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1 Introduction

Clustering is considered usually an art rather than a science because of
lacking comprehensive mathematical theories in the discipline. The ma-
jor issue raised in this paper is that approximation bilinear clustering can
provide a theoretical framework for a part of partitioning and hierarchic
clustering concerning its algorithmical and interpretational aspects. Two
approximation norms, L\ and L2, are considered and compared.

The remainder consists of two parts devoted respectively to partitioning
(Sections 2 and 3) and hierarchic clustering (Section 4), and a conclusion
(Section 5). In Section 2, a bilinear model relating data to a partition is
considered. The model is introduced in Section 2.1 where two model-based
principles for data standardization are suggested. In Section 2.2., an L2
decomposition of the data scatter into explained and unexplained parts is
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discussed, especially in its relation to the nominal data case. It appears,
some most known contingency measures, as Pearson chi-square, can be
interpreted as contributions to the data scatter. Similar work is done for
L\ in Section 2.3.

In Section 3, clustering algorithms are discussed for both, L\ and L2,
criteria. In Section 3.1, K-Means and principal cluster analysis methods
are considered as locally optimal approximation techniques (the latter can
be applied also for finding overlapping clusters). In Section 3.2, a prereq-
uisite for this is outlined: interrelation between six otherwise independent
parameters of cluster structure, emerging in the context of the bilinear
model.

In Section 4, hierarchic clustering is put in the bilinear modeling frame-
work. In Section 4.1, 3-valued nest indicator functions are introduced to
provide for exact embedding of binary hierarchies into linear subspaces.
The case of L2 hierarchic clustering is considered in Section 4.2, which
is proved similar to the case of L2 partitioning except for that here de-
composition concerns not only the data scatter but also the data entries
and between-variable correlations. The case of L\ hierarchic clustering is
treated in Section 4.3. Due to the fact that the split cluster centers must
be interrelated here, the alternating minimization technique produces a
modified clustering approach.

2 Bilinear partition model and scatter
decomposition

2.1 Bilinear model and standardization of mixed data

Let us consider an entity-to-variable data table in which a quantitative
variable k is represented by a quantitative iV-dimensional column-vector x\~
of its values on N entities under consideration. A binary variable (category)
k is basically a question admitting only answers Yes or No for each of the
entities; the values are coded 1 (Yes) and 0 (No), which produces a zero-one
iV-dimensional column vector x^. A nominal variable k is coded by a zero-
one N x φk submatrix x^ = {x%v) where #k is the number of categories
v G k and X{v equals 1 when entity ί belongs to category v of fc, and 0
otherwise.

Encoded this way, the data matrix will be denoted by X = (x{V) where
ί G / are entities and υ G V are variables/categories corresponding to
columns. These data are preprocessed into matrix Y = (yiV) by the stan-
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dard preliminary transformation (standardization) so that

assuming change of both the scale factor (dividing by b) and the origin
(adding of a) in the original column xv. Choice of a and b as well as their
meaning for categories will be discussed below after introducing the bilinear
clustering model.

Let the entities be assigned into groups (clusters) presented by an ad-
ditive type cluster structure which is a set of m clusters, any cluster t,
t = l,...,ra, being defined with two objects: 1) its membership func-
tion Zt = (zit),i E /, where za is 0 or 1 characterizing thus a cluster
set St = {ί E / : zu = 1}, 2) its standard point, or centroid vector,
ct — (ctv),v E V, to be combined in an N x |V| cluster-type matrix with
elements Σu=i ctvZίt> (\V\ is the number of columns in X.)

