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Abstract: In this paper we outline the early history of traditional esti-
mation procedures which are based on the use of elemental sets. There
are two distinct classes of such procedures associated with the minimum
values of the sum of absolute errors and the largest absolute error criteria
respectively. As a matter of historical necessity, our study will concen-
trate on estimation procedures of the first type. However we shall also
discuss some recent work on the least median of squared errors procedure
which in principle involves elemental sets of the second type.
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1 Introduction
In his study of the practical value of elemental set approximations to robust
estimation procedures, Hawkins (1993, p.580) has summarised the history
of such methods in the following terms:

Elemental set methods have their origins in the single-predictor proposal
by Theil (1950). The extension of the idea to handling outlier problems
in multiple regression was made independently by Rousseeuw (1984) and
by Hawkins, Bradu and Kass (1984). They also arise naturally in the
expression of the OLS multiple regression in terms of weighted U-statistics
(as sketched in the technical appendix to Hawkins et al, 1984).

Although this brief statement may well have been sufficient for the pur-
poses of Hawkins's paper, it cannot be regarded as an adequate summary
of the history of elemental set methods as it fails to mention that meth-
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ods of this type had been used to estimate the parameters of linear and
nonlinear models with two or more predictors for more than 240 years, or
that the elemental set characterisation of the ordinary least squares (OLS)
estimator has been known for more than 150 years. The purpose of the
present paper is to provide a more comprehensive survey of the history of
this subject. We shall also take the opportunity to mention some recent
work on the least median of squared errors procedure.

2 Nature of the fitting problem
Some readers of this paper may be prompted to further their historical
studies by consulting some of the original sources cited in it. Such readers
will soon discover that the traditional notation and nomenclature of the
Calculus of Observations is quite distinct from that of modern Mathemati-
cal Statistics. To help the interested reader through this difficulty we shall
employ a variant of this traditional usage in our history.

In traditional notation the familiar curve or surface fitting problem may
be expressed in the following terms: We are given a linear or nonlinear func-
tion /(.) which is characterised by a set of p observed (variable) quantities
α, 6, c, etc. and a set of q unobserved fixed quantities (we would call them
parameters) x,y,z,e£c. We suppose that the variable quantities a,b,c,etc.
are observed without error but that the value of the function /(.) is subject
to an additive error. Denoting the observed value of the function by m and
the corresponding value of the additive error by v, we find that we have a
system of n equations:

which describes the relationship between the observed values of the variable
quantities and the corresponding observed values of the function. In this
context we have to choose values for the q unknown quantities x, y, z, etc. in
such a way that the observed errors (we would say residuals) t>i,i>2, -. ->vn

are as small as possible in some sense.

Although this general statement of the problem admits the possibility
of nonlinear functions, we shall be largely concerned with functions /(.)
which are linear in the unknown constants. The major exceptions to this
rule being found in the final paragraph of Section 3.

In passing we note that this traditional notation does not distinguish
between the true and fitted values of the errors or between the true and
fitted values of the unknown constants. This imprecision is of no imme-
diate consequence as we shall only be concerned with fitted values in the
remainder of this paper.
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3 Elemental set methods

The most obvious solution to the general fitting problem outlined in Section
2 is to discard n — q of the available equations and to use the remaining q
equations to determine a set of values for the q unknown constants in such
a way that these q equations are exactly satisfied with zero errors. This
fitting procedure is variously known as the method of selected points, the
subset selection method, and the method of elemental sets.

Now there are nCq distinct ways of choosing q equations from a set of
n equations, so that practitioners have either to choose a single set of q
equations at random or according to some specified rule, or they have to
select a greater number of sets and attempt to reconcile the discordant
results obtained from their selection.

In the earliest period of enquiry in this area, scientists employed a vari-
ant of the first procedure in which the selection criterion is obscure, if not
entirely hidden. Without making any attempt to explain their reasons,
these authors arranged that there should be as many equations as were
required for the problem to have a unique solution. For example, in his
analysis of the problem of determining the height of a tree on a remote
hillside, Liu Hui (third century) assumed that the surveyor had taken ob-
servations on the elevation of the top of the tree from each of two locations
in a horizontal reference plane and a third observation on the elevation of
the base of the tree from one of these locations. These three observations
together with the known horizontal distance between the two observation
sites are sufficient to determine the three unknowns of the problem, see Li
and Du (1987, pp.76-78) for details. However it is not explained why the
surveyor should not have observed both elevations from both locations, or
what was to be done if he had. It is intriguing to speculate on how Liu Hui
would have responded if he had been challenged on this point.

