarz inequality, one sees that l^ is maximized by

The weight again depends on ϋ and, in general, also on other features of

the distribution of (X, Y) and must be estimated, say by using appropriate
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nonparametric estimators for the conditional expectations involved. With
# ° p (X) denoting such an estimator, we arrive at the estimating equation

= 0. (1.2)

The asymptotic variance of the estimator corresponding to this equation is
(7 +1*)- 1 with

7 _ (E(g'ϋ(X,Y)\X))2

E(gύ(X,Y)2\X) '

By the Schwarz inequality (2.10) below, / is strictly larger than / unless
both conditional expectations do not depend on X.

For the example given above, g#(X, Y) = Y-ΰX, we have Έ(g'ΰ(X, Y)\X)
= -X and E{gϋ{X,Y)2\X) = E((F - ϋX)2\X), the conditional variance of
Y given X.

The estimating equation (1.2) is not only optimal among estimating equa-
tions (1.1) but even efficient among all (regular) estimators as long as we
do not impose additional restrictions on the distribution of (X, Y) which in-
volve i?. Let us give a sketch of the argument, referring to Bickel, Klaassen,
Ritov and Wellner (1993) for an account of the concepts involved.

The model is described by all distributions p(dx, dy) = p*(dx)p(x, dy) of
(X, Y) such that

Jp(x,dy)gΰ(x,y)=E(gΰ{x,Y)\x) = 0 for all x, (1.3)

p*{dx)g*i){x) =Eg*# = 0 (1.4)
/•

if ΰ is true. Introduce a local model by perturbing p and p* as p(x, dy)(l +
n~ι/2uh{x,y)) and p*(dx)(l + n~ιί2uh*(x)) such that the two conditions
(1.3) and (1.4) hold (approximately) with ϋ replaced by ϋ + n~ιl2w.

I p{x, dy) (l + n~ι/2uh(x,y)) gϋ+n-i/2u(x, y) = 0 for all x,

p*(dx) (l + n-^uh^x)) g^ΰ+n-i,2u(x) = 0.

Then h and /ι* must fulfill

p{x,dy)(h{x,y)gΰ{x,y)+g'ϋ{x,y)) = 0 for all x, (1.5)

j p*{dx){K(x)g*ϋ(x)+g'^{x)) = 0. (1.6)

The perturbed p is approximately

p{dx,dy) ( l + n~1/2u (h(x,y) + M

J

j
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This means that the tangent space in the sense of Bickel et al. (1993, p.
50, Definition 2) consists of the functions u(h + h*) with h and /&* fulfilling
(1.5) and (1.6). We view the parameter ϋ as a function of p and determine
its canonical gradient in the sense of Bickel et al. (1993, p. 58). This is a
function ύ in the tangent space such that

nι'2{ϋ + n-ι'2u -ϋ) = u = uEύ(h + h*) for all h, K fulfilling (1.5), (1.6).

According to Bickel et al. (1993, p. 63, Theorem 2B, and p. 65, Theorem
1A), an estimator ϋn is regular and efficient if and only if

nι/20n - 0) = n"1/2 Σ *(**, γi) + OP(1). (1.7)

In particular, a lower bound for the asymptotic variance of regular estimators
of ΰisEi/2.

Since the tangent space is generated by the aίfine space of functions
h + h* with h and h* fulfilling (1.5) and (1.6), we can write the canonical
gradient as v = (Έ(s + s*)2)~ (s + 5*), where 5 + s* is the optimal score
function, minimizing E(h+h*)2 over all h and /ι* fulfilling (1.5) and (1.6). In
particular, the lower bound for the asymptotic variance of regular estimators
can be written 1/E(s + s*)2. The function s + s* is characterized by

E(s + θ*)(Λ + K) = E(s + s*)2 for all Λ, K fulfilling (1.5), (1.6).

Since h and h* are orthogonal, this is equivalent to

ESh = E52 for all h fulfilling (1.5), Es*/ι* = Es2 for all K fulfilling (1.6).