The cluster-type matrix models the given matrix Y via equations

+ eiv (2)
t=i

where residual values e^ show difference between the data and the clusters.
When clusters are not given a priori, they can be found in such a way
that the residuals are made as small as possible, thus minimizing Φ({|e^|})
where Φ is an increasing monotone function of its arguments. The equations
in (2) along with criterion Φ to be minimized by unknown parameters,
Ctv>Zit,eiv, for yiυ given, will be referred to as the bilinear clustering model
This model was suggested by the author as an extension of a version of the
principal component analysis technique in Mirkin (1987) and updated in
Mirkin (1990). It was considered also in Chaturvedi and Carroll (1994). A
detailed account of the model and its use in hard and fuzzy clustering and
machine learning can be found in Mirkin (1996).

Though the model is quite similar to that of the principal component
analysis (the only difference is that the "components" zt are Boolean, not
arbitrary, vectors), it has a meaning on its own, just as a clustering model.
When the clusters are required to be nonoverlapping, the type-cluster ma-
trix Σ£Li ctvZit has especially simple structure considered also by Van Bu-
uren and Heiser (1989): its rows are the vectors ct = (ctv) so that every
z-th row equals ct for that specific cluster t which contains the entity i E /.

Two Minkowski forms of criterion Φ for minimizing the residuals are

L2 = Σiei Σvev e l a n d Lι = Σz€/ Συev K l W i t h t h e non-overlapping
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restriction, the criteria become especially simple:

p = Σ Σ Σ \v* - c*\p (3)
v€Vrt=li€5*

which shows that Lp, actually, is Lp = ]Γ™ χ Σ ί € s t cP(yu ct) where cP is the
p-th power of the Minkowski distance.

Due to formula (3), when the membership functions are given, the
optimal ctυ is determined only by the values y^ within St- In partic-
ular, the least-squares (p = 2) optimal ctυ is the average of y^ in £$,
ctv = X)iG5tyit;/|5i|, while the least-moduli (p=l) optimal c ,̂ is a median
oΐyiυ,i G St.

The criterion Φ, when its argument is the data matrix Y — (y^) itself,
Φ({|yiυ|}), may be considered as a measure of the scatter of the data while
Φ({|e™|}) as a measure of the "unexplained" scatter. Indeed, their differ-
ence, Φ = Φ({|y™|}) — Φ({|ew|}) will t>e nonnegative for any appropriate
minimizer of Φ since β{V = yιυ (for all z, v) and thus Φ = 0 when all ctυ = 0
which is not an optimal solution. Value Φ can be interpreted as the "ex-
plained" part of the data scatter Φ({|yi<u|}), which gives a decomposition
of the data scatter in the two parts, Φ({|y^|}) = Φ + Φ({|e^|}).

In this setting, it is the data scatter which is decomposed into explained
and unexplained parts due to the bilinear model; moreover, the unexplained
part is nothing but the minimized criterion of the model. This is why the
present author considers the data scatter as the base for choosing the data
standardization parameters in (1).

Let us require that all the variables are standardized so that their contri-
butions to the data scatter are equal to each other. The principle should be
considered as an adequate formalization of the requirement of equal weight
of the variables in numerical taxonomy (Sneath and Sokal, 1973). The
choice of parameter aυ does not affect the model (2) for a non-overlapping
cluster structure, however when the bilinear model is set forth in a sequen-
tial way with the "component" axes zt identified one-by-one, not simulta-
neously, the solution heavily depends on the origin of the variable/category
space. To adjust to this kind of principal/correspondence analysis meth-
ods, let us postulate an analogue to the law of minimum moment of inertia
in mechanics: the origin of the variable space should be a minimizer of the
data scatter.

The two scatter-based principles make the parameters defined unani-
mously for L\ and L<χ. When p = 2, they lead to the usual z-score stan-
dardization rule: the origin is the grand mean while the standard deviation
is the scale factor, which will be referred to as square-scatter standard-
ization. When p = 1, the origin must be grand median while the scale
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factor is the absolute deviation, which will be referred to as module-scatter
standardization.