By the middle of the eighteenth century, this implicit choice of a single
set of q equations had been replaced by a more explicit procedure. Mayer
(1750, p.150), for example, suggested that one should choose a set of q
equations that are typical of the n given equations. In the particular case
of his determination of the position of the lunar crater Manilius, he obtained
a system of n — 27 equations in q = 3 unknowns of the form

mi = x + y sin(θi) + z cos(^) +V{ ί = 1,2,..., n

and suggested that the q = 3 typical equations should be chosen in such
a way that two of the angles differ from the third by 90 and 180 degrees
respectively. However, having advanced this basic suggestion, he observed
that one needs more than a single set of typical equations if one wishes to
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check the accuracy of the original solution. In the limiting case one thus
obtains a total of [n/q] distinct solutions from disjoint subsets of the data
which then have to be reconciled with one another.

Unfortunately Mayer did not discuss this technique in sufficient detail
for us to be sure how many disjoint subsets of q equations he would have
used, or how he would have attempted to reconcile the corresponding dis-
cordant results. Nevertheless his lack of precision in this regard is entirely
comprehensible as his exposition of this topic was as a brief aside to his
main purpose of introducing a new fitting procedure known as the method
of averages.

A few years later, Boscovich addressed a similar problem relating to
the ellipsoidal figure of the Earth in a similar way. In his contribution
to Maire and Boscovich (1755) and again in Boscovich (1757), Boscovich
was concerned with the solution of a system of n — 5 linear equations in
q = 2 unknowns. In his first approach to this problem he evaluated all
5C2 = 10 pairwise determinations of the unknown constants before taking
an unweighted arithmetic mean. He was not satisfied with the result and
tentatively suggested a variant which discards the two determinations with
the smallest denominators before again taking an unweighted average of
the remaining eight values.

Boscovich was far from satisfied with the results he obtained from ei-
ther variant of this procedure and, like Mayer before him, resolved the
impasse by proposing an alternative fitting procedure. Boscovich's alter-
native procedure is to be found in his scientific notes to a poem in Latin
hexameters by Stay (1760, pp.420-425), see Farebrother (1993). It chooses
values for the unknown constants in such a way as to minimise the sum of
the absolute values of the observed errors subject to the condition that the
corresponding sum of the signed errors is zero. The relationship between
this procedure and the method of elemental sets will be outlined in the
following section.

Finally, in this connection, we must observe that the method of elemen-
tal sets was not entirely supplanted by more advanced methods (notably
the method of least squares) until well into the present century. This state-
ment is particularly true of nonlinear problems as Pearson (1902, p.298)
mentions the possible use of the method of elemental sets to fit Makeham's
law (a generalisation of the Gompertz function) to actuarial data, and Yule
(1925, pp.49-50) notes that this method produces acceptable results when
fitting a logistic function to sufficiently smooth demographic data. Indeed,
the more elementary statistical textbooks of the 1950s and 1960s still rec-
ommended the method of elemental sets for the latter purpose, see Croxton
and Cowden (1939; 1955, p.215).
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4 Elemental set characterisations
Boscovich provided a geometrical algorithm as an integral part of his solu-
tion procedure. This algorithm was subsequently given an analytical form
by Laplace (1793), see Farebrother (1993), Sheynin (1973), or Stigler (1986)
for details. Some years later Gauss (1809, sec. 186) generalised Boscovich's
optimality criterion to any number of unknowns and suggested that the
adding-up constraint could be deleted. (In passing we note that this adding-
up constraint has no direct connection with the method of least squares
which was developed by Gauss and Legendre some years after Boscovich's
death.)

In his discussion of the unconstrained least sum of absolute errors prob-
lem, Gauss (1809, sec. 186) notes that the optimal solution to this problem
is characterised by a set of q zero errors and that the other n — q errors
only help to determine this optimal set. He gives no justification for this
result but a proof which would have been accessible to Gauss and his con-
temporaries has been suggested by Waterhouse (1990).

An explicit characterisation of the solution to the least squares problem
as a weighted sum of elemental set determinations was established by Ja-
cobi (1841). See Sheynin (1973) for an excellent description of this result
which closely follows Jacobi's own derivation. This result was subsequently
rediscovered by Glaisher (1879), Subrahmanyam (1972), Hawkins, Bradu
and Kass (1984), and Ben-Tal and Teboulle (1990) amongst others. The
long interlude between the publication of the papers by Glaisher and Sub-
rahmanyam would seem to be due to the intervention of a clear statement of
Jacobi's result in the popular textbook by Whittaker and Robinson (1924;
1944, pp.251-252).