One easily checks that the solution is

By the usual Taylor series argument, the solution ϋ = ΰn of the optimal
estimating equation (1.2) is seen to fulfill

i=l

By the characterization (1.7), this means that this estimator is efficient.
In Sections 2 and 3 we show how the calculation of the optimal estimating

function carries over to ergodic discrete-time stochastic processes and jump
processes, respectively. Efficiency also carries over, but we will not give
the details. All results extend immediately to vectors ϋ and vector-valued
functions g# and g*$. We do not give precise regularity conditions for our
results.
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2 Discrete-time stochastic processes

Suppose we observe a stochastic process (Xi, Yi) at times i = 1,..., n. The
law of the process is determined by the conditional distributions pi(dx,dy)
of (Xi,Y{) given the past observations. Here and in the following, we suppress
the dependence of pi and similar objects on the past, (AΊ, Yi),..., (X -i, Yi-ι).
As in the i.i.d. case considered in Section 1, we describe a regression model
by (partial) specifications of (1) the conditional distribution of the response
given the present value of the covariate and now also the past observations,
and of (2) the conditional distribution of the covariate, now also given the
past. We factor pi into marginal and conditional,

Pi(dx, dy) = p*i(dx)pi(x, dy), (2.1)

and specify two functions g^{x^y) and g*iΰ(x), possibly depending on the
past, such that

EX9iu = I Pi{xidy)giΰ(x,y) = 0 for all x,

E*ig*iu = / P*i(dx)g*iΰ(x) = 0.

They give rise to estimating equations

How can we combine them in an optimal way? Our result holds for geomet-

rically ergodic processes and under appropriate smoothness and moment

conditions which can be seen from the sketch of the proof.

Result 1. From estimating equations of the form

Σ (Wi(Xi)giϋ{XuY^ + w.ig*n>(Xi)) = 0, (2.2)
i = l

an estimator with minimal asymptotic variance is obtained using weights

which are consistent estimators of

Wi(Xi) = Έ^/Έf^, (2.3)

w« = KisUϋβ*i9Ϊiΰ ( 2 4 )

The estimator is asymptotically normal. Its asymptotic variance is the limit
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Sketch of proof. To simplify the notation, we introduce w = (w,w*) and
gφ = (g#,(7*tf), and write the estimating equation (2.2) as

w*i9*iϋ = °

Let # be a solution. Under appropriate differentiability conditions, a Taylor
expansion gives

0 = Σ wi9a * Σ «w» + (*-*) Σ «w«
Then

/A

Conditionally on the past, the martingale increments w^Xij'g^Xi^Yi) and
i) are orthogonal:

/
— ί - -

J I I

Introduce an inner product

(v,w) = \ J Έ/*iϋiWi + /^ v *

with corresponding norm ||w||2 = (w,w). Interpret products υw of vectors
componentwise,

Consider first the numerator in (2.7). With (2.8), the predictable quadratic
variation of Σwigi$ is (w2,υ) = Huw1/2!!2, where

ϋi(x) = Ts

Consider now the denominator in (2.7). The compensator of ΣtUip^ ιs

(tϋ,m), where
rΠi(x) = Έ*g'iΰ, m*i = E^gliϋ.

Since Σwιg'iϋ — (w,m) is a martingale, ^ (ΣVt0<0 ~ {W >m)) ιs asymptoti-
cally negligible, and we may replace ^ Σwi9iΌ by ^(u;,m). If the process is
ergodic, ^(w,m) is asymptotically constant. Hence the predictable quadratic
variation of n 1 / 2 ^—ϋ) is approximately n||ii;?;1/2||2/(ii;, m)2. By the Schwarz
inequality,

/ / l (2.9)
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In other words,

w,m)z Urn?;"1/2!!2

Hence \\wvι/2\\2 / (w,m)2 is minimized by w = mv~1, and the minimum is

- 1

By an appropriate martingale central limit theorem, nι/2(ϋ — #) is asymp-
totically normal with variance equal to the limit of nUmv"1/2!!"2, and the
assertion follows. D

Efficiency of the estimator based on the optimal estimating equation can
be proved by an approach similar to that outlined in Section 1 for the i.i.d.
case.

If we use predictors to estimate Wi(x) and w*i, i.e. estimators involv-
ing only the past observations (Xi, YΊ),..., (Xi_i, Yi_i), then the optimal
estimating function is a martingale.