In the case of mixed data, the average of a category v eV column vector
is equal, obviously, to the relative frequency of the category in /, pVl while
its median may be 1, 1/2, or 0 depending on whether pv is larger than,
equal to, or smaller than 1/2, respectively. To satisfy the principle of equal
contribution with av — pυ, the Z/2-based scale factor of a category v can be
taken as bv = \Λ ~~ Ί2V Pv where summation is made by all the categories
of a variable A;, υ G k (the square root of Gini index). There can be also
other standardizing options suggested as, for instance, bv = γ/(#& — l)pv

which is category-specific.
The absolute deviation of the values of a binary column vector from the

median is equal to pυ or 1 — pv depending on whether pv is less than 1/2
or not.

2.2 Decomposition of the least-squares criterion

With the least-squares criterion, the following decomposition holds (see, for
instance, Jain and Dubes, 1988).

Statement 1 If values ctυ are optimal for a partition S = {St} of I, then

t=l υ£V i£

Usually the equation in (4) is interpreted in terms of analysis of vari-
ance. In cluster analysis, interpretation of (4) in terms of the contributions
to data scatter seems more helpful. The contribution of a pair variable-
cluster (v,t) to the explained part of the data scatter is Cjv|St|: it is pro-
portional to the cluster cardinality and to the squared distance from the
grand mean of the variable to its mean (standard value) within the cluster.
The contribution of an entity-cluster pair can be evaluated as (yi,ct) be-
cause (ξv\St\ = (Σt€5tyiv/\St\)ctυ\St\ = Σi£Sty™ctv. These cluster-specific
salience weights of the variables and entities can be employed for concept
learning and feature selection in machine learning (Mirkin, 1997).

To analyze the contributions of nominal variables and their categories
to the scatter part explained via cluster partition S, let us denote the
relative frequency (proportion of ones) of category v in set / by pυ and
the proportion of entities simultaneously having category v and belonging
to cluster St, by pvt. Then, for any category v standardized by formula
(1), its mean within cluster St is equal to ctv = (pvt — Pt^v)I'{PtK) The
contribution of a category-cluster pair (v,ί) to the explained part of the
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data scatter is equal to

s(v,t) = c2

tv\St\ = N(pυt-Ptaυ)
2/(ptb

2

v), (5)

which can be considered a measure of association between category v and
cluster t.

Since every nominal variable k is considered as the set of its categories
v, the joint contribution of k and the set of the clusters St to the scatter of
the data is equal to F(k, S) = Σt Σy^k s(υ, t) which is

Σ (6)
t=l vGk Pt°v

by (5). Substituting the appropriate values of aυ = pv and bυ, we arrive at
the following.

Statement 2 For criterion Li, the contribution of a nominal variable k E
K to the part of the square scatter of the square standardized data that is
explained by the (sought or found or expert-given) cluster partition S =
{5i,...,5m} ; is equal to

(7)

when bυ — 1 (no normalization), or

W(R/k) =NJ2Σ {Pvt^υPt){Pt (8)

when bv = J\ — ΣvekPυ (a standardizing option suggested), or

^f^ (9)
PPvekt=i

when bυ — \fpv{φk — 1) (another standardizing option).

All three of the coefficients relate to well known indices of contingency
between the nominal variables: M(S/k) is a normalized version of the
Pearson chi-square coefficient, A(R/k) is proportional to the coefficient
of reduction of the error of proportional prediction, and W(R/k) is the
Wallis coefficient. Amazingly, it is the method of data standardization
which determines which of the coefficients is produced as the contribution-
to-scatter.

The contribution of a quantitative variable into the explained part of the
Z/2 data scatter is also meaningful. When the variable k is standardized, it is
exactly Nη2(k, S) where r/2(A:, S) is the so-called correlation ratio (squared).
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2.3 Least-moduli decomposition

Similar decomposition can be done for the least-moduli criterion (the con-
tents of this section is a corrected version of section 6.1.4 in Mirkin, 1996).