This explicit characterisation of the solution to the least squares problem
may be generalised to a weighted sum of least squares determinations from
sets of m > q equations, see Sheynin (1993) and Wu (1986) for details.
As a further generalisation of this result, Ben-Tal and Teboule (1990) have
shown that, for all members of a class of strictly isotone functions which
includes the weighted sum of the kth powers of the absolute errors (for
some fixed finite positive value of fc), every set of values for the unknown
constants which minimises the chosen function of the errors will lie within
the convex hull of the elemental set determinations. In addition they have
shown that, for all members of a class of isotone (but not strictly isotone)
functions including the largest absolute error and the median absolute error
functions, at least one of the sets of values for the unknown constants which
minimise the chosen function of the errors must lie within the convex hull
of the elemental set determinations of these values.
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Thus, although the solutions to the least sum of absolute errors (k = 1)
and the least sum of squared errors (fc = 2) problems must lie in the con-
vex hull of the elemental set determinations, the solutions of the minimax
absolute errors and least median of (squared) absolute errors problems will
necessarily be members of the convex hull only if these solutions are unique.

Further, although all the solutions of the weighted sum of fcth powers
(or other strictly isotone) problem must lie in a convex set for all sets of
weights, the set of all such solutions need not itself be convex. Gilstein and
Learner (1983) have given a precise characterisation of the nonconvex set
of solutions to the weighted least squares problem.

5 Minimax absolute error criterion

The class of (Gaussian) elemental set methods discussed in Sections 3 and 4
may be associated with the optimal value of the sum of absolute errors cri-
terion. A second class of (Laplacian) elemental set methods may similarly
be associated with the optimal value of the maximum absolute error crite-
rion. As its name implies, the minimax absolute error procedure chooses
values for the unknown constants in such a way as to minimise the largest
in absolute value of the n observed errors. This fitting procedure was first
discussed by Laplace (1786). Given a set of n linear equations in q — 2
unknowns, Laplace arbitrarily selected a set of r = q + 1 equations. Using
any q of these equations to eliminate the q unknowns from the remaining
equation, he obtained a single (reduced) equation with a linear function of
the r observed errors on one side and a nonnegative constant on the other.
Without further explanation, he asserted that the largest in absolute value
of these r errors is minimised when all r errors take the same absolute value
and their signs are given by the signs of the corresponding coefficients in
the single reduced equation.

A determinantal formulation of this procedure was subsequently devel-
oped by de la Vallee Poussin (1911). In this alternative formulation of the
problem one has to set the r selected errors proportional to the signs of the
cofactors of mi, m2,.. . , mr in the r x r determinant

rn2

d γ br cr . . . τnr

where, for notational simplicity, we assume that the trial solution is defined
by the first r equations of the model. The values of the unknown constants
and the common absolute value of the r errors are then obtained by applying
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Cramer's Rule to the corresponding system of r equations in r unknowns.
Under either of these schemes we have to evaluate all n errors v\, V2,..., vn

and select a new set of r equations if one or more of these errors is larger
in absolute value than the common value of the r errors in the current
set. Laplace (1786) apparently proposed to choose this new set without
reference to earlier selections. By contrast, de la Vallee Poussin (1911)
introduced an automated selection procedure which Stiefel (1960) subse-
quently identified with his own (1959) procedure and both as equivalent to
a standard simplex implementation of the linear programming dual formu-
lation of the minimax problem.

In this context it is interesting to note that Farebrother (1985) has shown
that the minimax absolute error procedure is closely related to the linear
programming dual formulation of the least sum of absolute errors problem.
Also see Farebrother (1997) for a detailed account of the early history of
the minimax absolute error procedure with particular reference to the work
of de Prony (1804) and Fourier (1827).

6 Median squared absolute error criterion
These results on the minimax absolute error procedure have recently come
to prominence as Rousseeuw's (1984) so-called least median of squares pro-
cedure actually chooses values for the unknown constants in such a way as
to minimise the median or middlemost value of any increasing function of
the absolute values of the observed errors. For example, suppose that we
wish to minimise the hth largest squared error where h is set close to n/2.
Then, conditional on the choice of the h — 1 equations which are to be ig-
nored, the least median of squared errors problem may be expressed in the
form of a minimax absolute error problem applied to the n — h +1 retained
equations. The optimal solution to the least median of squared errors prob-
lem is thus also characterised by a (Laplacian) elemental set determination
of the unknown constants. In principle, we may therefore determine the
optimal values of these q constants by evaluating the median squared er-
ror function for a sufficiently large sample of the minimax absolute error
determinations of the q unknowns from sets of q + 1 equations.

However, it is clear that the minimax fitting of a system of q + 1 equa-
tions in q unknowns is vastly more expensive than the direct solution of
a set of q equations in q unknowns. Rousseeuw and Leroy (1987) have
therefore suggested that a sufficiently accurate approximation to the ex-
act least median of squares solution may be obtained by evaluating the
median squared error function for a sufficiently large sample of Gaussian
elemental set determinations. This conjecture was subsequently confirmed
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by Stromberg (1993) whilst Hawkins (1993) has shown that this technique
yields satisfactory results for a wide class of robust fitting procedures.
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