We may allow weights wι, w*i to depend on ϋ. Then the derivative of

ΣwiQiΰ in the expansion (2.6) has a second term Σwi9iΰ I* ι s asymptoti-

cally negligible since the g^ are martingale increments.

Remark 1. Usually one takes predictable weights to combine two martin-

gale estimating functions; e.g. Heyde (1987). For the estimating functions

Σgi#{Xi,Yi) and Σί7*ztf(Xΐ) this would mean using weights Wi rather than

i). Then the best weights would be

and w*i as above, and the minimal asymptotic variance would be the limit

of an expression of the form (2.5) with E*» (jβ?%ΰ)
2/Ίϊfig'ϊ^) replaced by

the simpler (Eig'ild)
2/Eig2

ΰ. The resulting variance is, in general, larger than

our minimum variance (2.5) because

^ l (2,0,
Eg2 Exg2

This inequality follows from the Schwarz inequality:

(E/)2 =
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Remark 2. The weight W{ depends only on p{ and giϋ, and w^ depends only
onp*i and 5*^. This is due to orthogonality (2.8). Indeed, the weights (2.3)
are optimal for estimating functions of the form Σ Wi(Xi)<7^(Xi, Yi)i a n d
weights (2.4) are optimal for estimating functions of the form ^ w

Remark 3. Suppose we have a parametric model piϋ(Xi, dy) for the condi-
tional distribution of the response Y{ given the present covariate X{ and the
past observations. Differentiating under the integral, we obtain

0 = (Ex

iΰgiΰ) = Έ%g'iϋ

where

Hence, by the Schwarz inequality, [E^'g'^j /Έ^βΊjfβ is maximal for "g^ =

2iϋ, and the optimal weight (2.3) for giΰ = liΰ is ϊϋi(Xi) = —1.
In particular, the estimating function YJ-i${Xi<>Yi) is optimal among

estimating functions Y^Wi(X{)'gil&(Xi1Yi). The optimal estimating function
is the partial score function, i.e., the derivative of the partial likelihood ratio
of Cox (1975),

Π <Φ(Xύ)

Hence the optimal estimating function gives the maximum partial likelihood
estimator. If the observations ( X Ϊ , Y{) are independent, the partial likelihood
ratio is the conditional likelihood ratio for Yi,...,Yn given the covariates
A i, . . . , Xn.

Similarly, if there is a parametric model p*i$ for the distribution of the
covariate Xi given the past, the optimal g*i$ is

g { χ ) = d ^ i x ) = : £ { χ )

and the optimal weight (2.4) is —1.

Moreover, if there is a fully specified parametric model

Piϋ(dx, dy) = p*iϋ(dx)piϋ(x, dy),

then the likelihood ratio can be written

Π dp*i dP(χi')
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and the optimal estimating function is the score function Σί'iϋ(Xi, Y%) with

4?(*>y) := dT^j^{x,y) =ίiϋ{x,y) + ί!

Hΰ{x).

Hence the optimal estimator is the maximum likelihood estimator, and its
asymptotic variance is the limit of

Remark 4. For discrete-time processes, it is common to model the condi-
tional distribution of the response given the past and the present value of
the covariate. In the continuous-time setting of Section 3 one usually models
the conditional distribution of the response given only the past. This is just
a convention: We may consider X%-i rather than X{ the 'present' covariate
of the response.

3 Jump processes

Suppose we observe a jump process (X, Y) = (JΓ5,Ys)s>o on a finite time
interval [0, ί]. The corresponding multivariate point process is given by the
jump measure

μ(ds,dx,dy) =

The law of the process is determined by the compensator of the jump mea-
sure. Assume, for simplicity, that the compensator has the form Ks(dx, dy)ds,
so that there are no time points at which the process has a positive probabil-
ity of jumping. We can write Ks(dx,dy) = asps(dx,dy) withp s a probability
measure, the jump size distribution at time 5 given the past, and as the jump
intensity. For the theory of continuous-time processes and limit theorems
we refer to Jacod and Shiryaev (1987).