Let St be an entity subset, and Stv = {iG St : |y™| < \ctv\ & sgn yiv =
sgn ctv} where, as usual, sgn x is 1 if x > 0, 0 if x = 0, and —1 if
x < 0. This means that Stv = {i € St : 0 < yiv < ctv} if ctv is positive or
Stv = {i € St : ctv < Viv < 0} if ctv is negative. Having a value ctv fixed, the
set St is partitioned into three subsets by the variable/category v depending
on relations between y™, ί G St, and ctv. For ctv > 0, let us denote the
cardinalities of the subsets where y™ is larger than, equal to or less than ctυ

by ntvi,ntv2 and 77^3, respectively. Then, let ntv = ntv\ + ntv2 — ntV3. For
Ctv < 0, the symbols ntv\ and Πtυ3 are interchanged. If ctv is the median of
values yv in St and all the values y™, i £ St, are different, then ntv\ = ntvs
and Utv — ritV2 = 0 or = 1 depending on the cardinality of St (even or odd,
respectively).

Statement 3 When values ctv are L\-optimal for a partition S = {St} of
I, the following decomposition of the module data scatter holds:

m

Σ Σ lίfel = Σ Σ( 2 Σ \y*\+«*M) + Σ Σ
ίei υev vevt=i iestv ίe

The proof is based on the following equation, \a — b\ = \a\ + \b\ — \sgn a +
sgn b\ min(|α|, |6|), which holds for any real a and b.

Let us denote the contribution of a variable-cluster pair (v,t) to the
module scatter in (10) by s(t,υ) — 2 ^ i G 5 t v |j/iV| + n ί v | c ί υ | . Based on
this, various relative contribution measures can be defined: (a) variable
to scatter, w(υ) = Σt S(t >v)/Σi,v \Viv\\ (b) cluster to scatter, w(t) =
Et7 s(*Jv)/Ei,t;li/tt;|; (c) variable to cluster, w(v/t) = 5(t,v)/^t,s(i,v);
(d) entity to cluster, w(i/t) = \sgn yiυ + sgn ctυ\ min(|y»v|, \ctv\) - \ctv\.

Let us consider the case when v is a category.

Statement 4 For any category v standardized (with arbitrary av and bv),
its median, ctυ, in cluster St is equal to —av/bv, (l — 2av)/2bυ, or (l—av)/bv

depending on ptυ is smaller than, equal to, or greater than 0.5pt, respec-
tively. The contribution of a category-cluster pair, (v,St), to the module
data scatter is equal to

s(t,υ) = N\2pvt -pt\\ctυ\.

Proof: The formulas for ctv are evident. To derive the formula for s(t,v),
let us see that Stv = 0 since the values ctυ and yιv must have different signs
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if they are not equal to each other (y™ may have one of two values only
since v is a category). Then, ntvi + ntV2 = Nptυ and ntvs = N(pt — ptv)
when ctv = (1 — av)/bυ > 0 where α ,̂ 6-y are the values used in the module-
scatter standardization rule. Analogously, ntv\ + ritV2 = ̂  (^ — p^) and

= Nptv when ctv = -av/bv < 0. •

Putting the module-scatter based aυ and bυ into s(ί,v), we have:

Statement 5 T/ie contribution of a nominal variable k to the absolute
scatter of the module-scatter standardized data, as explained by the partition
S = {SΊ,...,£m}, is equal to

^ ^ \2Pυt-pt\)
) P v (v,t)£A- L P v (v,t)£A=

(11)
where A+ = {(v,t) : pυ < 0.5 and pυί/pt > 0.5}, A- = {(v,ί) : p-y >
0.5 and pυt/ί>ί < 0.5}, and A= = {(v,t) : pv = 0.5}.

The coefficient A(S/k) takes into account the situations when the pat-
terns of occurrences of the categories v G k in the clusters t differ from
those in the entire set /. Such a difference appears when υ is frequent in St
(p(v/t) > 0.5) and rare in / (pυ < 0.5), or, conversely, v is rare in St and
frequent in /.

3 K-Means and bilinear partitioning

3.1 Principal clustering and K-Means

Following the standard strategy of sequential extraction of factors in prin-
cipal component analysis, the clusters can be extracted one by one in (2),
which constitutes the method of principal cluster analysis (PCL) (applica-
ble in both overlapping and non-overlapping cluster cases).

1. Set t = 1 and define data matrix Yt as the initial data matrix stan-
dardized according to the criterion, L\ or L2, chosen as described in Section
2.1. Choose whether the clusters to be found are required to be nonover-
lapping or they may overlap each other.

2. For Y = Yt find a principal cluster minimizing L\ or L2 as described
in the algorithm for Single Cluster Clustering (SCC) below. Define zt,ct as
the cluster solution found (membership function and the standard point,
respectively); compute its contribution to the data scatter.

3. Stop-Condition. If there must be nonoverlapping hard clusters, check
whether there are yet unclustered entities remaining. (In the other case,
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check the standard contribution-based stopping rule of the principal com-
ponent analysis). If yes, go to 4; else end.

4. Compute the residual data yf^ = y\v - ctvzit. In the nonoverlap-
ping case, set Yt+ι by removing from Yt all the rows corresponding to the
previously found cluster t. Increase t by 1, and go to 2.

The PCL algorithm can be rephrased in terms of K-Means method (Mac-
Queen (1967), Jain and Dubes (1988)), which, in its "parallel" version,
starts with m somehow selected tentative standard points or "seeds", ct.
Then the algorithm repeatedly performs the following two-step iteration :
(1) update the partition based on the standard points : given c*, make each
St the set of yι that are nearest to Q, t = 1,..., ra; (2) update the standard
points: when all St are given, compute Q as the mean (or median, for Li)
of the within-cluster vectors. This algorithm is, in fact, a version of the
alternating minimization for criteria Lp : (1) given c, find optimal z\ (2)
given z, find optimal c.

The principal cluster analysis can be considered as a technique that
exploits many of the same mechanisms, but which mitigates the need for
prior knowledge, and separates clusters from the set of instances one by one.
First, an initial cluster Si C / is extracted with its standard point c\\ the
complementary set represents the main "body" of entities, which serves as
the source for separating additional clusters one by one. This is reflected in
that fact that the main body's standard point is fixed at 0, given the square
or module scatter standardization, and it is not changed during the entire
clustering computation. The algorithm SCC (Single Cluster Clustering) for
separating a principal cluster at the Step 2 of PCL is as follows (the data
matrix is denoted by Y, not Yt):

Step 1. (Selection of an extreme point). Pick a point, y;*, maximizing
distance d(0,yi), i € / , from the origin (the distance is taken according to
the criterion, L\ or L2, selected : city-block or Euclidean squared). Take
c = yι* as the initial center (seed) of the cluster to be found.

Step 2. (Updating of the cluster). Define cluster S of points yι around
the center c as S = {i : d{y^c) < d(yi,ϋ)}.

Step 3. (Updating of the standard point). Compute the center of S,
c = c(S), which is the median or average vector, depending on L\ or L2 is
utilized.

Step 4. (Stop condition) Compare S with that at the previous iteration.
If there is no difference, the process ends: S and c(S) are the result. Else
go to Step 2.

A general property is that the size of an SCC-designed cluster depends
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on its distance from the origin (which is just a reference point): the nearer
to that point, the less the diameter of the cluster! Thus, SCC could be
modified to allow the user to specify the reference-point origin based on
the user's knowledge of the variable space: the better the knowledge, the
smaller the classes.

The principal cluster analysis method can be used as an option in ex-
tending the K-Means method for a wider class of situations when the user
can fix a few or none tentative centers even if she/he does not know the
total number of the clusters or the total number is larger than the number
of tentative centers the user is able to specify (Mirkin (1996)).