The multivariate point process corresponding to the response process Y
is

μγ(ds,dy)= ]Γ ε(sAγs)(ds,dy).
s .AYs^O

A regression model is given by a (partial) specification of the compensator
of μ y , say Ks(dy)ds. As noted in Remark 4, this is not exactly analogous
to the discrete-time case. We specify a predictable function ~gs${y) such that

Ksgsΰ = j Ks(dy)gsΰ(y) = 0
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and obtain a martingale estimating equation

We want to assume a similar partial specification of the distribution of
the covariate process X. It will be based on a factorization of Ks(dx,dy)
analogous to the factorization (2.1) of the distribution pi(dx,dy). We must
take into account the possibility that X jumps while Y does not. Following
Arjas and Haara (1984) and Greenwood and Wefelmeyer (1996), we write

Ks(dx,dy) = K-Os(dx,dy) + K*s(dx)εo(dy),

where K-QS(dx,dy) does not charge the subspace described by y = 0. Then

K*s governs those jumps of X that do not occur simultaneously with jumps

of Y. As in (2.1), but with the roles of X and Y interchanged, we factor

K-Os(dx,dy) = Kβ{dy)K-.a(dx,y). (3.1)

We note that K-*s(dx,y) is a probability measure, the conditional distribu-

tion of the jump size of the covariate given a jump of size y of the response,

and given the past. Additional specifications of the model may now be given

by predictable functions 5*s1?(x) and <7-*stf(#,y) such that

K*s9*sϋ = / K*s(dx)g*sϋ(x) = 0,

Ki+8g-*84 = I K-*s(dx,y)g-*8*fay) = 0 for all y.

They give rise to additional martingale estimating equations

= 0,

= 0.

How can we combine the three estimating functions in an optimal way?

Again, our result holds for geometrically ergodic processes under appropriate

smoothness and moment conditions which can be seen from the sketch of the

proof.

Result 2. From estimating equations of the form

wsgso(AYs) (3.2)

= 0,
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an estimator with minimal asymptotic variance is obtained using weights
which are consistent estimators of

ws = KdsϋIKsg
2

sϋ, (3.3)

' l (3.4)

^ . (3.5)

The estimator is asymptotically normal. Its asymptotic variance is the limit

of

(f ψft (f ψfU + / ψU£* + JK^ψί^Δ . ,3.6)
V A # J J X 9 J Λ9 )

Sketch of proof. To simplify the notation, we introduce w = (w, w*,w-*)

and g$ = (<7tf,ί7*τ?, <7-*#), and write the estimating equation (3.2) as

-*sg-*sϋ = 0.

Let ϋ be a solution. Under appropriate differentiability conditions, a Taylor
expansion gives

O = Σ ws9s#« Σ Ws^ + (*-*) Σ wds* ( 3 7 )
Then

The martingale £tu*5g*stf is orthogonal to the martingales ΣΰJ s ί? s l ?

 a n ( i
2 w-*sg-*sΰ because it lives on time points 5 with AYS = 0 while the two
other martingales do not jump at these time points. Because K-os(dx,dy)
does not charge y = 0, we may and will assume that g-.*s$(x,0) = 0. Then

w-*sg-*sϋ (3.9)

= ws JΈs(dy)gsΰ{y)w-*s(y) J K-*s(dx,y)g-*s#(x,y) = 0.

Hence ΣΰJsΊJsΰ a n d Σw-*s9-*sΰ are also orthogonal. Introduce an inner

product

(υ,w) = / vsws+ / υ* 5w* 5+ / Έs{dy)υ-*s{y)w-*s(y)ds
Jo Jo Jo J

with corresponding norm ||w||2 = (w,w). Consider first the numerator in

(3.8). With (3.9) and orthogonality of Σw*s9*sϋ and ΣwsVsϋ, t h e P r e "

dictable quadratic variation of Σws9sΰ is {w2,v) = | | W / 2 | | 2 , where

vs =
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Consider now the denominator in (3.8). The compensator of Σws9sϋ is