3.2 How K-Means parameters should be chosen

The user of the K-Means method faces, usually, problems in choosing the
following five important kinds of parameter associated with the method:
1) preliminary transformation of the raw data X into matrix Y to be pro-
cessed; 2) entity-to-center distance d(x, c); 3) centroid concept; 4) number
of clusters; 5) initial centers. Traditionally, these parameters are considered

Criterion

Least
Squares
Least
Moduli
Least
Maximum

Data
Scatter
Square

Absolute
Value
Maximal
Range

Metric

Euclidean

City-Block

Chebyshev

Centroid

Average

Median

Midrange

Scale
Parameter
Standard
Deviation
Absolute
Deviation
Half-range

Shift
Parameter
Average

Median

Midrange

Table 1: Correspondence between clustering parameters due to the bilinear
model.

as completely independent except for the obvious equality of the numbers
of clusters and centers. The bilinear clustering model suggests that there
is no independence anymore: the parameters are associated to the crite-
rion for model fitting. The correspondence is presented in Table 1; The
Chebyshev least-maximum criterion, L^ = max^ \yιv — Σtctvz%t\i a l s o is
included since all these parameters can be derived from it, too.

Table 1 can be used for determining all of the six parameters when the
user is able to choose at least one of them. If, for instance, the user prefers
medians as the centroids, she/he is restricted, due to the bilinear model,
with the least-moduli criterion along with the city-block distance, etc.
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4 Bilinear hierarchic clustering

4.1 Linear embedding binary hierarchies

To discuss hierarchic clustering, we consider a binary hierarchy as a set
of subsets Sw = {Sw : Sw C I,w G W} called clusters containing all
singletons and / so that the clusters Sw, w G W, are nested and every
non-singleton cluster Sw, w G W, is a union of its two children clusters

Swl-) SW2 G Sw

For any nonsingleton cluster Sw = Swι U SW2 (w,wlyw2 G WQ of Sw,
its three-valued nes£ indicator function φw = ( 0 ^ ) is defined by 0 ^ = aw

if i G S^i, = —6™ if i G Si^, and = 0 if i £SW, where the values aw and bw

satisfy the two conditions: (1) vector φw is centered; (2) vector's φw norm
is 1. It is easy to see that

aw = , / - ^ ± - , and bw =

where nw, nw\, and nW2 are cardinalities of Sw and its two children, Swι
and 5u;2, respectively.

It turns out, vectors φw are mutually orthogonal, (φw, φw>) = 0, which is
trivial when SWΓ)SW' = 0 and also true when SwΠSwr φ 0 since in the latter
case one of the clusters is a part of the other and, thus, its components are
non-zero when the other vector's components are constant. Therefore, the
set {φw : w G W} is an ortho-normal basis of the (N — l)-dimensional
space of all JV-dimensional centered vectors, and any column-centered data
matrix Y can be decomposed as follows:

Y = ΦC (13)

where Φ = (φiw) is the TV x (N—1) matrix of the values of the nest indicator

functions and C = (cwυ) is a n (iV — 1) x |V| matrix.

Since Φ T Φ is the identity matrix, multiplying equality in (13) by Φτ

leads to C = ΦTY, that is,

nwιnW2, , \nw\nw . v ( χ

Cwk = \ [Vwlv ~ Vw2v) = 4/ TΓKVwlv - Vwv), (14)

where ywυ, yw\v and yW2v are the averages of the variable/category v G V

in Sw, Swι and SW2, respectively. By analogy with the factor loadings in

the principal component analysis, the entries of C can be referred to as the

cluster loadings.

Let us denote by yw the m-dimensional vector of the averages of the

variables in a subset Sw, w G W. The equality in (14) implies that both
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L\ and L2 norms of vector c^ = (cwk) can be expressed as

μw = J d(ywUyw2) (15)

V n

where d{x, y) is the city-block/Euclidean distance between vectors x, y. The
value μw is positive if x φ y, and zero if x = y. It is an analogue of
the singular value in decomposition (13) considered as an analogue of the
singular-value decomposition.

Another useful property of decomposition (13) is that YTY = CFC,
which is a decomposition of the between-variable covariance (or correlation)
coefficients by clusters of the hierarchy Sw

Thus, in the case when all the cluster hierarchy is available, there is not
much difference between L\ and L2 cases, just the choice of distance must
be done accordingly while the average serves as the center in both cases.

4.2 Least-squares hierarchy fitting

When the hierarchy is partly unknown so that only upper clusters are given,
the exact equality in (13) must be changed for the bilinear model equation,
in this case Y — ΦC + E, where the residuals E are to be minimized. It
is not difficult to prove that, when some columns of Φ are given (as a part
of a basis), the least-squares estimator for corresponding C still satisfies
equation (4.1). Moreover, the data scatter is decomposed as follows:

m

Σ J& = Σ * 2 + Σ 4,
, t=i ,

so that finding an optimal m-column Φ requires maximizing Σkt=i Â?
In the framework of the principal component analysis-like sequential

fitting strategy, splitting are to be done sequentially, starting with the all
set /, each time maximizing corresponding μ^ It is exactly the criterion

μί = dz(ywlyyw2), (17)
nw

suggested by Edwards and Cavalli-Sforza (1965) for divisive clustering, to
be maximized by splitting a cluster Sw into Swι and SW2- The step of
taking residual data in the principal component analysis-like strategy can
be skipped here since it doesn't affect the results, as is not difficult to prove.
The standard K-Means method (with two clusters) can be applied as an
alternating maximization technique since criterion (17) is equivalent to the
least-squares clustering criterion.

The other expression in (14) leads to the same criterion expressed as
μ^ = NwNwιd

2(ywι,yw)/NW2 which implies a different, SCC-like algo-
rithm, because the center yw of Sw does not vary in the splitting process.
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4.3 Least-moduli hierarchic clustering

The least moduli estimator of C in the bilinear equation Y = ΦC + E
(with E minimized) does not satisfy (14) anymore. Let us discuss the
sequential fitting strategy with the criterion, Lλ = ΣiεiΣvεv \Viv - CυΦil
to be minimized by unknown c,,, φi (index w is omitted, for notational
simplicity). Let us denote c = (c) and apply definition of φ\ the criterion
becomes:

Li(SuS2,c) = Σ d(Vi><!) + Σ

where d is the city-block distance and d — (r^/rmi)1/2^ d' = —(nι/nri2)1^2c.
The latter equations give n\d — —ri2c", which makes the alternating min-
imization algorithm for criterion (18) different of the standard K-Means.
More precisely, one step, updating of the clusters, is performed exactly as
in K-Means: just collecting the entities around centers, d and c"', to give
S\ and S2, respectively. The other, updating of the center, is somewhat
more subtle and based on an equivalent form of (18):

(nnin 2) 1 / 2Li = ^ n2d(n1yi, c) + ] Γ n1d(-n2yi, c) (19)

where c = (niΠ2/n)1/2c. The center updated has Cy equal to {
where Cy is the weighted median in the set of reals consisting of n\yiV (for
i E 5i, weight 722) and —ri2yw (for i G 52, weight ni), for every v G V.
The weighted median for a set of decreasing x l 5 ...x/v having pi, ...,PAΓ as
their respective weights is defined as the value xa (a = 1, ...,iV) for which
Σi<aPi — Σi>aVi\ oτ > when this equality cannot be achieved, it is an
intermediate between those xa and xa+ι for which the best approximation
of the weight equality is reached.

Regretfully, the L\ criterion is irrelevant with regard to nominal data.

Statement 6 The value of L\ criterion (18) does not depend on the module-
scatter standardized nominal variables.

Proof: Indeed, in a typical case when pυ φ 0.5, the weighted median of
the column yv is zero, which makes the corresponding components in c, d,
d1 in (18) be zero thus giving the same contribution in either of terms of
the criterion. •
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