(w,ra), where

rns = ~Ksg'sϋ, m*5 = K^g1^, m-*s{y) = #-*55-*stf

Since Σws9t

a<β — (w,m) is a martingale, \ (Σws9f

s>β — (w,m)) is asymptoti-

cally negligible, and we may replace \ Σ ws9's o by \(w->m) ^ the P r o c e s s is

ergodic, \(w, m) is asymptotically constant. Hence the predictable quadratic

variation of tιί2(ϋ — ϋ) is approximately t\\wvιl2\\2/(w,m)2. By the inequal-

ity (2.9), this is minimized by w = mυ" 1 , and the minimum is

\Jo vs JQ V*S JO

By an appropriate martingale central limit theorem, tιl2{ϋ — ϋ) is asymp-

totically normal with variance equal to the limit of ίUmi;"1/2!!"2, and the

assertion follows. D

As in Remark 2, the weight (3.3) is optimal for estimating equations

wsgsΰ(AYs)=0,

and the weights (3.4) and (3.5) have analogous optimality properties on their
own.

Remark 5. Suppose we have a parametric model Ksΰ{dy) for the compen-

sator of the jump measure μγ of the response. Write

When the intensity UTS#(R) of the response depends on #, then Ks$ist& will

not be zero in general. This differs from the discrete-time case. Differenti-

ating under the integral, we obtain

0 = (KsΰgsΰY = Ks$g[sύ + KsϋIsϋgsϋ - Ks^gιsϋ + Ks#(ϊsϋ - Ks#lsΰ)gsϋ.

Using the Schwarz inequality, we see that

(Ksΰg'sΰ)
2 _

is maximal for gs# = l's# — Ks$£r

s#, and then the optimal weight is t̂Js = —1.
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In particular,

is optimal among estimating functions of the form

and the asymptotic variance of the optimal estimator is the limit of

As in Remark 3, the optimal estimating function turns out to be the partial
score function in the following sense. A partial likelihood ratio for jump
processes was introduced by Arjas and Haara (1984) as

- l)ds) .
J

See also Andersen, Borgan, Gill and Keiding (1993) and, for general semi-
martingales, Jacod (1987) and (1990). The partial score function is the
derivative of the partial likelihod ratio at τ — ϋ. Using Vs$# = 1 we see that
the derivative equals (3.10).

Remark 6. Suppose we have a parametric model K*s$(dx)ds for the com-
pensator of the jump measure of those jumps of the covariate X that do not
occur simultaneously with jumps of the response Y. Write

V*sΰτ = -J77 j Ksΰ = dτ=

As in Remark 5, the best g*s# is t*sΰ~κ*sϋKsϋ' a n d then the optimal weight
(3.4) is w*s = — 1.

In particular,

(3.H)

is optimal among estimating functions of the form
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Remark 7. Suppose we have a parametric model for the compensator
K-*s$(dx,y) of the conditional jump size distribution at time s of X given
a jump Y = y and the past. Write

Since K-*s$(dx,y) is a probability measure, we have Ky_^sι&ί'_^sΰ = 0. As
in Remark 5, the best g~*sΰ is ^/_*stf, and then the optimal weight (3.5) is
w-*s = —1.

In particular,

(3.12)

is optimal among estimating functions of the form

ΔYS).

Remark 8. Suppose we have a fully parametric model K8$, K*s$, K_*5ί?.
According to Result 2 and Remarks 5 to 7, the best estimating equation is

To show that this gives the maximum likelihood estimator, we recall a rep-

resentation of Greenwood and Wefelmeyer (1996) of the likelihood ratio,

- l)ds) (3.13)
J

exp (- f K*sΰ(V*sΰτ - l)ds)

For a heuristic derivation in terms of product integrals, see Andersen et al.

(1993, p. 107). We have already noted in Remark 5 that the derivative of

the first factor, the partial likelihood ratio, equals the partial score function
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(3.10). The derivative of the second factor is obtained similarly. Finally,
dτ=φV-*s#τ = '̂_*5tf by definition.

The representation (3.13) of the likelihood can be used in the partially
specified model of Result 2 to prove that the optimal estimating function
obtained there is efficient as long as no additional restrictions involving ΰ
are imposed on the model. The arguments are similar to those outlined
in Section 1 for the i.i.d. case. In Greenwood and Wefelmeyer (1996) a
representation analogous to (3.13) is given for general semimartingales and
can be used to generalize the results obtained here to partially specified
semimartingale regression models.
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